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ABSTRACT
This paper discusses the validity problem for positive XPath
queries with wildcard in the presence of DTDs. A given
XPath query p is valid under a DTD D if, for every XML
document T conforming to D, the answer to p on T is
nonempty. The validity problem is one of the basic static
analyses of queries, together with the satisfiability and the
containment problems. Although the validity problem is the
dual of the satisfiability problem, the complexity of validity
for positive XPath classes is not obvious because the XPath
class does not contain the negation operator. In this pa-
per, first, it is shown that the path union operator in XPath
queries easily makes the validity problem intractable. Then,
we focus on wildcard, which is a special case of path union
and more popular than path union in the real world. In-
terestingly, wildcard together with child and descendant-or-
self axes and qualifier causes intractability while the validity
problem becomes tractable for XPath classes defined by any
combination of three of child axis, descendant-or-self axis,
qualifier, and wildcard.

1. INTRODUCTION

1.1 Overview
Static analysis of XPath queries is one of the major the-

oretical topics in the field of XML databases. XPath is a
query language for XML documents, where an XML docu-
ment is often regarded as an unranked labeled ordered tree.
An XPath query specifies a pattern of paths from the root
of a given XML document. The answer to an XPath query
for an XML document T is a set of nodes v of T such that
the specified path pattern matches the path from the root
to v.

There are two major subtopics in the research on static
analysis of XPath queries: XPath satisfiability and XPath
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containment in the presence of DTDs (Document Type Def-
initions). A given XPath query p is satisfiable under a given
DTD D if there is an XML document T conforming to D
such that the answer to p for T is a nonempty set. On the
other hand, a given XPath query p contains a given XPath
query p′ under a given DTD D if for every XML document
T conforming to D, the answer to p′ for T is a subset of the
answer to p for T . These subtopics are strongly motivated
by query optimization.

On the other hand, as far as the authors know, there is
little research on XPath validity in the presence of DTDs.
A given query p is valid under a DTD D if every XML
document conforming to D satisfies p. The validity checking
of an XPath query is useful when the query is regarded as
a Boolean query, i.e., the issuer of the query is interested in
whether the query matches the XML document rather than
the set of returned nodes.

The validity problem is the dual of the satisfiability prob-
lem. Specifically, it is the complement of the satisfiability if
the class of XPath allows the negation operator, because p
is valid under a DTD D if and only if ¬p is unsatisfiable un-
der the DTD D. Hence, the complexity of validity for many
classes of XPath with negation can be derived immediately
from the results on the satisfiability problem. However, if
the class of XPath is positive (i.e., the negation operator
is not allowed), the complexity of validity is not obvious.
In summary, the validity problem of positive XPath queries
is worth investigating from both practical and theoretical
points of view.

As for conjunctive queries over trees, which is a proper su-
perclass of the positive XPath queries without path union,
Björklund et al. [2] investigated the complexity of not only
satisfiability and containment problems but also validity
problem with respect to an XML schema. They showed that
conjunctive query validity is 2EXPTIME-complete with re-
spect to a DTD or a finite tree automaton, which is an
abstraction of a RELAX NG schema. Our goal in this pa-
per is to identify the boundary between tractability and in-
tractability of the validity problem for the positive XPath
queries.

Our work is summarized as follows. We first show that
validity of XPath queries with path union (denoted ∪) with
one of child (denoted ↓) and descendant-or-self (denoted ↓∗)
axes is coNP-hard. Since ∪ brings the semantics of logical
disjunction into XPath, the result may not be so surprising.
Next, we focus on wildcard (denoted ∗), which is a special



Table 1: The complexity of validity, satisfiability, and containment under DTDs.
↓ ↓∗ [ ] ∗ ∪ validity satisfiability containment

+ + coNP-hard in PTIME[1] coNP-hard[12]/in EXPTIME[12]
+ + + + coNP-hard NP-complete[1] coNP-hard[12]/in EXPTIME[12]
+ + + in PTIME in PTIME[1] in EXPTIME[12]

+ + + in PTIME NP-complete[1] coNP-hard[12]/in EXPTIME[12]
+ + + in PTIME NP-complete[1] coNP-hard[12]/in EXPTIME[12]

case of ∪ and more popular than ∪ in the real world. How-
ever, it is shown that validity of XPath queries with ↓, ↓∗,
qualifier (denoted [ ]), and ∗ is coNP-hard. Finally, we show
that the validity problem becomes tractable by excluding
one of ↓, ↓∗, [ ], and ∗ from the latter intractable subclass.
Thus, these results show a tight boundary between tractabil-
ity and intractability for positive XPath queries with wild-
card.

Table 1 summarizes the results of this paper. A “+” in
a multicolumn means “one of them”. For example, the first
row of the table represents the class with ∪ and one of ↓
and ↓∗. Bold letters indicate the contributions of this paper.
We note that in our paper, logical connectives ∧ and ∨ in
qualifier are not allowed.

1.2 Related work
As stated above, XPath satisfiability and containment

have been extensively studied so far. As for satisfiability,
Benedikt et al. investigated how the combinations of XPath
components such as downward/upward axes, qualifiers, and
negations affect the complexity of the satisfiability prob-
lem [1]. They also derived a number of results on XPath
containment from the results on the satisfiability of XPath
queries with negation. Other components of XPath such
as sibling axes [1, 6, 8, 9], following-sibling and preceding-
sibling axes [14], and data equality [1, 5] were investigated.

