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ABSTRACT
An exact structural characterization of the expressive power
of the acyclic conjunctive queries is given in terms of guarded
simulations. The study of this fragment of first order logic
is motivated by the central role it plays in query languages
across a wide range of data models. The study of a struc-
tural characterization of the language is motivated by the
applications of such characterizations, for example, in the
design of efficient indexing and query processing strategies.
In addition to a presentation of our main result, we dis-
cuss the results of a small empirical study which indicate
the practicality of guarded simulation based reductions of
database instances.

1. INTRODUCTION
The conjunctive queries were recognized early in the study

of database query languages as a particularly important
fragment of first-order logic (FO) [6]. As the basic language
for expressing join patterns between database objects, the
conjunctive queries have since continued to play a central
role in query language design across all major datamodels:
relational, complex object, object-oriented, semi-structured,
XML, graph, and RDF data [1, 2]. For example, conjunc-
tive queries appear in the guise of path and star queries, and
tree and graph patterns in these various data models.

Already in Chandra and Merlin’s first paper on the con-
junctive queries, the notion of homomorphisms (i.e., struc-
ture preserving mappings) was crucial in reasoning about
the language. It is indeed well known that the conjunctive
queries are invariant under homomorphisms [26], that is

Theorem 1. For tuples a1 and a2 over constants appear-
ing in respective database instances db1 and db2, if there ex-
ists a homomorphism f from db1 to db2 such that f(a1) =

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
DBPL ’11.
Copyright 2011.

a2, then for every conjunctive query Q, if a1 ∈ Q(db1) then
a2 ∈ Q(db2).

Such structural characterizations of the expressive power
of query languages play an important role, for example, in
the study of indexing data structures to accelerate query
processing (e.g., [4, 8, 11, 14, 17, 18, 23, 28]). To be us-
able, however, these characterizations must be efficiently
computable and maintainable under database updates.

Clearly, computing and maintaining all homomorphisms
becomes impractical as the size of the database grows. There
are, however, useful fragments of FO which have tractable
structural characterizations. Indeed, many FO path lan-
guages for trees and graphs (e.g., [4, 8, 9, 17, 23, 29]) are
characterized by variants of (bi)simulation, tractable struc-
tural notions of equivalence which have deep roots both in-
side and outside of computer science research [27]. In the
logic community, the so-called guarded fragment of FO was
shown to be characterized by a tractable generalized notion
of guarded bisimulation [3, 24]. Flum et al. have since es-
tablished expressive equivalence between guarded FO and
the acyclic fragment of FO [10], and Leinders et al. have
shown that guarded FO corresponds to the semi-join vari-
ant of Codd’s relational algebra [20].

In the context of the conjunctive queries, is it possible to
isolate a useful fragment which similarly admits a tractable
structural characterization? Gottlob et al. have established
the expressive equivalence of the acyclic conjunctive queries
and the conjunctive fragment of guarded FO [13]. Clearly,
this is a very natural candidate to consider (e.g., such queries
appear in the role of tree patterns for XML and path/star
patterns for RDF) [10, 12]. To our knowledge, a structural
characterization of the acyclic conjunctive queries has not
been established; the closest results here are those for pos-
itive modal languages established in the 1990’s by de Rijke
et al. [5, 19] and more recently those of Wu et al. for positive
path queries on trees [29].

Contributions and overview. In this paper, we give the
first structural characterization of the expressive power of
the acyclic conjunctive queries in terms of guarded simu-
lations, thereby complementing the structural characteriza-
tion of acyclic FO in terms of guarded bisimulations. Sim-
ulations, which are efficiently computable, have previously
found basic applications in data management (e.g., [1, 7,



29]). In addition to a presentation of our main result, we
also discuss the results of a preliminary empirical investiga-
tion which indicate the practicality of guarded simulations.

