Chasing One’s Tail: XPath Containment Under Cyclic DTDs

Manizheh Montazerian
Dept. of Computer Science and Info. Systems
Birkbeck, University of London

montazerian_mahtab@yahoo.co.uk

ABSTRACT

The problem of finding subclasses of XPath queries and doc-
ument type definitions (DTDs) for which containment can
be tested efficiently has been much studied. Along the way,
a number of constraints inferred from DTDs have been used
to characterise containment in terms of the chase proce-
dure. However, previous attempts have resulted in proce-
dures that are non-terminating for cyclic DTDs, even when
the queries include only the child and descendant operators
(i-e., no predicates or wildcards). In this paper, we introduce
a rewriting of such XPath queries in the presence of cyclic
(but simplified) DTDs, using an operator that generalises
the child and descendant operators, and show that doing so
allows us to produce a complete procedure for containment
using the chase and previous classes of constraints. We also
characterise a set of constraints that allows for a complete
chase procedure for this fragment of XPath in the case of
general, non-cyclic DTDs.

1. INTRODUCTION

XPath forms a crucial component in many web applica-
tions that involve the processing of XML messages. One
fundamental type of static analysis for XPath queries is
to determine the containment relationship between pairs of
queries. A query P contains a query @ if the answers to P
always include all the answers to). Containment tests are
useful in query optimisation, query processing using views,
and query cache utilisation, for example. As a result, the
containment problem for XPath has been the subject of con-
siderable study, both in general [1, 5, 7] and in the case
when the XML data being queried is assumed to conform
to a Document Type Definition (DTD) or other forms of
constraint [2, 3, 6, 8, 10].

As has become common practice, we indicate the fragment
of XPath under study by listing the operators permitted.
For example, XP(/,[],*, //) denotes the fragment in which
the child, predicate, wildcard and descendant operators are
permitted. It is well-known that containment can be solved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:

DBPL’11.

Copyright 2011.

Peter T. Wood
Dept. of Computer Science and Info. Systems
Birkbeck, University of London

ptw@dcs.bbk.ac.uk

efficiently for each of the fragments XP(/,[], *), XP(/,[],//)
and XP(/, //,*), but is coNP-complete for XP(/,[], *, //) [5].

In this paper, we are specifically interested in XPath queries
in the presence of DTDs; that is, we assume that, along
with each query (or queries) we are given a DTD, with the
assumption that the queries are to be evaluated on docu-
ments conforming to the DTD. In this case, we denote the
XPath fragment by including “DTD” in the notation, so
XP(DTD, //), for example, denotes the fragment where we
are given XPath expressions using only the descendant op-
erator along with a DTD.

Testing containment in the presence of DTDs is consider-
ably harder than in the case without DTDs; even contain-
ment for XP(DTD, /,[]) is coNP-complete [9]. A classifi-
cation of tractable, intractable and even undecidable frag-
ments is given in [6]. In this paper, we focus on XP(DTD, /, //)
because containment for this fragment can be decided is
in PTIME and the fragment is sufficient to demonstrate the
problems with previous approaches.

Neven and Schwentick [6] have already shown that con-
tainment of queries in XP(DTD, /,//) can be decided in
PTIME by using tree automata techniques. On the other
hand, for many classes of queries, including relational queries,
testing whether P contains @) is done by applying the well-
known and intuitively appealing chase procedure to @, fol-
lowed by deciding whether there is a containment mapping
from P to the chase of @. So it would be of practical benefit,
as well as intellectual satisfaction, to extend the use of the
chase procedure and containment mappings to the case of
deciding containment for XP(DTD, /, //) in PTIME, as well.
However, in order to achieve this, there are two problems to
overcome.

The first problem is that there may not be a containment
mapping between two equivalent queries in XP(DTD, /, //).
This is similar to the situation pointed out by Miklau and
Suciu [5] in the case of XP(/, //,*). They show that, given
queries P = a/x//b and Q = a//*/b, there is no containment
mapping from P to @ or from @ to P, despite the fact
that P and @ are equivalent. A similar problem arises for
XP(DTD, /,//) with queries P = a/a//a and Q = a//a/a
and DTD D with the single rule a — a*. Note that this rule
is recursive and that the DTD is therefore cyclic.

The second problem is to find a suitable set of constraints
with which to chase a query, while ensuring that the re-
sulting chase procedure terminates in polynomial time. Re-
cently, Wang and Yu [8] studied containment for the frag-
ment XP(DTD, /,[],//), proposing new types of constraints
inferred from DTDs and two different chase procedures. How-

ever, their first chase procedure does not terminate on the
example above, while for a generalisation of the above query
to include n descendant edges, their second chase procedure
results in a set of chased queries whose size is exponential
in n.

