
Next Generation Database Programming and Execution
Environment

Dirk Habich, Matthias Boehm, Maik Thiele, Benjamin Schlegel, Ulrike Fischer, Hannes
Voigt, Wolfgang Lehner

Dresden University of Technology
Database Technology Group

Dresden, Germany
{firstname.surname}@tu-dresden.de

ABSTRACT
The database research is always on the move. In order to
integrate novel concepts, the significance of the database
programmability aspect more and more increases. The
programmability aspect focuses on internal components as
well as on principle to push-down application logic to the
database system. In this paper, we propose a novel database
programming model and a corresponding database architec-
ture framework enabling extensibility and a better integra-
tion of application code into DBMS. In detail, we present a
scripting language pyDBL which is unified utilizable to im-
plement physical database operators, query plans and even
complete applications. We demonstrate the applicability of
our approach in terms of a moderate performance overhead.

1. INTRODUCTION

”The DBMS vendors (and the research commu-
nity) should start with a clean sheet of paper and
design systems for tomorrow’s requirements, not
to continue to push code lines and architectures
designed for yesterday’s needs.” - Michael Stone-
braker et al., [14]

Fundamentally, the requirements for tomorrow’s database
systems are manifold, whereas performance and usability
are still the two most important requirements. Both re-
quirements are not new and already well-established in the
database community over long term. Nevertheless, most re-
search work has been focused on solutions for satisfying the
performance aspect, while the usability aspect has been sin-
gularly addressed in various works e.g. in several extension
of the SQL standard. However, performance and usability
are considered in an independent manner. The most chal-
lenging requirement for tomorrow’s DBMS is the consolida-
tion of performance and usability aspects under the term of
programmability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Without an opportunity to easy implement and to seam-
lessly integrate novel concept and methods addressing the
performance aspect, most interesting and break-through
concepts or methods will never be available as today. The
reason is that new concepts—as an example the shift from
row-systems to column-systems—are usually changing al-
most all layers of a highly complex system and such modifi-
cations are barely supported in today’s DBMS with a layered
architecture. In particular, the several abstraction layers
complicate the implementation and integration. In order to
support a better programmability with regard to the perfor-
mance aspect, the established layered architecture must be
revised offering a better extensibility and programmability
of all layers in a comprehensive manner.

Beside the performance aspect, the usability requirement
increases continuously. As already mentioned in the Clare-
mont report on database research [1], the user base for
DBMS is rapidly growing which implies new expectations
with regard to programmability. Today, the corpus of the
user base is unhappy (i) with offered user interfaces and
(ii) with the heavyweight system architecture [1]. While
the declarative way of SQL is usually too restricted, proce-
dural opportunities like stored procedures are too complex.
Furthermore, extensibility of traditional systems using the
procedural opportunities is limited, which has an influence
on usability and performance. Therefore, traditional DBMS
are often degraded to storage units and enhanced function-
ality is implemented on top. However, with increasing data
volumes, exporting massive data sets from the database and
conducting data-intensive processing within the application
is no longer a valid opportunity. Tomorrow’s application will
push-down their procedural logic to the raw data to execute
the work near to the data.

Our Contribution
To tackle the performance and usability requirements in
a unified way, we propose a novel database programming
model and a corresponding database architecture framework
enabling programmability regarding extensibility and a bet-
ter integration of application code into DBMS. The key foun-
dations of our concept can be described as follows:

Programming Model: We introduce a unified high-
level procedural language for database programming—a
database scripting language. This scripting language is uni-
formly utilizable to implement physical database operators,
query plans and even complete applications. To establish
this property, this scripting language is designed for data-

1

intensive applications by (i) providing db-specific language
constructs/operators and (ii) an abstract view on the spe-
cific storage and access components. The advantages of this
approach are extensibility and a reduced development effort.

Architecture Framework: We propose a database ar-
chitecture framework with the ability to abstract hetero-
geneous hardware. This abstraction layer corresponds to
a low-level virtualization serving as execution environment
for our DB-scripts. We denote this virtualization layer as
database low level virtualization machine (DBLLVM). To re-
duce the virtualization overhead, we present an optimization
to integrate native operators for time-critical or highly-used
operations.