We proceed in the paper as follows. In Section 2, we
present terminology and notation, and define the notion of
guarded simulation. In Section 3, we then present two syn-
taxes for the acyclic conjunctive queries. Following these
preliminaries, we then establish in Section 4 our main re-
sults. After this, we discuss in Section 5 the results of the
empirical investigation, and then give closing observations
in Section 6.

2. STRUCTURES AND GUARDED SIMU-
LATIONS

Schemas and databases. We assume given a fixed universe
U of atomic data values, as well as a fixed, finite set S of
relation symbols. Associated to each relational symbol r ∈ S
is a natural number, called the arity of r.

As usual, a relational database db over S is an assignment
of a finite relation db(r) ⊆ Un to each r ∈ S, where n is the
arity of r. We adopt the standard convention of identifying
a relational database instance over S with a finite logical
theory consisting of ground facts. Here, a fact is a term of
the form r(a1, . . . , ak) with r ∈ S, k the arity of relation
name r, and a1, . . . , ak ∈ U . A database S can then be
identified with the finite set of facts {r(a) | a ∈ db(r), r ∈ S}.

For convenience we will often denote tuples (a1, . . . , ak) of
elements of a set A by a, and write a ∈ A instead of a ∈ Ak.
Moreover, if f : A→ B is a function, then we denote by f(a)
the tuple obtained by applying f point-wise to each element
in a. Also, if a and b are tuples of the same arity k, then we
denote by a 7→ b the relation {(ai, bi) | 1 ≤ i ≤ k}. Finally,
if a and b are two tuples, of arity k and l, respectively (k
and l need not be the same), then the equality type of a and
b, denoted by eqtp(a, b) is defined as follows:

eqtp(a, b) := {(i, j) | ai = bj with 1 ≤ i ≤ k and 1 ≤ j ≤ l}.

Example 2. Consider the following two databases, where
facts are labeled for ease of reference.

db1 db2

t1 r(a, b, c)
t2 r(b, d, e)
t3 r(c, f, g)
t4 r(h, i, j)
t5 r(i, k, l)
t6 r(j,m, n)
t7 s(x, y, y)

t8 r(o, p, q)
t9 r(p, r, s)
t10 r(q, t, u)
t11 r(u, v, w)
t12 s(z, z, z)

We have that eqtp(t1, t2) = eqtp(t8, t9) = {(2, 1)}, and
eqtp(t7, t7) ⊆ eqtp(t12, t12).

Guarded simulation. We call a set of atomic data val-
ues X ⊆ U guarded in a database db if there is a fact
r(a1, . . . , an) ∈ db such that X = {a1, . . . , an}. In other
words, a set is guarded in db if it can be obtained from a
tuple in db by forgetting order and removing duplicates. We
call a tuple a guarded in db if it is built over some guarded set
in db. In Example 2, {z} is guarded in db2 (by t12), {a, b, c}
is guarded in db1 (by t1), and (b, a, a, a, a) is guarded in db1

(by {a, b, c}).

Let db1 and db2 be databases, and let X,Y ⊆ U . A func-
tion f : X → Y is a partial homomorphism from db1 to db2

if for each r ∈ S and every a ⊆ X (i.e., every tuple built
over data values in X) we have that if r(a) ∈ db1 then
r(f(a)) ∈ db2.

Definition 3. A guarded simulation of database db1 in
database db2 is a non-empty set I of partial homomorphisms
from db1 to db2 such that the following condition is satisfied
for all f : X → Y ∈ I:

Forth for any guarded set Z in db1 there is a g ∈ I with
domain Z such that g and f agree on the intersection
X ∩ Z.

Guarded simulation is a variant of guarded bisimulation,
due to Andréka et al. [3]. Guarded bisimulations are in-
spired by both the “classical” notion of bisimulation [27] and
Ehrenfeucht-Fräıssé games [21]. An alternative perspective
on guarded simulations which will prove useful in the sequel
is as follows.