In this paper (Section 4), we provide a way of ensuring
that the chase of a query @ in XP(DTD, /, //) with respect
to DTD D produces a single, unique result whose size is
polynomial in the size of @ and D, even in the presence of
cyclic DTDs. This is done by introducing a new operator
|| into XPath, which loosely speaking denotes either / or
//, and replacing certain groups of / and // operators in a
query by || operators. Thus the result of chasing a query
Q in XP(DTD,/,//) with constraints derived from DTD
D is a query in XP(DTD, /, //,||), which we call a gener-
alised query. For example, the generalised query resulting
from chasing the query a//a/a above with constraints de-
rived from the DTD rule a — a* is the generalised query
allal|la. Given a query P in XP(DTD,/, //) and a query Q
in XP(DTD, /,//,||), we then define a generalised form of
containment mapping from P to @, and present an algo-
rithm that decides whether there is a generalised contain-
ment mapping from P to @ in time polynomial in the sizes
of P and Q.

The above results consider only what we term simplified
DTDs, where the DTD can be represented by a simple di-
rected graph. Simplified DTDs have also been considered
in [4, 8], for example. In this paper we also consider the
containment problem for queries in XP(DTD, /, //) under
general but non-recursive DTDs. Many constraints for use
with the chase have been introduced in previous papers [4,
8, 10] but only for restricted classes of DTDs. We show
that these constraints are insufficient in the case of contain-
ment for queries in XP(DTD, /, //) with respect to general,
non-recursive DTDs. To address this, we introduce a new
constraint, called a family constraint, which generalises pre-
vious constraints, and show that using family constraints
along with other previous constraints enables a complete
chase procedure for checking containment (Section 3).

2. BACKGROUND

We use the terms XPath query and tree pattern inter-
changeably. An XPath query in XP(/,[],//) can be repre-
sented by a tree pattern that uses child edges and descen-
dant edges. For example, the tree pattern on the right of
Figure 1 corresponds to the XPath query a[b//g]//e/g. We
will consider only Boolean queries in this paper, and re-
strict ourselves to queries in XP(/, //); hence, each initial
tree pattern corresponds to a path, although the chase can
transform such a query into one in XP(/,[], //)-

Given a pattern P, we denote the set of nodes of P by
N(P), the set of edges of P by E(P) (where each edge is
a pair (z,y) € N(P) x N(P)), the root of P by root(P),
and the label of a node z € N(P) by A(z). The set of child
edges is denoted by E,(P), while the set of descendant edges
is denoted by E//(P). When P is in XP(/, /) we denote the
single leaf node in P by leaf (P).

Tree patterns are queries to be evaluated on trees. Be-
cause we will ultimately consider only trees that conform to
a given DTD, it is sufficient for now to consider trees whose
node labels are drawn from a finite alphabet . We denote
the set of all trees whose node labels are drawn from ¥ by
Ts.. We use the same notation for trees as that defined for

tree patterns above (except of course there are no descen-
dant edges in a tree).

Given a tree pattern P and a tree t € Tx;, a homomorphism
from P to t is a function h : N(P) — N(t) that is

e root-preserving: h(root(P)) = root(t),
o label-preserving: for each © € N(P), A(z) = A(h(x)),

e child-edge-preserving: for each (z,y) € E,(P), we have
(h(x), h(y)) € E(t), and

o descendant-edge-preserving: for each (x,y) € E,/(P),
we have (h(z), h(y)) € ET(t), where E*(¢) denotes the
transitive closure of the edge relation E(t).

Then the evaluation of a Boolean query P on tree t € Tx,
denoted P(t), is true if and only if there is a homomorphism
from N(P) to N(t). We also say that ¢ satisfies Q. We
denote by SAT(Q) the set of trees in Tx that satisfy Q.

We say that query P contains query @, denoted P DO
Q, if and only if, for each tree ¢ € Tx, Q(¢) implies P(t).
Given a pair of patterns P and @ a containment mapping
from P to @ is a function h : N(P) — N(Q) satisfying the
same conditions as for a homomorphism defined above (with
Q substituted for t), except that in the third condition we
require that (h(z), h(y)) € E,(Q) (child edges must map to
child edges). For queries P and Q in XP(/,[],//), P 2 Q if
and only if there is a containment mapping from P to Q [1].

Now assume that we are given a DTD D, and we wish to
consider containment of queries under the assumption that
the trees being queried satisfy D. We denote by SAT(D)
the set of trees satisfying DTD D. We say that query P
D-contains query Q, denoted P Dp @Q, if and only if, for
each tree t € SAT(D), Q(t) implies P(t).

Often when studying D-containment of queries, a simpli-
fied form of DTD, one that can be modelled by a simple
directed graph G, is considered [4, 8]. Each element in D
is modelled as a node in G, with an edge from node a to
node b in G if an a-element can have a b-element as a child.
The DTD is recursive if the graph is cyclic. Edges in G can
be labelled with one of 1, ?, + or *, with the usual DTD
semantics, although this does capture general disjunction or
grouping of elements as provided by DTDs. We will consider
only the case where each edge is effectively labelled with *,
similar to [4], and will call DTDs that can be modelled by
such a graph simplified.

One way to test D-containment is to derive a set C of
constraints from D, chase @ with C, and find a contain-
ment mapping from P to the chased query. Although this
method works for some classes of query and DTD [4, 8, 10],
it sometimes fails to terminate for queries in XP(/, //) and
simplified DTDs, as pointed out in the Introduction.