As for XPath containment, Miklau and Suciu investigated
how the combination of descendant axis, qualifier, and wild-
card affect the complexity of XPath containment without
DTDs [11]. XPath containment in the presence of DTDs
were studied by many researchers such as Deutsch and Tan-
nen [3], Wood [16], and Neven and Schwentick [12, 13]. Re-
cently, ten Cate and Lutz showed the complexity of the con-
tainment of queries in XPath 2.0 [15].

On the other hand, some researches tackled the in-
tractability of XPath static analysis problems in the pres-
ence of schema information by using appropriate logics.
Libken and Sirangelo presented a single-exponential direct
translation from an LTL-like logic for trees into an automata
model, and applied the translation to static analysis prob-
lems of XPath [10]. Genevès and Layäıda presented a prac-
tically fast algorithm to solve XPath static analysis prob-
lems, based on a variant of µ-calculus [7]. In their approach,
XPath queries are translated to formulas of the logic, and
then, validity, as well as satisfiability and containment, is
verified by fast decision procedures for µ-calculus formulas.

We aim at investigating how the combinations of positive
XPath components of positive XPath components affect the
complexity of validity. This paper studies the validity prob-
lem of positive downward XPath queries with wildcard. As
stated above, if the class of XPath is restricted to be posi-
tive, the problem is not the dual problem of the satisfiability,

and therefore, the complexity is not obvious.

1.3 Organization of the paper
The rest of the paper is organized as follows. Preliminary

definitions are given in Section 2. Then, the intractability
and tractability results are presented in Sections 3 and 4
respectively. Section 5 summarizes the paper.

2. DEFINITION

2.1 XML Documents
An XML document is represented by an unranked labeled

ordered tree. The label of a node v, denoted λ(v), cor-
responds to a tag name. We extend λ to a function on se-
quences, i.e., for a sequence v1 · · · vn of nodes, let λ(v1 · · · vn)
= λ(v1) · · ·λ(vn). For a tree T , let r(T ) denote the root of
T . Attributes are not handled in this paper.

2.2 DTDs
A regular expression over an alphabet Σ consists of con-

stants ∅ (empty set), ϵ (empty sequence), and the symbols
in Σ, and operators · (concatenation), ∗ (zero or more occur-
rences), and | (disjunction). The concatenation operator is
often omitted. The string language represented by a regular
expression e is denoted by L(e).

Definition 1. A DTD is a triple D = (Σ, r, P ), where:

• Σ is a finite set of labels,

• r ∈ Σ is the root label, and

• P is a mapping from Σ to the set of regular expressions
over Σ. P (a) is called the content model of label a.

Definition 2. A tree T conforms to a DTD D =
(Σ, r, P ) if

• the label of the root of T is r, and

• for each node v of T and its child sequence v1 · · · vn,
L(P (λ(v))) contains λ(v1 · · · vn).

Let TL(D) denote the set of all the trees conforming to D.

The size of a regular expression is the number of constants
and operators appearing in the regular expression. The size
of a DTD is the sum of the sizes of all content models.

In this paper, we assume that every DTD D = (Σ, r, P )
contains no useless symbols. That is, for each a ∈ Σ, there
is a tree T conforming to D such that the label of some
node of T is a. Given a DTD with useless symbols, another
equivalent DTD without useless symbols can be computed
in linear time to the sizes of the given DTD.



Let D = (Σ, r, P ), σ ∈ Σ, and S ⊆ Σ. Let (D, σ) de-
note a DTD D′ such that TL(D′) = TL((Σ, σ, P )). Let
P ′ be a mapping such that for each σ ∈ Σ, P ′(σ) is the
regular expression obtained from P (σ) by replacing a with
∅. Let [D, a, σ] denote a DTD D′ such that TL(D′) =
TL((Σ, σ, P ′)). In other words, T ′ ∈ TL([D, a, σ]) if and
only if the label of the root of T ′ is σ, those of all the other
nodes are not a, and T ′ is a subtree of some T ∈ TL(D).
We assume that (D, σ) and [D, a, σ] contain no useless sym-
bols because such DTDs without useless symbols can be
computed from (Σ, σ, P ) and (Σ, σ, P ′) in linear time, re-
spectively.

2.3 XPath Expressions
The syntax of an XPath query p is defined as follows:

p ::= χ :: l | p/p | p ∪ p | p[p],

χ ::= ↓ | ↓∗

where l is in Σ or a wildcard ∗. Each χ ∈ {↓, ↓∗} is called an
axis. The operators / and ∪ are called a path concatenation
and a path union, respectively. A subexpression in the form
of χ :: l is called a location step. Also, a subexpression in
the form of [p] is called a qualifier. The size of an XPath
query p, denoted by |p|, is defined as the number of location
steps occurring in p.

Definition 3. The semantics of an XPath query over a
tree T is defined as the following binary predicate on nodes:

• T |= (↓:: l)(v, v′) if v′ is a child of v and λ(v′) = l.

• T |= (↓:: ∗)(v, v′) if v′ is a child of v.

• T |= (↓∗:: l)(v, v′) if v′ is v or a descendant of v, and
λ(v′) = l.