Definition 4. A tuple-based simulation of database db1

in database db2 is a non-empty binary relation T ⊆ db1× db2

between the facts of db1 and db2 such that:

1. T relates only facts with the same relation name (i.e.,
if (r(a), s(b)) ∈ T then r = s);

2. T satisfies the following condition for every (r(a), r(b)) ∈
T

Tuple-Forth for every fact s(c) ∈ db1 there exists
s(d) ∈ db2 such that (s(c), s(d)) ∈ T and eqtp(a, c) ⊆
eqtp(b, d).

Example 5. For the instances of Example 2, we have
that

T1 = {(t1, t8), (t2, t9), (t3, t10), (t4, t8), (t5, t9), (t6, t10), (t7, t12)}

is a tuple-based simulation of db1 in db2, and

T2 = {(t1, t4), (t2, t5), (t3, t6), (t4, t4), (t5, t5), (t6, t6), (t7, t7)}
T3 = {(t4, t1), (t5, t2), (t6, t3), (t1, t1), (t2, t2), (t3, t3), (t7, t7)}

are tuple-based simulations of db1 in db1.

Define, for a guarded simulation I,

T [I] := {(r(a), r(f(a))) | r(a) ∈ db1, f ∈ I}.

Also define, for a tuple simulation T ,

I[T ] := {a 7→ b | (r(a), r(b)) ∈ T}.

For example, the relation (a, b, c) 7→ (o, p, q) is an element
of I[T1], for tuple simulation T1 of Example 5.

We can note the following correspondence between guarded
simulation and tuple simulation.

Proposition 6.

1. If I is a guarded simulation of db1 in db2 then T [I] is
a tuple simulation of db1 in db2.

2. If T is a tuple simulation of db1 in db2 then I[T ] is a
guarded simulation of db1 in db2.

Proof. (1). Let I be a guarded simulation. We need to
show that T [I] satisfies all conditions of Definition 4:



1. Trivial, by definition of T [I].

2. The tuple-forth condition follows from the forth con-
dition on I:

Tuple-Forth Let (r(a), r(f(a))) be a pair in T [I].
Let s(c) be a fact in db1. Then c forms a guarded
set. By the Forth condition of guarded simula-
tion, there must exist some g ∈ I with domain c
that agrees with f on all values in a ∩ c. Since g
is a partial homomorphism, s(g(c)) ∈ db2. More-
over, (s(c), s(g(c))) ∈ T [I]. Then, since g agrees
with f on a ∩ c, eqtp(a, c) ⊆ eqtp(f(a), g(c)), as
desired.

(2). Let T be a tuple-based simulation. We need to show
that I[T ] satisfies all conditions of Definition 3.

First, we need to show that the elements a 7→ b of I[T ] are
partial homomorphisms. First note that, by construction,
a 7→ b is in I[T ] only if (r(a), r(b)) ∈ T for some r ∈ S. Let
k be the arity of r.

We need to show that a 7→ b is (1) a function and (2)
preserves facts of db1 in db2.

• To see that it is a function, apply the Tuple-forth con-
dition taking s(c) = r(a) in db1. Then there exists
r(d) in db2 such that (r(a), r(d)) ∈ T and eqtp(a, a) ⊆
eqtp(b, d). Since clearly (i, i) ∈ eqtp(a, a) for every
1 ≤ i ≤ k, this implies that bi = di for 1 ≤ i ≤ k.
As such, b = d.

In other words, eqtp(a, a) ⊆ eqtp(b, b), and hence if
ai = aj then bi = bj , for all 1 ≤ i ≤ j ≤ k. As such,
a 7→ b is a function.

• Towards (2), consider s ∈ S arbitrary, and c ⊆ a. Let
f abbreviate a 7→ b. Suppose that s(c) ∈ db1. We
need to show that s(f(c)) ∈ db2. By Tuple-Forth,
there is some s(d) in db2 with (s(c), s(d)) ∈ T and
eqtp(a, c) ⊆ eqtp(b, d). It remains to show that d =
f(c) i.e., that di = f(ci) for every 1 ≤ i ≤ k. Fix i
arbitrarily. Note that, since c ⊆ a, there exists ji such
that ci = aji . Then, because eqtp(a, c) ⊆ eqtp(b, d), we
have di = bji = f(aji) = f(ci), as desired.