For non-recursive DTDs, the following five types of con-
straint, which can be inferred from a DTD, have been consid-
ered. The first is from [10], while the last three are from [4].

1. A sibling constraint (SC) is of the form a : b | ¢ and
states that, whenever an a-node has a b-node as a child,
then it also has a c-node as a child. A special form of
SCis a: 0 | c, which states that every a-node has a
c-node as a child.

2. A cousin constraint (CC) is of the form a : bl ¢ and
states that, whenever an a-node has a b-node as a de-
scendant, then it also has a c-node as a descendant. A

special form of CC is a : # | ¢, which states that every
a-node has a c-node as a descendant.

3. A parent-child constraint (PC) is of the form a ' b
and states that, whenever a b-node is a descendant of
an a-node, then it is necessarily a child.

4. An intermediate node constraint (IC) is of the form

a = b and states that, whenever there is a path from
an a-node to a b-node, there is a c-node on the path.

While the above constraints allow for complete contain-
ment tests when the DTD is simplified and non-recursive [4],
this is no longer the case for general non-recursive DTDs.
For completeness in this case (as shown in Section 3), we
need a new constraint that is a generalisation of sibling and
cousin constraints.

5. A family constraint (FC) is of the form a[$10] | [$2¢],
where each of $; and $ is either / or //. It states that,
whenever an a-node has a b-node as a child (if $; is /)
or descendant (if $; is //), then it also has a c-node as a
child (if $2 is /) or descendant (if $2 is //), respectively.
As special cases, if every a-node must have a c-node as
a child (or descendant), we write all[/c] (or al[//c]).

When both $; and $; are / (respectively //), then an FC
corresponds to an SC (respectively CC).

ExAMPLE 1. Consider the following DTD, which is not
simplified because of the disjunction in the first rule:

a — bl(c(de)
b — ¢
d — f
e — f

If an a-node has a c-child then it must have an f-descendant,
and if an a-node has an f-descendant then it must have a
c-child. So the FCs a[/c]{[//f] and a[//f]{[/c] hold. Note
that an a-node can have a c-descendant without having an f-
descendant, so a CC will not capture the first constraint. []

Wang and Yu [8] introduced three further types of con-
straint which are necessary to handle situations that arise
with recursive DTDs (and are expressed with respect to the
graph of a simplified DTD):

6. A child-of-first-node constraint (CFN) is of the form

a ﬂ> b and states that on every path from an a-node
to a b-node, the node immediately following the a-node
must be a b-node.

7. A parent-of-last-node constraint (PLN) is of the form

a a—/> b and states that on every path from an a-node
to a b-node, the node immediately preceding the b-
node must be an a-node.

8. An essential edge constraint (EE) is of the form a N
b and states that every path from an a-node to a b-node
must contain an edge from an a-node to a b-node.

To simplify the notation and presentation, we will say:

1. (a,b) is initial if and only if the CFN a AN holds,

2. (a,b) is final if and only if the PLN a - b holds, and

3. (a,b) is essential if and only if the EE a /4 b holds.

We collectively call these last three constraints essential con-
straints, abbreviated ECs.

Note that a pair being initial or final implies that it is es-
sential, although a pair can be essential without being either
initial or final. For example, if E(G) = {(a, a), (a,b), (b,b)},
then (a, b) is essential but neither initial nor final. Also note
that if a pair (a,b) is both initial and final, this does not
imply that the only path from a to b is (a,b). For example,
if E(G) = {(a,b), (b,a)}, then (a,b) is both initial and final,
but there are paths of the form a(ba)*b from a to b.

A chasing sequence of a query @ by a set of constraints
C is a sequence Qo,...,Qr such that Qo = Q, for each
0<i<k—1, Qit1 is the result of applying some constraint
in C to Q;, and no constraint can be applied to Q. Given
a chasing sequence Qo,...,Qr of @ by C, we call Qr the
chase of Q by C (which turns out to be unique), denoted
Q€. Constraints such as PCs, ICs and FCs are applied to
a query in the obvious way (we give examples in the next
section). ECs, by contrast, are used to transform a query to
a generalised query by replacing some occurrences of / and
// by ||, as explained in Section 4.

3. NON-RECURSIVE DTDS

Our goal in this section is to prove that, given a pair of
queries P and @ in XP(/,//) along with a non-recursive
DTD D, chasing @ with the set C of parent-child (PC), in-
termediate node (IC) and family constraints (FC) inferred
from D to give QC, followed by checking for a containment
mapping from P to Q° gives a complete procedure for de-
termining whether P Dp Q. To do so, we first show that
there are trees satisfying @Q and D to which there are one-
to-one homomorphisms from Q. We then show that, given
such a tree t, there is a homomorphism h from P to t that
maps nodes of P to nodes in ¢ that are in the image of one
of these one-to-one homomorphisms g from Q. Then the
composition of h with the inverse of g gives a containment
mapping from P to Q€.

It turns out that QF needs to be minimal for the exis-
tence of such a one-to-one homomorphism from Q¢ to be
guaranteed.