• T |= (↓∗:: ∗)(v, v′) if v′ is v or a descendant of v.

• T |= (p1/p2)(v, v′) if there is v′′ such that T |=
p1(v, v′′) and T |= p2(v

′′, v′).

• T |= (p1 ∪ p2)(v, v′) if T |= p1(v, v′) or T |= p2(v, v′).

• T |= (p1[p2])(v, v′) if T |= p1(v, v′) and T |= p2(v
′, v′′)

for some v′′. �

A tree T satisfies an XPath query p relative to a node vc

if there is a node v such that T |= p(vc, v). In particular, if
vc is the root node of T , then we simply say that T satisfies
p. An XPath query p is valid under a DTD D if every
T ∈ TL(D) satisfies p.

A subclass of XPath which allows to use axes and oper-
ators in a list C and path concatenation / is denoted by
X (C). For example, the subclass with child axis, predicate,
and path concatenation is denoted by X (↓, [ ]). We note
that we do not include path concatenation in C but ev-
ery subclass of XPath we consider in this paper allows path
concatenation. We write the XPath validity problem for a
fragment X of XPath as VLD(X ).

3. INTRACTABILITY RESULTS
We first show that subclasses of XPath with path union

are intractable. More precisely, the validity problem of
XPath queries with path union and one of child and
descendant-or-self axes is coNP-hard. Moreover, we show

that, even without path union, the validity problem of
XPath queries with child and descendant-or-self axes, qual-
ifier, and wildcard is coNP-hard.

Theorem 1. VLD(X (↓,∪)) and VLD(X (↓∗,∪)) are
coNP-hard.

Proof. We show only that VLD(X (↓,∪)) is coNP-hard.
It can be verified in a similar way that VLD(X (↓∗,∪)) is
coNP-hard.

The coNP-hardness of VLD(X (↓,∪)) is shown by reduc-
tion from the 3DNF tautology problem, which is coNP-
complete. We now consider an instance ϕ = (L1,1 ∧ L1,2 ∧
L1,3) ∨ · · · ∨ (Ln,1 ∧ Ln,2 ∧ Ln,3) of 3DNF tautology, where
each Li,k is a member of {x1, . . . , xm, x̄1, . . . , x̄m}. Then, we
define a DTD D = (Σ, r, P ) as follows:

Σ = {r, x1, . . . , xm, x̄1, . . . , x̄m},
P (r) = x1 | x̄1,

P (xj) = P (x̄j) = xj+1 | x̄j+1 for each j (1 ≤ j < m),

P (xm) = P (x̄m) = ϵ.

Also, an XPath query p is defined as p1 ∪ · · · ∪ pn, where

pi = pi1/ · · · /pim, for each i (1 ≤ i ≤ n),

pij =

 ↓:: xj if ∃k.Li,k = xj ,
↓:: x̄j if ∃k.Li,k = x̄j ,
(↓:: xj∪ ↓:: x̄j) otherwise.

Each T ∈ TL(D) is a tree without branch and represents
a truth assignment. Each pi corresponds to the term Li,1 ∧
Li,2 ∧ Li,3, and each pij corresponds to the literal of the
variable xj . It is easily verified that ϕ is valid if and only if
p is valid under D.

Theorem 2. VLD(X (↓, ↓∗, [ ], ∗)) is coNP-hard.

Proof. The coNP-hardness of VLD(X (↓, ↓∗, [ ], ∗)) is
shown by reduction from the 3DNF tautology problem.

We now consider an instance ϕ = (L1,1 ∧ L1,2 ∧ L1,3) ∨
· · ·∨ (Ln,1∧Ln,2∧Ln,3) of 3DNF tautology, where each Li,k

is a member of {x1, . . . , xm, x̄1, . . . , x̄m}. Then, we define a
DTD D = (Σ, r1, P ) (See Fig. 1) as follows:

Σ = {t, f, s, g} ∪ {ri | 1 ≤ i ≤ 2n}
∪{di

j | 1 ≤ i < 2n, i ̸= n, 1 ≤ j ≤ m}
∪{xn

j , x̄n
j | 1 ≤ j ≤ m},

P (t) = P (f) = P (s) = P (g) = ϵ,

P (ri) = sdi
1 (1 ≤ i < n), P (rn) = s(xn

1 | x̄n
1 ),

P (ri) = di
1 (n < i < 2n), P (r2n) = g,

P (di
j) = tfdi

j+1 (1 ≤ i < 2n, i ̸= n, 1 ≤ j < m),

P (di
m) = tfri+1 (1 ≤ i < 2n, i ̸= n),

P (xn
j ) = t(xn

j+1 | x̄n
j+1) (1 ≤ j < m),

P (x̄n
j ) = f(xn

j+1 | x̄n
j+1) (1 ≤ j < m),

P (xn
m) = trn+1, P (x̄n

m) = frn+1.

We give the following XPath query p ∈ X (↓, ↓∗, [ ], ∗):

p =↓∗:: ∗[↓:: s]/p1/p2/ · · · /pn/ ↓:: ∗,
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Figure 1: The DTD encoding a 3DNF tautology in-
stance in the proof of Theorem 2

where

pi = pi1/pi2/ · · · /pim/ ↓:: ∗ (1 ≤ i ≤ n),

pij =

 ↓:: ∗[↓:: t] if ∃k.Li,k = xj ,
↓:: ∗[↓:: f ] if ∃k.Li,k = x̄j ,
↓:: ∗ otherwise.