It remains to verify the Forth condition of guarded simula-
tion. Let f = a 7→ b be an arbitrary element of I[T ]

Forth Let X be a guarded set in db1. Then there is some
fact s(c) ∈ db1 with X = {c1, . . . , cl} with l the ar-
ity of s. By Tuple-Forth, there exists s(d) in db2

with (s(c), s(d)) ∈ T and eqtp(a, c) ⊆ eqtp(b, d). Then
clearly, since (s(c), s(d)) ∈ T , c 7→ d is in I[T ]. More-
over, since eqtp(a, c) ⊆ eqtp(b, d), we know that c 7→ d
agrees with a 7→ b on a ∩ c.

Note that for simplicity, we have ignored constant data
values in simulation. To introduce constants, i.e., the notion
that constants can be inspected in relation r on some fixed
positions Pr ⊆ {1, . . . , rank(r)}, it can further be required in
part (1) of Definition 4 that it must be the case that ai = bi
for each i ∈ Pr. Constants can similarly be incorporated in
Definition 3.

3. TWO SYNTAXES FOR THE ACYCLIC
CONJUNCTIVE QUERIES

We assume familiarity with the syntax and semantics of
first order logic and Codd’s relational algebra [21]. The
syntax of the guarded conjunctive fragment of first order
logic (conjGF) over database schema S is as follows:

• r(x1, ..., xk), where r ∈ S is a relation name of arity
k and each xi, 1 ≤ i ≤ k, is a variable, is a (proposi-
tional) atomic formula.

• x = y, for variables x and y, is an atomic formula.

• if F is an atomic formula, then F ∈ conjGF.

• if F,G ∈ conjGF, then F ∧G ∈ conjGF.

• if A is a propositional atomic formula, F ∈ conjGF,
the set free(F ) of free variables of F is contained in
the set of variables of A, and x is a list of variables,
then ∃x(A∧F ) ∈ conjGF. Such a formula is said to be
“variable guarded” or “strict”.

• nothing else is in conjGF.

• if ∃x(A ∧ F ) ∈ conjGF and x = (x1, ..., xn) is a list
of variables such that {x1, ..., xn} = free(∃x(A ∧ F )),
then {x | ∃x(A ∧ F )} is a conjGF query.

The semantics of a conjGF query q = {x | ϕ(x)} on a
database instance db is the set of tuples

q(db) = {v(x) | db |= ϕ(v(x)) and v is a valuation over x}

where a “valuation” is a function from a set of variables to
the set of atomic data values U .

Note that, following Hirsch [16] and Leinders et al. [20],
we restrict our attention in conjGF queries to the so-called
strict or variable-guarded formulas, which evaluate to sets
of tuples guarded in the same relation.

Towards an alternate syntax for conjGF which we use in
the sequel, we take inspiration from Leinders et al. [20],
where the equivalence of guarded FO and the semi-join al-
gebra is established.1 Let conjSA denote the conjunctive
fragment of the semi-join algebra, with the following syn-
tax:

• if r ∈ S and k = arity(r), then r is a conjSA expression
of width k, which we denote by r : k ∈ conjSA.

• if e : k ∈ conjSA and i, j ≤ k, then σi=j(e) : k ∈
conjSA.

• if e : k ∈ conjSA, j ∈ N, and n1, ..., nj are each positive
integers smaller than or equal to k, then πn1,...,nj (e) :
j ∈ conjSA.

• if e1 : k ∈ conjSA, e2 : l ∈ conjSA, and θ is a conjunc-
tion of expressions of the form i = j, each for some
1 ≤ i ≤ k and 1 ≤ j ≤ l, then e1 nθ e2 : k ∈ conjSA.

• nothing else is in conjSA.