Outline
In Section 2, we describe our novel database architecture
including the resulting framework. While Section 3 gives an
complete insight in our database scripting language, Section
4 take a close look at our virtualized execution environment.
Finally, we presents some first evaluation results and further
research work in Section 5, before we conclude the paper
with a brief summary.

2. ARCHITECTURE FRAMEWORK
In this section, we are going to present (1) our novel

database architecture and (2) core aspects of our constitu-
tive framework.

2.1 Architecture
Database systems—open source as well as commercial—

are usually a monolithic piece of complex software consisting
of millions of code lines. Despite the availability of a lay-
ered database architecture, the complexity is nevertheless
visible and hinders the extensibility. Figure 1(a) shows the
well-known and often realized architecture for row-oriented
database systems. Column-oriented database systems have
a slightly adjusted architecture but follow the same princi-
ple [3, 11]. Each layer has its own functionality and the ab-
straction increases from the storage layer to the high-level
declarative SQL interface. However, this layered architec-
ture does not address the programmability neither for core
operators nor for application logic.

To tackle the programmability issue for database develop-
ers as well as database users, we propose a revised architec-
ture as illustrated in Figure 1(b). Our architecture does not
fully correspond to a unified layered architecture. We de-
scribe our concept as DB programming-driven architecture
form. In our architecture, the core component is a database
programming language (DBL) being the gluing part between
storage/access and and all other layers as e.g. application
or query optimizer components—illustrated in Figure 1(b).
Furthermore, our DBL is directly published for application
developers, so that they are able to implement their appli-
cation logic in our DBL. To establish the gluing aspect with
an easy usability issue, our DBL has an abstract but specific
view on various storage and access components.

Our DBL is uniformly utilizable to implement (1) spe-
cific operators for different storage or access components,
(2) query execution plans and (3) application functionality.
Therefore, our DBL has to correspond to a procedural pro-
gramming language. Both points are resulting in the fact
that we do not need to distinguish between external and in-
ternal logic, because everything is written in the same lan-

(a) Classic Layered (b) DB Programming-
Architecture driven Architecture

Figure 1: Comparison of Database Architectures.

guage. This allows us to include external application logic in
all optimization decisions which is not possible with stored
procedure or user-defined functions today. Moreover, declar-
ative SQL statements are translated in our DBL using a
standard query optimizer.

As execution environment, we propose to use a para-
virtualization concept as second unique feature of our ar-
chitecture. In order to efficiently glue DBL code and stor-
age/access components together, we developed a specific
DBL compiler which is based on virtualizing a process envi-
ronment as proposed by the low-level virtual machine con-
cept (LLVM) [5, 9].

2.2 Framework
Based on the presented architecture, four core frameworks

parts are identifiable: (i) storage and access, (ii) SQL query
optimizer, (iii) DBL, and (iv) virtualized execution environ-
ment. Our framework covers almost all parts except the
first storage and access part, which have to specifically im-
plemented using system programming languages such as C
or C++. For the query optimizer several frameworks such
as Starburst [13] or Volcano/Cascades [7] already exists and
one of this frameworks could be used.

The role of our Database Programming Language (DBL) is
to enable database system programmers as well as applica-
tion programmers to implement their specific logic based on
a certain storage or access components. In order to address
this issue in an adequate manner, the DBL has to be a db-
specific programming language. Instead of using a system
programming language as foundation, we utilize a scripting
language such as Python [8]. The expressive power of any
scripting language is comparable to system programming
languages, whereas scripting languages are typeless [12] and
therefore, easier to learn and to use. The typeless property
seems difficult at the first sight, but it is the best-fitting
approach.

To specialize e.g., Python as specific DBL–further denoted
as pyDBL—, we require a language concept to abstract var-
ious storage and access components. Our abstraction con-
cept relies on maceration the typeless property by defining
domain-specific types for each storage or access component.
These language types offer the same properties at language
level as the corresponding storage or access component at
interface level. In this case, the core aspects of the under-

2

lying components have to be investigated and an adequate
language type mapping has to be defined. In general, this
guarantees an efficient extensibility on language level with-
out making the language too complex.