The part of each tree T ∈ TL(D) between the nodes with
the label rn and rn+1 represents a truth assignment. Each
pi corresponds to the i-th term Li,1 ∧ Li,2 ∧ Li,3, and each
pij corresponds to the literal of the variable xj appearing in
the i-th term.

Assume that ϕ is valid. Consider an arbitrary tree T ∈
TL(D). Let vi (1 ≤ i < 2n) denote the node of T with
λ(vi) = ri. Under the truth assignment represented by T ,
some term LI,1∧LI,2∧LI,3 becomes true. By the definition
of p, we have that T |= pI(v

n, vn+1). Moreover, we have
that T |=↓∗:: ∗[↓:: s](r(T ), vi) for any i (1 ≤ i < n), and that
T |= pi(v

l, vl+1) for any 1 ≤ i ≤ n and 1 ≤ l < 2n such that
l ̸= n. Thus, T |= ↓∗:: ∗[↓:: s]/p1/ · · · /pI−1(r(T ), vn) and
T |= pI+1/ · · · /pn(vn+1, v2n−I+1). Therefore, T satisfies p.

Conversely, assume that p is valid under D. Consider an
arbitrary truth assignment, and let T ∈ TL(D) be a tree
representing the truth assignment. Again, let vi (1 ≤ i <
2n) denote the node of T with λ(vi) = ri. Since T satisfies

p, there must be a node vI′
(1 ≤ I ′ ≤ n) such that

• T |=↓∗:: ∗[↓:: s](r(T ), vI′
), and

• T |= p1/ · · · /pn(vI′
, vn+I′

).

Thus, by the definition of p and D, we must have T |=
pI(v

n, vn+1) where I = n − I ′ + 1. That is, the truth as-
signment corresponding to the part between vn and vn+1

satisfies the term LI,1 ∧ LI,2 ∧ LI,3, and hence, ϕ.

As for upper bounds, the satisfiability for X (↓, ↑, [ ], ∗,
∪,¬) and X (↓, ↓∗, ↑, ↑∗, [ ], ∗,∪,¬) are known to be
PSPACE-complete and EXPTIME-complete respectively [1]
where ↑ and ↑∗ are parent and ancestor axes respectively,
and ¬ is the negation operator. The validity problems for
these classes are also PSPACE-complete and EXPTIME-
complete respectively because validity and satisfiability

Figure 2: The tree rep. of ↓:: a[↓∗:: b][↓:: ∗/ ↓:: c]/ ↓:: d

are dual for the classes, which allows negation operators.
Thus, VLD(X (↓,∪)) is in PSPACE, and VLD(X (↓∗,∪)) and
VLD(X (↓, ↓∗, [ ], ∗)) are in EXPTIME. We have not found
tighter bounds of them. We conjecture that they are not in
coNP because it is hard to represent a witness for unsatisfi-
ability in polynomial size.

4. TRACTABILITY RESULTS
In this section, we show that the validity problem be-

comes tractable by excluding one of ↓, ↓∗, [ ], and ∗ from
the intractable class X (↓, ↓∗, [ ], ∗). To that end, we give a
subclass of X (↓, ↓∗, [ ], ∗) which (almost) contains the sub-
classes with any three of ↓, ↓∗, [ ], and ∗, and then provide a
polynomial-time algorithm to check the validity of a query
in the subclass.

4.1 Definition of a tractable class
We define a subclass of X (↓, ↓∗, [ ], ∗), where we shall show

that validity can be decided in polynomial time. For this,
we first introduce tree representations of XPath queries.

Tree representation of XPath.We define the (unranked
labeled unordered) tree representation of p ∈ X (↓, ↓∗, [ ], ∗).
The tree representation t(p) of p and the “exit” node d(p)
of t(p) are defined inductively as follows:

• t(χ :: l) is a tree which has only a node with label
χ :: l, and d(p) is the node.

• t(p1/p2) is a concatenation of t(p1) and t(p2) where the
root of t(p2) is a child of d(p1), and d(p1/p2) = d(p2).

• t(p1[p2]) is a concatenation of t(p1) and t(p2) where the
root of t(p2) is a child of d(p1), and d(p1[p2]) = d(p1).

Henceforth, we represent p ∈ X (↓, ↓∗, [ ], ∗) as a term which
means t(p). For p = χ :: l(p1, . . . , pn), let rt(p) denote the
root χ :: l of p, s(p) denote {p1, . . . , pn}, and λ(χ :: l) = l.
For example, p =↓:: a[↓∗:: b][↓:: ∗/ ↓:: c]/ ↓:: d is represented
by ↓:: a(↓∗:: b, ↓:: ∗(↓:: c), ↓:: d), as depicted in Fig. 2.

Definition ofX (↓, ↓∗, [ ], ∗)†. Now we define X (↓, ↓∗, [ ], ∗)†
as the following subclass of X (↓, ↓∗, [ ], ∗): q ∈ X (↓, ↓∗, [ ], ∗)†
if for each subtree q′ of q such that rt(q′) =↓∗:: ∗, there is
no subtree q′′ ∈ s(q′) such that

• rt(q′′) =↓:: a and the height of q′′ is at least two, or

• rt(q′′) =↓:: ∗.