The semantics of a conjSA expression e on instance db is
the set of tuples e(db) defined as follows:

1See also Hirsch’s algebraization of guarded FO [16, Section
3.6].



e
r(a)
k =

(
σV

i=j∈eqtp(a,a) i=j
(r) if k = 0

((e
r(a)
0 nV

i=j∈eqtp(a,b1) i=j
e
s1(b1)
k−1 ) · · ·nV

i=j∈eqtp(a,bn) i=j
e
sn(bn)
k−1 ) if k > 0

Figure 1: Characteristic conjSA expressions of Definition 10.

• if e := r ∈ S, then e(db) = db(r).

• if e := σi=j(e
′), then e(db) = {t ∈ e′(db) | t[i] = t[j]}.

• if e := πn1,...,nj (e′), then e(db) = {(t[n1], ..., t[nj ]) | t ∈
e′(db)}.

• if e := e1 nθ e2, then e(db) = {t1 ∈ e1(db) | ∃t2 ∈
e2(db) such that t1[i] = t2[j] for each i = j ∈ θ}.

A query is a function from database instances to rela-
tion instances. By induction on the structure of conjSA
expressions and conjGF queries, we can establish the fol-
lowing equivalence between the expressive power of conjSA
and conjGF.

Proposition 7. Let Q be a query on S. The following
are equivalent.

1. There exists a conjSA expression e such that for all
instances db of S, e(db) = Q(db).

2. There exists a conjGF query q such that for all in-
stances db of S, q(db) = Q(db).

It follows from Proposition 7 and [13, Corollary 3], that

Corollary 8. conjSA and conjGF are equivalent in ex-
pressive power to the language of strict acyclic conjunctive
queries.2

4. STRUCTURAL CHARACTERIZATION OF
THE ACYCLIC CONJUNCTIVE QUERIES

We next use Corollary 8 to show that there is a tight re-
lationship between guarded simulation and the acyclic con-
junctive queries.

We begin by noting the following invariance lemma, which
follows from an induction on the structure of conjSA expres-
sions.

Lemma 9. conjSA is invariant under guarded simulations:
let db1 and db2 be instances of S, and let a1 and a2 be
guarded tuples in db1 and db2, respectively. Let I be a guarded
simulation of db1 in db2 and let f ∈ I be a partial homomor-
phism such that f(a1) = a2. Then, for every e ∈ conjSA, it
holds that a1 ∈ e(db1) implies a2 ∈ e(db2).

The converse of Lemma 9, i.e. that invariance implies the
existence of a guarded simulation, is also true, as we show
next.

2In datalog notation, the strict conjunctive queries are those
of the form h ← p1, . . . , pn where all variables of the head
h appear together in some subgoal pi of the body. In the
sequel, we just refer to these as conjunctive queries.

Definition 10. Let db be an instance of S, integer k be
non-negative, and r(a) ∈ db. Then, given the set

{s1(b1), . . . , sn(bn)}

of distinct facts in db having non-empty equality type with
r(a), define the family of conjSA expressions given in Figure
1.

The parse tree of the expression e
r(a)
k has σV

i=j∈eqtp(a,a) i=j
(r)

as root, and σV
i=j∈eqtp(b1,b1) i=j

(s1), . . . , σV
i=j∈eqtp(bn,bn) i=j

(sn)

as children of the root with edges enforcing for each child b`
the respective semi-join condition

V
i=j∈eqtp(a,b`)

i = j. Re-

curring on each child, the tree continues in this manner to
depth k.

Example 11. The k = 1 characteristic expression for t1
of Example 2 is

et11 = ((σ1=1∧2=2∧3=3(r) n2=1 σ1=1∧2=2∧3=3(r))

n3=1 σ1=1∧2=2∧3=3(r))

The reader can verify for any k ≥ 0 that et1k = et4k , t4 ∈
et1k (db1), and t1 ∈ et4k (db1).

Clearly:

Lemma 12. For every fact r(a) and every k ≥ 0 we have

a ∈ er(a)k (db).