Database operators, query execution plans and even ap-
plications are written in pyDBL. Our specific compiler trans-
forms each pyDBL-script in some executable bytecode and
executes it in a para-virtualized environment. Aside from
regular compiler tasks such as loop unrolling, our compiler
maps each activity regarding our included db-specific types
with the corresponding storage and access interfaces. In
this case, our pyDBL-scripts are skeletons and the compiler
is responsible to glue pyDBL-scripts with storage and access
components together.

3. DATABASE PROGRAMMING MODEL
In this section, we show how to use our pyDBL to script

physical operations, query plans and even application logic.
Furthermore, we give two examples of storage abstraction.

3.1 Operators
As already mentioned in Section 2, we abstract storage

and access components using a language type definition con-
cept. For example, a column storage component process
a set of Binary Association Tables (BAT) on a conceptual
level, whereas each BAT consists of two attributes head and
tail [3, 11]. Moreover, each BAT is a multi-set of binary
tuples [3]. The column storage component offers rich func-
tionality to e.g. (i) create and delete a BAT, (ii) iterate
over a BAT, (iii) access single binary units within a BAT.
Normally, these interfaces are directly used to implement
database operators such as selection or grouping. To over-
come this issue, we create a new pyDBL-type BAT featuring
a multi-set semantic and each record has two attributes,
whereas these attributes are typeless at language level. Fur-
thermore, this special type offers methods to add, insert
and delete records. Listing 1 shows the pyDBL-script for
the column-store specific reverse-operator on a storage in-
dependent level as we aimed with pyDBL. This operator gets
a BAT as input and returns a BAT with swapped attributes
[3]. As we can see, the script includes only necessary logic:
(i) creating a new result BAT (line 2), (ii) iterating over input
BAT (line 3), (iii) adding record with swapped attributes to
result (line 4), and (iv) return result (line 5). In this case,
a more efficient realization can be provided by storage com-
ponent. We pick up this issue in Section 4 and propose a
solution.

Listing 1: Column-Store Reverse-Operator
1 def c o l r e v e r s e (BAT arg) :
2 r e s u l t = BAT()
3 for head , t a i l in arg :
4 r e s u l t . append (t a i l , head)
5 return r e s u l t

A more complex operator script is illustrated in Listing
2. This scripts represents the inner hash join algorithm for
two BATs. According to [3], the join results in a BAT and
consists of the outer attributes of the left and right BAT
where their inner attributes matches. As depicted in Listing
2, the left BAT is hashed (line 3-5) and the right BAT is
probed then (line 6-10).

Listing 2: Column-Store Hash-Join-Operator
1 def c o l h a s h j o i n (BAT arg1 , BAT arg2) :
2 r e s u l t = BAT()
3 hashed={} # hash t a b l e
4 for head1 , t a i l 1 in arg1 :
5 hashed . put (t a i l 1 , head1)
6 for head2 , t a i l 2 in arg2 : # prob ing
7 va lue s = hashed . get (head2)
8 i f (values<>None) :
9 for v in va lue s :

10 r e s u l t . append (v , t a i l 2)
11 return r e s u l t

Aside from this column-oriented approach, we are also
able to abstract a row storage component. In this case, the
storage component efficiently process a set of table elements,
whereas each table consists of a number columns and each
table is a multi-set of corresponding records. To abstract
this row storage component in pyDBL, we constructed a
specific TABLE type. This type has again a set semantic,
whereas each record within this set is represented as array.
The array representation is essential, then each table usu-
ally has different numbers of attributes—the attributes are
typeless. Furthermore, the array representation enables an
efficient method to directly access single columns of a record.
Listing 3 shows the pyDBL-script of the select-operator eval-
uating a set of or-connected predicates. This operator gets a
TABLE and a set of predicates—marked using *—as input.