For example, the subclass X (↓, ↓∗, [ ], ∗)† includes
↓∗:: ∗(↓:: a, ↓∗:: b(↓:: ∗)) but neither ↓∗:: ∗(↓:: a, ↓:: b(↓:: ∗))
nor ↓∗:: ∗(↓:: a, ↓:: ∗).

We shall show that the validity problem for X (↓, ↓∗,[ ], ∗)†
under any DTD is in PTIME. Since this subclass includes
X (↓, [ ], ∗), X (↓∗, [ ], ∗), and X (↓, ↓∗, [ ]), the tractability of



VLD(X (↓, ↓∗,[ ], ∗)†) implies the tractability of the validity
problem for each of these three classes. As for X (↓, ↓∗, ∗),
by the definition of X (↓, ↓∗, [ ], ∗)†, any q ∈ X (↓, ↓∗, ∗) that
has the following subtree p is not in X (↓, ↓∗, [ ], ∗)†:

• p =↓∗:: ∗(p′) such that rt(p′) =↓:: a and the height of
p′ is at least 2, or

• p =↓∗:: ∗(p′) such that rt(p′) =↓:: ∗.

However, every query in X (↓, ↓∗, ∗)−X (↓, ↓∗, [ ], ∗)† can be
transformed in linear time into a query in X (↓, ↓∗, [ ], ∗)†
preserving validity by using the following facts:

• for any a, b ∈ Σ where a ̸= b, ↓∗:: ∗(p′) such that
rt(p′) = ↓:: a is valid under (D, b) if and only if p′′ such
that rt(p′′) = ↓∗:: a and s(p′′) = s(p′) is valid under
(D, b). For example, ↓:: b(↓∗:: ∗(↓:: a)) is equivalent to
↓:: b(↓∗:: a) in terms of validity.

• ↓∗:: ∗(p′) such that rt(p′) =↓:: ∗ is valid under D if and
only if ↓:: ∗(p′′) such that rt(p′′) = ↓∗:: ∗ and s(p′′) =
s(p′) is valid under D. For example, ↓∗:: ∗(↓:: ∗(↓:: a))
is equivalent to ↓:: ∗(↓∗:: ∗(↓:: a)) in terms of validity.

Thus, by showing the tractability of VLD(X (↓, ↓∗,[ ], ∗)†),
we can say that any subclass obtained by excluding one of
↓, ↓∗, [ ], and ∗ from X (↓, ↓∗, [ ], ∗), is in PTIME.

4.2 Decision algorithm
Given D = (Σ, r, P ) and p ∈ X (↓, ↓∗, [ ], ∗)†, our algorithm

works as follows:

1. Compute the set N(D, p) of labels such that p is valid
under (D, σ) if and only if σ ∈ N(D, p).

2. Check if r is in N(D, p). If so, p is valid, and otherwise,
p is invalid.

The set N(D, p) is computed inductively as follows. Here,
we define Σ as the identity of the intersection of subsets of
Σ, i.e., for N ⊆ 2Σ,

∩
N∈N N = Σ if N = ∅.

• N(D, ↓:: a(p1, . . . , pn)) = {σ ∈ Σ | every w ∈ L(P (σ)) has a}
if a ∈

∩n
i=1 N(D, pi),

∅ otherwise.

• N(D, ↓:: ∗(p1, . . . , pn)) =

{σ ∈ Σ | every w ∈ L(P (σ)) has

some label in
∩n

i=1 N(D, pi)}

• N(D, ↓∗:: a(p1, . . . , pn)) = {σ ∈ Σ | TL([D, a, σ]) = ∅}
if a ∈

∩n
i=1 N([D, a, a], pi),

∅ otherwise.

• Let p = ↓∗:: ∗(p1, . . . , pn) where for any pi ∈ s(p), pi

has no children if rt(pi) = ↓:: a for some a ∈ Σ, and
rt(pi) ̸= ↓:: ∗. Let sc(p) = {pi ∈ s(p) | a ∈ Σ, rt(pi) =
↓:: a}.

Lc = {λ(rt(pi)) | pi ∈ sc(p)},

Nd =
∩

pi∈s(p)−sc(p)

N(D, pi)
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Figure 3: Computing N(D, ↓∗:: a(↓:: b))

Then,

N(D, ↓∗:: ∗(p1, . . . , pn)) = S

where S is the maximum set such that

S = {σ ∈ Nd | for each w ∈ L(P (σ)), w has

every label in Lc or some label in S}.

If p =↓:: a(p1, . . . , pn), N(D, p) must satisfy the following
two conditions: (1) for any σ ∈ N(D, p), in any tree con-
forming to D, every node labeled with σ has an a-labeled
child, and (2) each pi is satisfied relative to any a-labeled
node in any tree conforming to D. To check (1), for each
σ ∈ Σ, we just check if every word conforming to the content
model of σ has a. As for (2), for each pi, we check whether
a ∈ N(D, pi).