These expressions can be optimized (e.g., removing rep-
etition of subqueries by “stratifying” the use of facts), but
such is not our concern here. Rather, we have introduced
these expressions in order to syntactically characterize those
facts which simulate a given fact, as follows.

Definition 13. Let db1 and db2 be database instances.
Define the sequence of sets Z0, Z1, . . . , with every Zk ⊆
db1× db2 for k ≥ 0 as follows:

Zk = {(r(a1), r(a2)) | r(a1) ∈ db1, a2 ∈ er(a1)
k (db2)}

Here e
r(a1)
k is given as in definition 10.

Note that Zk is indeed a subset of db1× db2: if a2 ∈ er(a1)
k (db2)

then in particular we must have a2 ∈ er(a1)
0 (db2) and hence,

by definition of e
r(a1)
0 (db2), it must hold that a2 ∈ db2(r),

or equivalently that r(a2) ∈ db2 as desired.
Also note that for any fact α, any k, and any database

db we have eαk+1(db) ⊆ eαk (db). Hence Zk+1 ⊆ Zk, for any
k ≥ 0.

Lemma 14. Let db1 and db2 be database instances, and
define the sequence of sets Zk with k ≥ 0 as in definition
13. If k is an integer such that (1) Zk+1 = Zk (i.e., Zk is a
fixpoint) and (2) every α ∈ db1 occurs in the left column of
Zk+1, then Zk+1 is a tuple simulation of db1 in db2.



We are now ready to establish our main result.

Theorem 15. Let db1 and db2 be instances of S, integer
j be non-negative, and a1 and a2 be guarded j-tuples in db1

and db2, respectively. The following are equivalent.

1. For any e ∈ conjSA, if a1 ∈ e(db1) then a2 ∈ e(db2).

2. There is a guarded simulation I of db1 in db2 with
partial homomorphism f ∈ I such that f(a1) = a2.

Proof. (1⇒ 2). Since a1 is a guarded tuple in db1, there
exists some fact r(b1) ∈ db1 and positive integers n1, . . . , nj
such that a1 = πn1,...,nj (b1). Then consider the sequence of
sets Z0, Z1, Z2, . . . as defined in Definition 13. Observe that,
since Zl+1 ⊆ Zl for any l ≥ 0, this sequence must converge
at some point: i.e., there must exist some k with Zk+1 = Zk.
Now consider the conjSA expression

E = πn1,...,nj (e
r(b1)
k+1 ) n∅

β∈db1
eβk+1

It is readily verified using Lemma 12 that a1 ∈ E(db1).
By assumption, this implies a2 ∈ E(db2). In particular,

a2 ∈ πn1,...,nj (e
r(b1)
k+1 )(db2). Hence, there exists some b2 ∈

e
r(b1)
k+1 (db2) with a2 = πn1,...,nj (b2). As such,

(r(b1), r(b2)) ∈ Zk+1.

Moreover, by definition of E , there exists, for every fact

β = s(c1) ∈ db1, some c2 ∈ es(c1)
k+1 (db2). Therefore, for every

fact s(c1) ∈ db1 we have a pair (s(c1), s(c2)) ∈ Zk+1. As
such, every fact of db1 occurs in the left column of Zk+1.
Hence, Zk+1 satisfies the conditions of Lemma 14. As such,
Zk+1 is a tuple simulation from db1 to db2. By Lemma 6,
I[Zk+1] is a guarded simulation from db1 to db2. Since
(r(b1), r(b2)) ∈ Zk+1 and by definition of I[·] we have f =
b1 7→ b2 ∈ I[Zk+1]. Then f(b1) = b2 and hence also
f(a1) = a2.

(2 ⇒ 1). By Lemma 9.

We conclude this section by observing the following “van
Benthem” style characterization [5] of the acyclic conjunc-
tive queries.

Theorem 16. The acyclic conjunctive queries capture pre-
cisely the guarded simulation invariant fragment of the con-
junctive queries.