Listing 3: Row-Store SelectOR-Operator
1 def r o w s e l e c t o r (TABLE arg , ∗ p r e d i c a t e s) :
2 r e s u l t = TABLE()
3 for r in arg :
4 for p in range (l en (p r e d i c a t e s)) :
5 i f p r e d i c a t e s [p] (r) :
6 r e s u l t . append (r)
7 break ;
8 return r e s u l t

Listing 4 illustrates a realization of an equality predicate
function in pyDBL. This predicate function gets an attribute
position (aPos) and a reference value as input. In this case,
we assume that by calling this predicate function, the neces-
sary attribute position is known. How to ensure this assump-
tion is described in Section 4. Using the lambda keyword,
small anonymous functions can be created as well-known
from functional programming languages.

Listing 4: Row-Store Equality Predicate
def pred eq (aPos , va lue) :

return lambda x : x [aPos] == value

3.2 Queries
Aside from using pyDBL as operator programming lan-

guage, we are able to utilize pyDBL as query execution lan-
guage. In this case, pyDBL is similar to MIL [3], whereas
operators and query scripts are written in the same lan-
guage in our approach. Listing 5 shows an example SQL
query, whereas Listing 6 illustrates the corresponding py-
DBL script for a column-oriented database system. The
operator definition are available at [3]. Either such pyDBL
scripts are produced by the query optimizer or the applica-
tion developer submits such scripts in NoSQL fashion [10].

3

Listing 5: Sample SQL-Query
SELECT category , brand , SUM(p r i c e)
FROM orde r s
WHERE data between ’ 1−1−2010 ’ and ’ 31−03−2010 ’
GROUPBY category , brand

Listing 6: pyDBL - Query Execution Script
1 def example query () :
2 a = c o l s c a n (open (”date ” , ”year ”) ,
3 pred between (’1−1−2010 ’ , ’ 31−03−2010 ’))
4 b = col mark (c o l r e v e r s e (a))
5 c = c o l h a s h j o i n (b , open (”date ” , ”brand ”)) ;
6 d = c o l h a s h j o i n (b , open (”date ” , ”category ”))
7 e = c o l h a s h j o i n (b , open (”date ” , ”p r i c e ”))
8 f = co l g roup (c , d)
9 g = co l un ique (c o l m i r r o r (c o l r e v e r s e (f)))

10 h = col sum ([g , f , e])
11 co l em i t (h , d , c) # output query r e s u l t

3.3 Applications
As illustrated in Figure 1(b), our database programming

language is exposed to applications, so that application pro-
grammers are able to realize parts of their procedural logic
in pyDBL and this logic is then executed inside the database
system. The biggest advantage is that every data-intensive
procedural logic can be executed near to data and the data
transfer between applications and database system can be
massively reduced. To show the power of our pyDBL, Listing
7 shows the Dijkstra algorithm as column store-specific oper-
ator. Dijkstra is a graph search algorithm solving the single-
source shortest path problem [6]. To represent a weighted
graph, three BAT elements—source bs, cost bc, target bt—
are necessary and this three BATs including a start node
information are inputs of our operator. According to the
well-known algorithm structure, we are able to transform
this algorithm to a specific structure using column-oriented
operators as shown in Listing 7.

Listing 7: Dijkstra Algorithm in pyDBL.
def c o l d i j k s t r a (BAT bs ,BAT bc ,BAT bt , s t a r t) :

v i s i t e d ={}
queue = BAT([s t a r t] , [0])
while (l en (queue)>0):

current , co s t=queue [0]
queue=c o l l i m i t (queue , 1 , l en (queue))
g=v i s i t e d . get (cur rent)
i f (g==None) or (co s t < g) :

v i s i t e d [cur rent]= cos t
a=c o l s c a n (ba , pred eq (cur rent))
b=c o l h a s h j o i n (a . mirror () , bc)
c=col map (b , lambda x : x+cos t)
d=c o l h a s h j o i n (a . mirror () , bt)
e=c o l h a s h j o i n (d . r e v e r s e () , c)
queue=c o l s o r t (queue + e , asc)

r e s u l t = BAT()
for k , v in v i s i t e d . i t e r i t e m s () :

r e s u l t . append (k , v)
return r e s u l t

Such application logic is usually not integral part of
databases today. Using pyDBL, we are able to integrate
this kind of application code as regular operator.

4. EXECUTION ENVIRONMENT

Figure 2: Compiler and Execution Infrastructure.