ExXAMPLE 2. Counsider the following DTD D:

a — ble
b — d
c — d

We can infer the FCs b{l[/d], c¢{[/d] and a |} [//d]. Given a
query @ = a/b, the chase might first add a d-descendant to
a followed by a d-child to b. Now there is no one-to-one ho-
momorphism from Q¢ to any tree in SAT(D). The problem
is that the d-descendant of a is Q€ is redundant. [J

Given a query @ in XP(DTD, /,//) and a DTD D, the
models of @ with respect to D, denoted Mod(Q, D), are
those trees in SAT(Q)NSAT(D). Since the chase of @ with
respect to a set of constraints C' inferred from D preserves
D-equivalence of queries, Mod(Q, D) = Mod(Q¢, D).

Similar to Miklau and Suciu [5], we define the set of canon-
ical trees in Mod(Q, D) as those trees that “look like” Q€.

A tree t € Mod(Q, D) is minimal if deleting any set of sub-
trees from ¢ results in a tree no longer in Mod(Q, D). A
minimal tree ¢ € Mod(Q, D) is canonical if ¢t can be trans-
formed to (a tree isomorphic to) Q° by removing entire
subtrees from ¢ and replacing paths of degree-two nodes in ¢
by descendant edges. (Of course, the resulting tree may no
longer be in Mod(Q, D).) The set of canonical trees for @
and D is denoted by CMod(Q, D). We need to prove that
canonical trees exist; it turns out that this is the case when
Q€ is minimal. Having to work with minimal queries is not
a problem, since queries in XP(/,[], //) can be minimised in
polynomial time [1].

LEMMA 1. If Q° is minimal, then CMod(Q,C) # 0.

An isomorphism f from the transformed tree ¢’ for a tree
t € CMod(Q, D) gives rise to a one-to-one mapping from
the nodes of ¢ to the nodes of Q. The inverse of f is a one-
to-one mapping from Q¢ to t. We will call such a mapping
a canonical homomorphism. The following example shows
that there is not necessarily a unique canonical homomor-
phism from a minimal Q¢ to a canonical tree ¢.

ExAMPLE 3. Consider the following DTD D
= b,b,(c[d)
(eld)

e

Qo o 8
Ll

e
h
h

e

i
along with the query @ = a/b. The set of constraints C
inferred from D includes (among others) a | [//e], b{ [//h]
and e | [/h]. The minimal chase Q€ of Q with respect to
C' is shown on the right of Figure 1. Note that while Q
is in XP(/,//), QF is in XP(/,[],//). A canonical model
t € CMod(Q, D) is shown on the left of Figure 1. Also

shown are two canonical homomorphisms f (dotted) and g
(dashed) from N(Q%) to N(t). O

t: flg Q°:

Figure 1: Example tree t and chase Q° of query Q.

We now define the notion of a node being essential in a
canonical tree in CMod(Q, D). Let v be a node in a tree t.
An ancestral forest of v in t is defined inductively as follows:

e each forest formed by the subtree rooted at v along
with the subtrees rooted at zero or more siblings of v
forms an ancestral forest of v,

e cach forest formed by the subtree rooted at an ancestor
u of v along with the subtrees rooted at zero or more
siblings of u forms an ancestral forest of v

Given a canonical tree t € CMod(Q, D), anode v € N(t) is
inessential in t if t can be transformed to t' € CMod(Q, D)
by replacing an ancestral forest of v by a forest in which no
node is labelled A(v). A node v € N(t) is essential in ¢t if it
is not inessential.

ExAMPLE 4. Consider the canonical tree ¢ in Figure 1.
All the nodes labelled a, b and h are essential, as is the
righthand node labelled e. The lefthand node labelled e and
the nodes labelled ¢ and ¢ are inessential since the subtrees
rooted at them can be replaced by subtrees not including
nodes labelled e, c or i, respectively. [

In all the results that follow we assume that P and @ are
queries in XP(DTD, /,//), D is a non-recursive DTD, C is
the set of PCs, ICs and FCs inferred from D, Q€ is the
minimal chase of () with respect to C', and ¢ is a canonical
tree in CMod(Q, D).

LEMMA 2. Fach essential node in t is in the image of
some homomorphism from N(Q°) to N(t).

LEMMA 3. If P Op @, then there must be a tree t €
CMod(Q, D) and a homomorphism h from N(P) to N(t)
such that, for each v € N(P), h(v) is essential.

THEOREM 1. If P Op Q, then there is a containment
mapping from P to Q°.

4. RECURSIVE DTDS

We now turn to considering how to use the chase to test
query containment for queries in XP(DTD, /,//) with re-
spect to a potentially recursive DTD. As pointed out in Sec-
tion 2, we will restrict ourselves to simplified DTDs, ones
that can be represented by simple, directed graphs. As a
result, we will use the terms simplified DTD and graph in-
terchangeably.