In the case that p =↓:: ∗(p1, ..., pn), the label of node
relative to which every pi must be satisfied is not specified.
Thus, for any σ ∈ N(D, p), every node labeled with σ must
have a child labeled with some label σ′ such that each pi is
satisfied relative to any σ′-labeled node. In almost the same
way as the case that p =↓:: a(p1, . . . , pn), we check, for each
σ ∈ Σ, if every word conforming to the content model of σ
has some label σ′ such that σ′ ∈ N(D, pi) for every pi.

In the case that p =↓∗:: a(p1, . . . , pn), at first, each
σ ∈ N(D, p) must satisfy that in any tree conforming to
D, any σ-labeled node has an a-labeled descendant. In
other words, for each σ ∈ N(D, p), the root of any tree
conforming to (D, σ) has an a-labeled descendant. This is
checked by deciding TL([D, a, σ]) ̸= ∅ because TL([D, a, σ])
contains only and all trees in TL((D, σ)) such that the la-
bel a does not appear except in the root. In addition, we
have to check whether each pi is satisfied relative to some
a-labeled node in any tree conforming to D. We note that
checking whether a ∈ N(D, pi) for each pi, as in the case
that p =↓:: a(p1, . . . , pn), does not always work well in this
case. For example, consider p =↓∗:: a(↓:: b) and the DTD
D shown in Fig 3. Note that N(D, ↓:: b) = ∅ because b does
not appear in a ∈ L(P (a)). However, in any tree conform-
ing to D, the a-labeled node closest to leaves has a b-labeled
child. Thus, N(D, p) must be {r, a}. To realize it, we check
whether a ∈ N([D, a, a], ↓:: b), that is, whether every sub-
tree rooted by the a-labeled node closest to leaves in any
tree conforming to D, satisfies ↓:: b.

The case that p =↓∗:: ∗(p1, . . . , pn) is complicated com-
pared to the other cases. At first, we give an example to
get insight on this case. Consider ↓∗:: ∗(↓:: a, ↓∗:: b) and
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Figure 4: Computing N(D, ↓∗:: ∗(↓:: a, ↓∗:: b))

the DTD D shown in Fig 4. Then, by observing the mean-
ing of D, we want N(D, p) to be {r, s1, s2}. Note that for
any label σ ∈ Σ, in any tree conforming to D, any node
labeled with σ does not always have an a-labeled child, i.e.,
N(D, ↓:: a) = ∅. Due to this, computing N(D, p) in a sim-
ilar fashion as the case that p =↓:: ∗(p1, . . . , pn) fails. That
is, N(D, p) is not the set of labels σ such that for any tree
conforming to (D, σ), there is a node labeled with a label
in N(D, ↓:: a) ∩ N(D, ↓∗:: b), which is the empty set. In
this example, some node v labeled with s1 or s2 has both
an a-labeled child and a b-labeled child in any tree, and v
is reachable from any node labeled with r, s1, or s2. We
observe that N(D, p) is a subset of N(D, ↓∗:: b) and that
for any σ ∈ N(D, p), in any tree conforming to D, any node
labeled with σ has some descendant which has a child la-
beled with a. Our algorithm first computes the set Lc of
labels of location steps with child axis in s(p), and the set
Nd of labels σ such that each tree conforming to D satis-
fies any pi ∈ s(p) − sc(p), which has the root location step
with descendant axis, relative to any σ-labeled node. Then,
it computes maximum subset S of Nd such that in any tree
conforming to D, any node labeled with any σ ∈ S has some
descendant which has a node labeled with each label in Lc.

4.3 Complexity
Let us consider the complexity of computing N(D, p).

To compute N(D, ↓:: a(p1, . . . , pn)), it is required to check
whether every w ∈ L(P (σ)) has a. The check can be done
in linear time to |P (σ)| by using the syntax tree of P (σ):

1. For each leaf of the syntax tree, if its label is a, then
assign “T” to it; otherwise, assign “F”.

2. In a bottom-up manner, assign a truth value to each
internal node depending on the truth values of its chil-
dren: if it is a “·”-node, assign the disjunction of the
truth values of its children; if it is a “|”, assign the con-
juction of the truth values of them; otherwise assign
“F”.

3. Return the truth value of the root.

For example, let σ = ab|ca, then we can see that a appears
in any word in L(σ) by assigning truth values to each node
of the syntax tree of σ in a bottom-up manner as shown in
Fig. 5(a). It requires linear time to the size of D to run this
check for all σ ∈ Σ.

To compute N(D, ↓:: ∗(p1, . . . , pn)), we need to check
whether every w ∈ L(P (σ)) has some label in N of size
at most |Σ|. This check can be done in linear time in the
same way as the above. Instead that only a-labeled leaves
are assigned “T” in the first step, we just assign “T” to
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Figure 5: Checking on occurrences of labels in a
content model

leaves labeled with a label in N . For example, let σ = ab|ca
and N = {b, c}, then we can see that some label in N ap-
pears in any word in L(σ), as shown in Fig. 5(b). It also
requires linear time to run this check for all σ ∈ Σ.

In computing N(D, ↓∗:: a(p1, . . . , pn)), it is necessary to
decide whether the set of trees conforming to a given DTD is
empty. The emptiness on a DTD can be determined in linear
time to the size of the DTD [4]. In the emptiness check, the
set of labels σ such that TL((D, σ)) = ∅ is also computed
at the same time. Thus, {σ ∈ Σ | TL([D, a, σ]) = ∅} can be
computed in linear time.