According to our proposed architecture, we have on the
one hand storage and access components written in system
programming languages. On the other hand, we have differ-
ent pyDBL-scripts with an abstraction of storage and access
components. The challenging task of our execution envi-
ronment is now to glue everything together with regard to
evolving hardware landscape. In order to tackle this issue,
we utilize the low-level virtual machine concept (LLVM) [5,
9, 15], which is a compiler-backend infrastructure using a
virtualized set of instructions.

4.1 Query and Application Compilation
Figure 2 illustrates the whole query/application compila-

tion and execution procedure. While scripting language are
usually interpreted at runtime [12], we utilize a compilation
approach for our pyDBL language. One reason is the perfor-
mance requirement which cannot be satisfied using language
interpretation. Another reason is the included abstraction
concept of storage and access components. As depicted in
Figure 2, our pyDBL compiler receives a query or applica-
tion script to be executed including all operator scripts as
library. One major task of our pyDBL compiler is now to
establish the connection with the corresponding interfaces
of storage and access components. The second major task
is to typify the scripts regarding the actual situation.

To describe these both special tasks more precisely, we
assume a column-storage component with a ONC-interface
(Open, Next, Close). This means, we can open a specific
BAT column, iterate over the BAT using the next-operation
and we are able to close the processing. Other interfaces are
possible, but some adjustments on the following steps are
necessary. Moreover, we want to execute the SQL state-
ment of Listing 5 with the corresponding pyDBL-script as
shown in Listing 6. As we can see in the pyDBL-script,
the second operation is reverse-operator which is executed
on a BAT determined by the first query script operation.
This first method opens a BAT, where the head-column is
by default of long-type (system-wide pre-definied) and the
tail-column is a date-type in this case. These type informa-
tion are determinable using script analysis in combination
with variable tracing and accessing the meta-data reposi-
tory of the database system (storing type information about
created and available BATs). Therefore, we are able to ex-
tract type information for each BAT-variable in each script at

4

compile-time. If type information for intermediate variables
are necessary (e.g. p-variable line 4 in Listing 3), then we can
precisely estimate the types using some pre-defined rules as
demonstrated in the related Python compiler approach [16].
In this case (reverse-operator at line 4 in Listing 6), this
reverse-operator gets a BAT[long, date] as input and re-
turns a BAT[date, long] as result. The reverse-operator in
line 9 of the same query script process BATs with different
types for head and tail attributes.

The correct derivation of types out of our typeless pyDBL-
scripts is possible using script analysis, variable tracing, ac-
cessing meta-data repository and pre-defined rules. The
next challenging task is to glue pyDBL-scripts with the cor-
responding storage interface together. In this task, we work
with code replacement strategies in combination again with
code analysis and variable tracing. Based on our introduced
db-specific types, we are able to detect all code lines associ-
ated with variables of our db-specific types. Depending on
the detected pyDBL-method, we replace the corresponding
script methods with specific storage interface methods. Us-
ing our ONC-interface assumption and the determined BAT
types, we construct a specific reverse-operator code for the
invoked reverse-operator in line 4 of Listing 6. To illustrate
the specific code, we show C++-like code lines in Listing 8.

Listing 8: Translated Reverse-Operator
BAT<date , long>
c o l r e v e r s e (BAT<long , date> arg) {

BAT<date , long> r e s u l t =
new BAT<date , long>;

I t e r a t o r <BAT<long , date> > i t e r =
arg−>begin ()

while (i t e r−>hasNext ()) {
Bun<long , date> b = i t e r−>next () ;
r e s u l t . append ((date)b . g e tTa i l () ,

(long) b . getHead ()) ;
}
return r e s u l t ;

}

As derivable from Listings 1 and 8, the core structure of
the reverse-script is kept, but some specific reformulation
has been conducted. For example, the for-loop construct to
iterate over the BAT language data object (line 3 in Listing
1), is replaced by a while-loop regarding the ONC interface
of the column-storage component using the C++ iterator
concept. Furthermore, the Listing 8 illustrates the inclusion
of the already determined type information.