We start our investigation by first considering the simpler
setting in which the simplified DTD G is also non-recursive,
that is, the directed graph G is acyclic. Note that FCs
cannot arise in a simplified DTD because all children are
optional and no grouping is allowed. Hence, perhaps it is
not surprising that it turns out that, given queries P and
Q in XP(DTD, /, //), we can test whether P D¢ Q by first
chasing @ with (only) the set of ICs and PCs implied by G to
give Q€ and then checking whether there is a containment
mapping from N(P) to N(Q°).

LEMMA 4. Let G be a simplified, non-recursive DTD and
P and Q be in XP(DTD, /,//). Let C be the set of ICs and
PCs inferred from G, and QF be the result of chasing Q with
C. If P D¢ Q, then there is a containment mapping from
P to Q°.

When trying to extend the above result to queries in
XP(DTD, /, //) with recursive DTDs, the situation becomes
much more complicated. The problem is that, when the

(DTD) graph G has cycles, there can be pairs of equivalent
queries without containment mappings between them. The
simplest example of this situation is that given in the Intro-
duction, namely, for queries P = a/a//a and Q = a//a/a
and DTD G with rule a — a*. Every path through G com-
prises only nodes labelled a, so P =¢ @, but there is no
containment mapping from P to Q or from @ to P.

To address the above problem, we propose introducing
a new notation which allows one query form to denote a
number of equivalent queries in XP(DTD, /,//). First we
introduce a new XPath operator || which, loosely speaking,
denotes either / or //. Then we allow for consecutive occur-
rences of || in a query to be assigned to groups, indicated
by superscripts, representing group numbers, on the || oper-
ators. A group of || operators denotes the set of subqueries
obtained by replacing each || within the group by either /
or //, as long as at least one // remains in the group. As an
example, a ||* a ||' a denotes the pair of queries a/a//a and
a//a/a. We call a query using the || operator a generalised
query.

To decide whether P Dg @, for queries P and @ in
XP(DTD, /,//) and potentially recursive DTD G, we will
proceed as follows. We will first chase Q with the set C' of
PCs and ICs derived from G to give Q°. We will then form
a generalised query Qﬁ from Q¢ and find a containment

mapping from P to Qﬁ. In the following two subsections,
we define the notion of a generalised query, and show how
to transform a given query @ into a generalised query that
is G-equivalent to @. In Section 4.3 we define what it means
for a containment mapping to exist from a query to a gen-
eralised query, and provide a polynomial-time algorithm for
deciding whether such a containment mapping exists.

4.1 Generalised Queries

A generalised query Q) is an XPath query in which, in
addition to the operators / and //, the operator || can be
used. Occurrences of || in Q) must be assigned to groups
which are numbered using positive integers. More specifi-
cally, each occurrence of || in Q)| must be assigned to either
one group or two consecutively numbered groups: if opera-
tor || is in group i, this is indicated by ||*; if || is in groups
i and i + 1, this is written *||"*. Finally, only consecutive
occurrences of || can belong to the same group.

A generalised query represents a set of queries defined as
follows. An instantiation of a generalised query Q) is a
query in XP(DTD, /, //) obtained by replacing each occur-
rence of || in Q) by either / or // while ensuring that in
each group at least one || is replaced by a // operator. The
expansion of a generalised query @), denoted Qﬁ(, is the set
of instantiations of Q). The meaning of Qﬁ(is defined as
one would expect. Let Qﬁ(={Q1,...,@Qm}. Given a tree
t, Qﬁ((t) is defined as Q1(t) U- - U Qm(t), or, in the case of
Boolean queries, as Q1(t) V- -V Qm(t).

EXAMPLE 5. QH = al//a2||1a31|\2a4||2a5/a6 is a gener-
alised query in which the || operators have been placed
in two groups. The expansion Qﬂ(of Q) is a set of five
queries, corresponding to five instantiations of groups 1 and
2. The instantiations of groups 1 and 2 are (1) az/as//as/as,
(2) az//as/as//as, (3) az//as//as/as, (4) az/as//as//as and
(5) a2//as//aa//as. Note that az//as/as/as is not an instan-
tiation of groups 1 and 2 because both occurrences of || in
group 2 have been replaced with /. Note further that the

size of Qﬁ(can be exponential in the size of Q). [

4.2 Transforming a Query to a Generalised

Query
Let @ = ao$1a18; -+ $nan be a query in XP(DTD, /, //),

where each $; is either / or //. We call a sequence a;$;+1 - - - $;a;,

0<i<mn-—1andi<j<n,a query fragment of Q. In this
section, we identify those fragments of a query that need to
be generalised in order to ensure that we can always find
a containment mapping to them. We call these fragments
essential fragments, because they are identified using the
essential constraints defined in Section 2.

Given a simplified DTD graph G = (N(G), E(Q)), we
need to work with the strongly connected components (SCCs)
of G. We call an SCC trivial if it is a singleton set {v} and
(v,v) € E(G); otherwise, it is called non-trivial. (Of course,
if G is non-recursive, then every SCC in G is trivial and no
part of the following transformation is performed.)