In N(D, ↓∗:: ∗(p1, . . . , pn)), we need to check whether for
each w ∈ L(P (σ)), w has every label in Lc or some label in
S. This can be done as follows:

1. For each leaf of the syntax tree, if its label is in S,
then assign Lc to it; if its label is in Lc, then assign
the singleton including its label; otherwise, assign ∅.

2. In a bottom-up manner, assign a subset of Lc to each
internal node depending on the sets of its children:
if it is a “·”-node, assign the union of the sets of its
children; if it is a “|”, assign the intersection of the
sets; otherwise assign ∅.

3. Return the result whether the set of the root is Lc.

For example, Let σ = (ab|xs)c, Lc = {a, b, c}, and S = {s}.
Then we can see that for each w ∈ L(P (σ)), w has every
label in Lc or some label in S, by assigning a subset of Lc to
each node of the syntax tree of σ in a bottom-up manner as
shown in Fig. 5(c). This check for σ ∈ Σ takes O(|Σ||P (σ)|)
time, and thus it needs O(|Σ||D|) time to do the check for
all σ ∈ Σ. To obtain the greatest fixed point of S, we just
repeat the above procedure until S does not change. Thus,
S can be computed in O(|Σ|2|D|) time in addition to time
to compute Lc and Nd.

The number of inductive step is the size of |p|. Thus,
N(D, p) can be computed in O(|Σ|2|p||D|) time.



4.4 Correctness
Next, we show the correctness of our algorithm by giving

the following lemma.

Lemma 1. Let D = (Σ, r, P ) and p ∈ X (↓, ↓∗, [ ], ∗)†.
r ∈ N(D, p) if and only if p is valid under D.

Proof. We show that σ ∈ N(D, p) if and only if p is
valid under (D, σ) by induction on the structure of p.

• Let p = ↓:: a(p1, . . . , pn). Assume that σ ∈ N(D, p).
Then, a ∈

∩n
i=1 N(D, pi) and every w ∈ L(P (σ)) has

a. Consider any tree T ∈ TL((D, σ)). The root of
T has some child v labeled with a, and hence, T |=
↓:: a(r(T ), v). By the inductive hypothesis, each pi ∈
s(p) is valid under (D, a). Since the subtree of T rooted
by v conforms to (D, a), for each pi ∈ s(p) there is
some vi such that T |= pi(v, vi). Thus, T satisfies p.

On the other hand, assume that p is valid under (D, σ).
Then, for each T ∈ TL((D, σ)), there is some node v
such that T |= ↓:: a(r(T ), v), and for each pi ∈ s(p),
there is some node vi such that T |= pi(v, vi). The
former implies that the root of every T ∈ TL((D, σ))
has some child labeled with a, and therefore, every
w ∈ L(P (σ)) must have a. Moreover, the latter implies
that each pi ∈ s(p) is valid under (D, a), because for
every T ′ ∈ TL((D, a)), there is a tree T ∈ TL((D, σ))
such that any subtree rooted by any node labeled with
a is identical to T ′ and even such T satisfies p. By the
inductive hypothesis, a ∈ N(D, pi) for each pi ∈ s(p).
Thus, σ ∈ N(D, p).

• Let p = ↓:: ∗(p1, . . . , pn). Assume that σ ∈
N(D, p). Then, every w ∈ L(P (σ)) has some label in∩n

i=1 N(D, pi). The root of every tree T ∈ TL((D, σ))
has some child v such that λ(v) ∈

∩n
i=1 N(D, pi).

From the inductive hypothesis, for any label σ′ in∩n
i=1 N(D, pi) and any pi ∈ s(p), pi is valid under

(D, σ′). Thus, p is valid under (D, σ).

Assume that p is valid under (D, σ). Consider any
tree T ∈ TL((D, σ)). We now show by contradiction
that there is some v such that T |= ↓:: ∗(r(T ), v) and
λ(v) ∈ N(D, pi) for each pi ∈ s(p). We assume that
for each child vc

j of r(T ), there is some pi ∈ s(p) such
that λ(vc

j ) ̸∈ N(D, pi). By the inductive hypothesis,
for each child vc

j of r(T ), there is some pi ∈ s(p) such
that pi is not valid under (D, λ(vc

j )). Thus, for each
child vc

j of r(T ), there is some tree Tj ∈ TL((D, λ(vc
j )))

and some pi ∈ sc(p) such that Tj ̸|= pi(r(Tj), v
′
j) for

any node v′
j . Consider a tree T ′ obtained from T by

replacing the subtree rooted by each child vc
j of r(T )

with Tj respectively. T ′ conforms to (D, σ) and T ′

does not satisfy p, which is a contradiction. Thus,
we can say that there is some child v of r(T ) such
that λ(v) ∈ N(D, pi) for each pi ∈ s(p). Therefore,
σ ∈ N(D, p).

• Let p = ↓∗:: a(p1, . . . , pn). Assume that σ ∈ N(D, p).
Then, a ∈

∩n
i=1 N([D, a, a], pi) and TL([D, a, σ]) =

∅. Consider any tree T ∈ TL((D, σ)). Since
TL([D, a, σ]) = ∅, T has at least one node labeled with
a. Then, T has some descendant v labeled with a such
that v has no proper descendant labeled with a. The
subtree of T rooted by v conforms to TL([D, a, a]).