The type derivation and to establish the connection with
arbitrary but well-defined interfaces of storage and access
components are specific database compiler tasks in our DB
programming-driven architecture. These compiler tasks
have to be implemented at compiler level and the modu-
lar architecture of LLVM enables the efficient integration of
those specific modules. Furthermore, standard optimization
techniques such as loop unrolling are available and can be
seamlessly integrated in our pyDBL-compiler.

4.2 Para-Virtualized Execution
As already illustrated in Figure 2, only query and ap-

plication scripts are executed in our virtualized execution
environment. Storage and access components run in a sep-
arate and specific execution environment being adjusted for

their special needs. This so called para-virtualized execu-
tion is a core feature besides pyDBL compilation to satisfy
the performance requirement and to reduce the overhead of
the virtualization. To take more advantage of this para-
virtualization, we are able to define rules to replace pyDBL
operators with low-level operators. This property is crucial,
when e.g. a specific operator is heavily used and a low-level
implementation is more efficient then the pyDBL operator
implementation. An outstanding example is the reverse-
operator with a faster implementation on storage component
where only two pointers have to be re-arrangement instead
of processing all elements within a BAT (see Listing 1). Such
low-level operators have to be made available at storage or
access component and the replacement is part of pyDBL
compiler. However, such specific storage optimization are
not possible for all operators.

5. DISCUSSION
In this section, we (i) show first evaluation results, (ii)

present future research work and (iii) discuss related work.

5.1 Evaluation
To evaluate our novel approach, we have prototypically

implemented our described framework. Furthermore, we
utilized this framework to realized a main-memory column-
store database systems. In detail, we (1) implemented a
column-storage component with ONC-interface using the
system programming language C++, (2) scripted all rele-
vant physical column-store operators [3] using pyDBL, (3)
realized a sql parser with a standard query optimizer out-
puting a pyDBL query script, and (4) a rudimental version
of our pyDBL compiler based on LLVM [15]. Aside from
realizing a main-memory column-store database using our
framework, we further implemented the same system us-
ing the classical approach using the same storage compo-
nent. That means, tight coupling of storage interface with
database operators–in this case, the column-store operators
are written in C++— and the query optimizer outputs a
C++ query program which are compiled using a regular
g++ compiler (denoted as Classic).

For our evaluation, we used a reduced TPC-H benchmark
where the fact table consisted of more than 6 millions entries.
All experiments run a 64bit Linux machine with a Intel Core
2 Duo processor (3, 06 GHz) and 8 GB main memory. We
executed a number of OLAP-queries with increasing com-
plexity, whereas the complexity is determined by the number
of physical operators: Q1 (15 operators), Q2 (22 operators),
Q3 (30 operators), Q4 (37 operators). As we can see in Fig-
ure 3, the runtimes (sum of compile and execution time) are
slightly different. If we look at the pure query execution
times, then we can only determine a negligible difference,
because an optimal bytecode is executed in both cases. The
difference originate in the compilation phase as illustrated in
Figure 3. With our approach, we facilitate the implementa-
tion but we have to do more work in the compilation phase.
However, the differences are only marginal and in contrast
to the execution times of long-running queries, the moderate
increased compile times are negligible.

5.2 Outlook
In this paper, we have proposed our database program-

ming language pyDBL with an overall architecture frame-
work in detail, whereas the description has been focused

5

Figure 3: Experimental Results.

on the extensibility aspect. The main drawback of current
status is the storage dependency at pyDBL level for appli-
cation developers. However, application code should be im-
plemented in a storage independent way enabling further
optimization opportunities and portability. Up to now, our
database scripting language pyDBL includes only specific
data types for different storage components. We are able to
use the same concept to introduce specific data types for ap-
plications enabling an application-oriented implementation
way. In order to execute such application scripts, we require
a mapping of application data types to storage data types.
Furthermore, this mapping has to be considered in the com-
pilation phase like the inclusion of storage interfaces. The
advantages of this approach are manifold, e.g. (1) appli-
cation scripts are independent from any storage component
and (2) reduced effort in comparison to today procedure. To-
day, application objects are transformed to relational enti-
ties using object-relational mapper first, and then processed
by database system using a specific storage component. In
our case, the object-relational mapper is eliminated. A fur-
ther important benefit of our approach is that the applica-
tion logic runs inside the database system and we do not
further need a separate application server.