Recall the definition of essential, initial and final pairs
of nodes from Section 2. An essential fragment in @ is a
maximal sequence of essential pairs in) such that

1. if the first pair is not preceded by the operator // in
Q, then it must be initial,

2. if the last pair is not followed by the operator // in Q,
then it must be final, and

3. for each pair (x,y) in the sequence, either z or y is in
a non-trivial SCC of G.

ExAMPLE 6. Consider the simplified DTD G shown in
Figure 2, in which all nodes are in the same SCC. By defi-
nition, only pairs of nodes that correspond to edges can be
essential. All such pairs, except (b, e) and (d,c), are essen-
tial. Pairs (b,e) and (d,c) are not essential because there
are paths from b to e and from d to ¢ that do not include
the edges (b,e) and (d,c), respectively. In addition, (a,b),
(¢,d) and (e,a) are all both initial and final. (b,c) is nei-
ther initial nor final because there is a path from b to ¢ that
starts with (b, e) and ends with (d,c¢). For similar reasons,
(d, e) is neither initial nor final.

Figure 2: Graph of a simplified DTD.

Consider the query Q1 = a//b//c//d. This fragment is
essential because each pair is essential, and because (a, b) is
initial and (e, d) is final.

Now consider the query Q2 = a//b//e//c//d. Neither (b, e)
nor (e,c) is essential, the latter because there is no edge
(e,c) € E(G). So there are two essential fragments of length
one in @2, namely, a//b and ¢//d. [

Allocating operators to groups in an essential fragment
really only makes sense when the fragment contains at least

two operators. So we first consider the special case of an
essential fragment comprising a single pair (x,y). If the
operator between x and y is /, there is nothing to be done.
However, if the operator is //, we can replace it by / while
preserving G-equivalence in the following situations:

e if = is preceded by // and y is followed by //,

e if x is preceded by //, y is followed by / (or is the final
query node), and z is in a non-trivial SCC S while y
is either in a trivial SCC or also in S,

e if z is preceded by / (or is the first query node), y is
followed by //, and y is in a non-trivial SCC S while
x is either in a trivial SCC or also in S.

EXAMPLE 7. Recall the query Q2 from Example 6. Since
a//b is followed by // and ¢//d is preceded by // (and a, b, ¢
and d are all in the same SCC), the // operator in each can
be replaced by / to give the G-equivalent query a/b//e//c/d.
This query is G-equivalent to Q2 because any path from a
to e via b in G must start with (a,b), while any path from e
to d via ¢ must end with (¢,d) [

After dealing with essential fragments of length one, we
can assign the operators in longer fragments to groups using
the following rules for rewriting. We start with an essential
fragment a1 $1 a2 $2 -+ $n-1 an, n > 2, of Q. We now
perform the following three steps:

1. (Overlapping groups) Rewrite the fragment assigning
operators to groups as follows: a1 $1az'$3 --- Z:f Qn.

Note that the first and last operators in the fragment
are each in only one group.

2. (Extend groups) Apply the rule
i—2gi-1 _ i—lgi i-2 _ i-2gi
aj—1" 8 a; TS50 = a1 8571078 a5
for any (a;—1,a;), 2 < j < n, that is both initial and
final.

3. (Separate groups) Apply the rule
aj—1 8T a; TS a5 = a1 877 a5 85 a5
for any (a;,aj+1) that is initial and (aj—1,a;) that is
final, 2<j<mn-—1.

Step (1) is applied once, then step (2) as many times as pos-
sible, and finally step (3) as many times as possible. After
applying each rule, we re-number the groups to ensure that
their numbers remain consecutive (so that further rule ap-
plications can occur). At the end, if any group 4 contains
only / operators, we remove the group number ¢ from each
operator in the group. For each remaining group, we replace
each $; by ||.

We now try to give the intuition behind the above steps.
For simplicity, assume that the initial essential fragment Q
uses only // operators. By assigning all the operators to
overlapping groups in a generalised query @, the most spe-
cific queries in the expansion of ()} are ones in which the
operators / and // alternate. This is correct when all of the
“internal” pairs of () are only essential, but not initial nor
final. If we have pairs that are both initial and final, then
we can extend groups, as in step (2) above, which will allow
for more occurrences of || within a group to be replaced by

/ in an expansion. Finally, we can separate two groups by
removing an intervening group as in step (3) if the last pair
in the first group is final and the first pair in the second
group is initial.

ExXAMPLE 8. Recall the query Q1 from Example 6. Step (1)
of the rewriting produces a//*b'//%c//*d. Since (b, c) is nei-
ther initial nor final, steps (2) and (3) cannot be applied.
Finally, each // is replaced by || to give the generalised query
al|*bY|?c||?d. So Q1 is G-equivalent to each of a/b//c/d and
a//b/c//d, where each group has a single // operator. Note
that Q1 is not G-equivalent to more specific queries such as
a/b/c//d or a//b/c/d.