By the inductive hypothesis, pi is valid under [D, a, a].
Thus, T satisfies p.

Assume that p is valid under (D, σ). Consider any
T ∈ TL((D, σ)). There is some node v such that T |=
↓∗:: a(r(T ), v), and for each pi ∈ s(p), there is some
node vi such that T |= pi(v, vi). Thus, TL([D, a, σ]) =
∅. Let v′ be a descendant of v such that λ(v′) = a
and v′ has no proper descendant labeled with a. We
show by contradiction that for each pi ∈ s(p), there is
some node v′

i such that T |= pi(v
′, v′

i). We assume that
there is some pi ∈ s(p) such that T ̸|= pi(v

′, v′′) for any
v′′. Let T ′ be the subtree rooted by v′, and let T ′′ be
a tree obtained from T by replacing all the subtrees
rooted by the nodes labeled with a with T ′. Then, T ′′

conforms to (D, σ) but T ′′ does not satisfy p, which
is a contradiction. Thus, for each pi ∈ s(p), there is
some node v′

i such that T |= pi(v
′, v′

i). The subtree
rooted by v′ conforms to [D, a, a], and for each T ′ ∈
TL([D, a, a]), there is a tree T ′′ ∈ TL((D, σ)) such that
any subtree rooted by any node labeled with a is T ′.
Therefore, each pi ∈ s(p) must be valid under [D, a, a].
By the inductive hypothesis, a ∈ N([D, a, a], pi) for
each pi. Thus, σ ∈ N(D, p).

• Let p = ↓∗:: ∗(p1, . . . , pn) where for any pi ∈ s(p), pi

has no children if rt(pi) = ↓:: a for some a ∈ Σ, and
rt(pi) ̸= ↓:: ∗. Assume that σ ∈ N(D, p). Then, σ ∈
S. Consider any tree T ∈ TL((D, σ)). Since λ(r(T )) =
σ and σ ∈ S, the tree T has a node v such that λ(v) ∈
S and no proper descendant of v has a label in S.
Thus, we have that T |= ↓∗:: ∗(r(T ), v). Note that
the subtree of T rooted by v conforms to [D, S, λ(v)].
Since S ⊆ Nd and the inductive hypothesis, for each
pj ∈ s(p) − sc(p), there is some node vj such that
T |= pj(v, vj). Moreover, since v has no child labeled
with any label in S, by the definition of S, every label
in Lc appears as a label of a child of v. Thus, T satisfies
p.

We show that if σ ̸∈ S, then p is not valid under (D, σ).
Assume that σ ̸∈ S. Then, σ ̸∈ Nd or σ ∈ Nd − S.
If σ ̸∈ Nd, then there is some pi ∈ s(p) − sc(p) such
that σ ̸∈ N(D, pi). By the inductive hypothesis, there
is some tree T ′ ∈ TL((D, σ)) such that T ′ does not
satisfy pi. Since rt(pi) is in the form of ↓∗:: ℓ, T ′ ̸|=
pi(v, v′) for any two nodes v and v′ of T ′. Therefore,
T ′ does not satisfy p and thus p is not valid under
(D, σ). On the other hand, we assume that σ ∈ Nd−S.
Then, we can construct a tree T ∈ TL((D, σ)) such
that no node in T is labeled in S, and for any node v
labeled with σ′ ∈ Nd − S, some label in Lc does not
appear as the label of any child of v. If the construction
was impossible, then there would be some nonempty
subset S′ of Nd − S such that for any σ′ ∈ S′ and
w ∈ L(P (σ′)), w has some label in S ∪ S′ or every
label in Lc. However, it violates the maximality of S
that S does not include S′, and thus T exists. Next, for
any node v of T labeled with any σo ̸∈ Nd, replace the
subtree rooted by v with T ′ ∈ TL((D, σo)) such that T ′

does not satisfy some pi ∈ s(p)−sc(p). In addition, for
any node v labeled with any label σc in Lc−Nd, replace
the subtree rooted by v with Tc ∈ TL([D, {σc}, σc]).
The obtained tree Tf conforms to (D, σ) and Tf does
not satisfy p. Thus, p is not valid under (D, σ).



Finally, we obtain the following theorem.

Theorem 3. VLD(X (C)) is in PTIME where C consists
of any three of {↓, ↓∗, ∗, [ ]}.

5. CONCLUSIONS
In this paper, we have discussed the validity problem

of positive XPath queries with wildcard in the presence of
DTDs. First, we have shown that the validity problem for
the XPath class with path union, either of downward axes,
and path concatenation is coNP-hard, and that even with-
out path union, the validity problem of XPath queries with
child and descendant-or-self axes, concatenation, qualifier,
and wildcard is coNP-hard. Moreover, we have provided an
XPath subclass which is a superclass of any class with three
of child and descendant-or-self axes, concatenation qualifier,
and wildcard, and shown that the validity problem for the
subclass is in PTIME.

The tractability result in this paper is the XPath subclass
with only downward axes, path concatenation, qualifier, and
wildcard. However, we conjecture that the validity problem
is still tractable even if sibling axes are incorporated to the
known tractable class.
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