However, we are going to more precisely investigate the
interplay between storage data types and application data
types in our pyDBL in near future and how to integrate
the mappings. In particular, we want to study the advan-
tages and disadvantages of eliminating the relational view
by transforming application objects directly to the storage
layer. Furthermore, we want to explore the optimization
potentials of our compiler when all application as well as
database functionality is implemented in the same pyDBL
language. A further topic of our ongoing research work, is to
extend pyDBL with parallelism opportunities. In this work,
we want to investigate how to script parallel operators in
combination with parallelized applications.

5.3 Related Work
A number of projects have been addressing the needs

of new applications by developing approaches to making a
database system extensible; Exodus [4] or Genesis [2] are ex-
amples. However, all these projects have been proposed ex-
tensible concepts, whereas the programmability is restricted

respectively not considered. Only the Exodus project in-
cludes a specific language to simplify the development. The
so-called E language extends C++ with facilities for persis-
tent systems programming focusing only on the implemen-
tation of new internal database components (e.g. new access
methods or new query language operators).

To best of our knowledge, our pyDBL language and our
architecture is the first integrated approach regarding pro-
grammability of databases. With our proposed language,
different operators and application logic can be easy imple-
mented and seamlessly integrated in the database without
scarifying performance.

6. SUMMARY
Database research is always on the move, but today’s sys-

tems are too complex and this hinders the integration of
new research concepts. To tackle this programmability chal-
lenge, we have contributed a novel database architecture
and framework with two distinct features of (i) an inher-
ent database programming language and (ii) an extensible
framework provided by a para-virtualized environment.

7. REFERENCES
[1] R. Agrawal et al. The claremont report on database

research. Commun. ACM, 52:56–65, June 2009.
[2] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith,

K. Tsukuda, B. C. Twichell, and T. E. Wise. Readings in
object-oriented database systems. chapter GENESIS: an
extensible database management system, pages 500–518.
1990.

[3] P. A. Boncz and M. L. Kersten. MIL Primitives for
Querying a Fragmented World. VLDB J., 8(2):101–119,
1999.

[4] M. J. Carey, D. J. DeWitt, D. Frank, M. Muralikrishna,
G. Graefe, J. E. Richardson, and E. J. Shekita. The
architecture of the exodus extensible dbms. In OODS’86,
pages 52–65, 1986.

[5] Chris Lattner. LLVM: An Infrastructure for Multi-Stage
Optimization, 2002.

[6] T. H. Cormen, C. E. L. andRonald L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 3rd edition, 2009.

[7] G. Graefe. The Cascades Framework for Query
Optimization. IEEE Data Eng. Bull., 18(3):19–29, 1995.

[8] H. P. Langtangen. A Primer on Scientific Programming
with Python. Springer, 2009.

[9] C. Lattner and V. S. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In CGO, pages 75–88, 2004.

[10] N. Leavitt. Will NoSQL Databases Live Up to Their
Promise? Computer, 43(2):12–14, Feb. 2010.

[11] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing
database architecture for the new bottleneck: memory
access. VLDB J., 9(3):231, 2000.

[12] J. K. Ousterhout. Scripting: Higher-Level Programming for
the 21st Century. Computer, 31(3):23–30, Mar. 1998.

[13] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/rule based query rewrite optimization in
Starburst. In SIGMOD, volume 21, pages 39–48, 1992.

[14] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural
era: (it’s time for a complete rewrite). In VLDB, pages
1150–1160, 2007.

[15] The LLVM Compiler Infrastructure. http://llvm.org/.
[16] Unladen Swallow - Python LLVM Compiler.

http://code.google.com/p/unladen-swallow/.

6

http://llvm.org/
http://code.google.com/p/unladen-swallow/

	Introduction
	Architecture Framework
	Architecture
	Framework

	Database Programming Model
	Operators
	Queries
	Applications

	Execution Environment
	Query and Application Compilation
	Para-Virtualized Execution

	Discussion
	Evaluation
	Outlook
	Related Work

	Summary
	References