Now consider the query Qs = a//b//c//d//e//a. Once
again, the whole fragment is essential, but this time step (2)
of the rewriting can be applied because (¢, d) is both initial
and final. So the rewriting produces a||*b'||*c||*d¥|?¢||a,
with three operators being in group 2. Hence, @3 is G-
equivalent to (among others) a/b//c/d/e//a, a//b/c/d//e/a
and a//b/c//d/e//a. For example, in the first case, any path
from b to a via ¢, d and e in G must pass through the
sequence (c,d,e), so it is safe to separate ¢, d and e by /
operators. Similarly, in the second case, any path from a
to e via b, ¢ and d in G must pass through the sequence
(b, ¢,d), so it is safe to separate b, ¢ and d by / operators.

Starting with any of the three queries above would give
rise to the same rewriting since both / and // operators
within a group are replaced by || operators. [

Given a query Q, we denote by Q) the result of applying
the above rewriting to each essential fragment of Q.

LEMMA 5. Let Q be in XP(/,//), G be a simplified DTD,
and C' be the set of PCs and ICs inferred from G. Then

Q=c Qf-

4.3 Generalised Containment Mappings

We now need to define the notion of a containment map-
ping from a query P in XP(/, //) to a generalised query @ in
XP(/,//,1), by taking into account how child and descen-
dant edges in P can map to || edges in Q. The basic idea is
that no group in () must have each pair in it mapped to by
a child edge of P.

Let P be in XP(/,//) and Q be in XP(/,//,]]). A (gen-
eralised) containment mapping from P to @ is a function
h: N(P) — N(Q) satisfying the root-preserving and label-
preserving properties as before, as well as:

o child-edge-preserving: for each (x,y) € E,(P), we have
(h(z), h(y)) € E/(Q) U E(Q),

o descendant-edge-preserving: for each (x,y) € E,/(P),
we have (h(z),h(y)) € ET(Q), and

e group-preserving: it is not the case that, in some group
in Q, each pair (u,v) in the group has both h~*(u) and
h™'(v) defined and has (h™'(u),h""(v)) € E,(P).

THEOREM 2. Let P and Q be in XP(/,//), G be a sim-
plified DTD, and C be the set of PCs and ICs inferred from
G. Then P D¢ Q if and only if there is a generalised con-
tainment mapping from P to Qﬁ

We now present Algorithm 1 which, given queries P in
XP(/,//) and Q in XP(/,//,||), checks whether there is a

generalised containment mapping from P to @, and hence,
by Theorem 2, whether P D¢ Q. The algorithm is mod-
elled after that used in [5]. Two Boolean tables C(u,x)
and D(u,z), for u € N(P) and = € N(Q), are constructed.
C(u,z) is true if there is a containment mapping from the
subtree rooted at u to the subtree rooted at x; D(u, z) is true
if there is a containment mapping from the subtree rooted
at u to the subtree rooted at x or one of its descendants.
Of course we also need to ensure that the group-preserving
property of containment mappings is satisfied. The struc-
ture of a generalised query ensures that each || operator is
in either one or two groups. We consider a node = in Q to
be in the group(s) of the operator that follows z in . Two
consecutive nodes in a query can have at most one group in
common. A third Boolean table G(u,z,?) in Algorithm 1
denotes whether, by mapping « in P to x in Q, group 7 in Q
has had a // operator mapped to it. We use last(z,1) to de-
note whether node z in group 7 in @ is the last node in group
¢ (when processing nodes bottom-up or from right-to-left).

Algorithm 1: Decide if P D @

Input: queries P in XP(/,//), Q in XP(/,//,])
Output: whether P D @
1 foreach u € N(P) and = in group i in N(Q) do
2 | G(u,x,i) false

3 foreach z € N(Q) do // bottom-up

4 foreach u € N(P) do // bottom-up
5 if leaf(u) A A(u) = A(z) then
6 foreach group i of x do G(u,x,1) « true
7 C(u,x) < D(u,) < true; break
8 if leaf(x) then
9 L C(u,x) < D(u,z) < false; break
10 let y be the child of = // x is not a leaf
11 if A(u) # A(z) then
12 L C(u,z) < false; D(u,x) < D(u,y); break
13 let v be the child of w // w is not a leaf
14 if (u,v) € E/(P) then
15 if (z,y) € E/(Q) then C(u,z) < C(v,y)
16 else if (z,y) € E£)(Q) then
17 if z and y are in the same group i then
18 L G(u,z,i) + G(v,y,1)
19 if last(z,i) A -G (u, z,t) then
20 | C(u,z) + false
21 else
22 | C(u,z) + C(v,y)
23 else C(u,x) < false // (z,y) € E/;(Q)
24 else// (u,v) € E/(P)
25 if (z,y) € E)|(Q) then
26 foreach group i of x do
G(u,z,t) < D(v,y)
27 L C(u,z) < D(v,y)
28 | D(u,z) + C(u,z) vV D(u,y)

29 O;tput C(root(P),root(Q))

EXAMPLE 9. Recall the query Q1 from Examples 6 and 8,
rewritten as the generalised query al|'b'||?c||?d. Let us refer
to this query as @, with P being a/b//c/d.

The crucial step in applying Algorithm 1 is when process-
ing b € N(Q) and b € N(P). Since (b,c) € E;/(P), line 24
applies. Since (b,¢) € E)|(Q) and b is in both groups 1 and
2, G(b,b,1) and G(b, b, 2) are set to D(c, ¢), which is true, in
line 26. Then when a € N(Q) and a € N(P) are processed,
because (a,b) € E,(P), line 14 applies. Since (a,b) € E||(Q)
and both a and b are in group 1, G(a,a,1) is set equal to
G(b,b,1) which is ¢rue. Then although last(a,1) is true,
—G(a,a, 1) is false, so line 22 sets C(a,a) to C(b,b) which is
true.

Assume instead that P is simply a/b. Now when process-
ing b € N(Q) and b € N(P), because b € N(P) is a leaf,
line 6 applies, setting G(b,b, 1) to true. Processing then pro-
ceeds as above for a € N(Q) and a € N(P).

Now assume that P is a/b//d. When processing b € N(Q)
and b € N(P), line 24 applies because (b,d) € E//(P). Be-
cause there is a descendant of ¢ € N(Q) to which d € N(P)
can map, D(d,c) is true. Hence G(b,b,1) is set to true in
line 26.

On the other hand, assume that P is a/b/c. When pro-
cessing b € N(Q) and b € N(P), line 16 applies because
(b,c) € E,(P) and (b,c) € E;(Q). Nodes b and c are
both in group 2, so G(b,b,2) is set to G(c,c,2) which is
true by virtue of ¢ being a leaf in P and line 6. Although
b is last in group 2, G(b,b,2) is true, so line 22 sets C(b,b)
to C(c,c) which is true. When processing a € N(Q) and
a € N(P), line 16 applies again because (a,b) € E,(P) and
(a,b) € E|(Q). Nodes a and b are both in group 1, so
G(a,a,1) is set to G(b,b, 1) which is false. Now a is last in
group 1 and G(a,a,1) is false, so C(a,a) is set to false in
line 20. [

PROPOSITION 1. For P in XP(/,//) and Q in XP(/,//,|]),
Algorithm 1 correctly determines whether there is a gener-
alised containment mapping from P to Q. If P has n nodes
and Q has m nodes, then Algorithm 1 runs in time O(nm).

S. CONCLUSION AND FUTURE WORK

We have studied the problem of using the chase procedure
and containment mappings to test containment of XPath
queries in XP(DTD, /, //). Previous approaches considered
either simplified, non-recursive DTDs [4] or simplified re-
cursive DTDs but without the guarantee of the chase termi-
nating [8]. Although both papers applied their techniques to
XP(DTD,/,[],//), the incompleteness of the first in the pres-
ence of general non-recursive DTDs and the non-termination
of the second apply also to the smaller XPath fragment
XP(DTD, /, //).

In this paper, we have introduced a new constraint, called
a family constraint, which generalises the sibling and cousin
constraints used previously and restores completeness to
the chase procedure for testing containment of queries in
XP(DTD, /, //) in the presence of general non-recursive DTDS.
In the case of simplified recursive DTDs, we have introduced
a generalised form of XPath syntax, which allows for the rep-
resentation of an exponential number of equivalent queries,
and a generalised form of containment mapping so that the
chase can still be used as a polynomial-time test for contain-
ment.

We believe these results can be combined in order to pro-
vide a polynomial-time test for containment of queries in
XP(DTD, /,//) using the chase in the presence of fully gen-
eral DTDs.

6.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
constructive comments which helped to improve the paper.

7.
1]

2]

3]

REFERENCES

S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and
D. Srivastava. Tree pattern query minimization. The
VLDB Journal, 11(4):315-331, 2002.

A. Deutsch and V. Tannen. XPath queries and
constraints, containment and reformulation.
Theoretical Computer Science, 336(1):57-87, 2005.
P. Geneves, N. Layaida, and A. Schmitt. Efficient
static analysis of XML paths and types. In Proc. ACM
SIGPLAN Conf. on Programming Language Design
and Implementation, pages 342-351, 2007.

L. V. S. Lakshmanan, H. W. Wang, and Z. J. Zhao.
Answering tree pattern queries using views. In Proc.
32nd Int. Conf. on Very Large Data Bases, pages
571-582, 2006.

[5]

[6]

(10]

G. Miklau and D. Suciu. Containment and equivalence
for a fragment of XPath. J. ACM, 51(1):2-45, January
2004.

F. Neven and T. Schwentick. On the complexity of
XPath containment in the presence of disjunction,
DTDs, and variables. Logical Methods in Computer
Science, 2(3):1-30, 2006.

B. ten Cate and C. Lutz. The complexity of query
containment in expressive fragments of XPath 2.0. J.
ACM, 56(6):31:1-31:48, September 2009.

J. Wang and J. X. Yu. Chasing tree patterns under
recursive DTDs. In Proc. 15th Int. Conf. on Database
Systems for Advanced Applications, pages 250-261,
2010.

P. T. Wood. Minimising simple XPath expressions. In
Proc. WebDB 2001: Int. Workshop on the Web and
Databases, pages 13-18, 2001.

P. T. Wood. Containment for XPath fragments under
DTD constraints. In Proc. 9th Int. Conf. on Database
Theory, pages 300-314, 2003.