Proof. (Sketch.) By Corollary 8 and Theorem 15 we
have that the acyclic conjunctive queries are invariant under
guarded simulations. It remains to show that all guarded
simulation invariant conjunctive queries are acyclic.

We establish this by the contrapositive. In datalog nota-
tion, let q = h ← p1, . . . , pn be a cyclic conjunctive query,
which we may assume without loss of generality to be min-
imal, i.e., there is no other query q′ equivalent to q having
strictly fewer subgoals in its body. It remains to show that
q is not invariant under guarded simulation.

As q is cyclic, there must be a cycle in the join graph
of q [12]. In other words, there must be pairwise distinct
subgoals pc1 , . . . , pck in the body of q such that (1) k ≥ 3,
(2) pci and pci+1 share at least one variable, for 1 ≤ i < k,
(3) pck shares at least one variable with pc1 , and (4) there
exists a variable v shared between pck and pc1 such that for
some i < k, v is not shared between pci and pci+1 .

Let db be the instance of S consisting of the facts { bp1, . . . ,cpn}
obtained from the respective subgoals of the body of q by
uniformly replacing each distinct variable of q by a distinct
constant in U . Let db′ be the instance of S consisting of

the facts { bp1, . . . ,cpn, bp′1, . . . ,cp′n} where each of { bp1, . . . ,cpn}
and { bp′1, . . . ,cp′n} are distinct instances isomorphic to db ex-

cept that the constants of cpck are modified to join with cp′c1
(instead of with cpc1), the constants of cp′ck

are modified to

join with cpc1 (instead of with cp′c1), and these modifications
to constants are also uniformly applied to the other facts of

{ bp1, . . . ,cpn} and { bp′1, . . . ,cp′n}, respectively. In other words,
db′ has an unfolded copy of the original cycle in db.

Clearly, there exists a guarded simulation of db in db′,
and q(db) is non-empty by construction. However, q(db′) is
empty because the cycle pc1 , . . . , pck is not satisfiable in db′,
by construction. We conclude that q is not invariant under
guarded simulations, as desired.

5. A SMALL EMPIRICAL STUDY
Having established a tight theoretical coupling between

the acyclic conjunctive queries and guarded simulation, we
next briefly investigate the practicality of the coupling. As
discussed in Section 1, an application of such structural char-
acterizations is in the design and implementation of indexing
data structures to facilitate efficient query processing.

In the case of acyclic conjunctive queries, we have by The-
orem 15 that facts t1 and t2 of a database db are indistin-
guishable in the language if and only if there exist tuple
simulations T and T ′ of db in itself, where (t1, t2) ∈ T and
(t2, t1) ∈ T ′. In this case, we say that the tuples are similar.
It is easy to see that similarity of tuples is an equivalence,
and hence induces a partition of db into blocks of facts which
mutually simulate each other. These blocks, viewed as el-
ements of a reduction of db, are the basis for index data
structures tailored specifically to evaluation of acyclic con-
junctive queries on db, in the spirit of [4, 8, 14, 17, 23, 28].

Similarity of facts can be computed in polynomial time
(e.g., [7, 15]). If, however, simulation-partitions are too large
(i.e., close to the size of the original instance), then the
obtained reductions are not very useful.

In our work, we are studying the management of data
modeled under the RDF standard of the W3C.3 In particu-
lar, we are investigating RDF indexing to support efficient
evaluation of SPARQL, the W3C’s query language.4 The
heart of SPARQL queries are the so-called basic graph pat-
terns, which are conjunctive queries specialized to RDF [25].

To establish the feasibility of simulation-partition-based
indexing for SPARQL evaluation, we performed a prelim-
inary analysis of the reductions achieved when computing
the simulation partition of samples from two typical real
world RDF data sets: DBPedia5, an RDF version of the
Wikipedia collection, and the RDF version of the Uniprot6

bioinformatics data set. As sampled data sets, we emphasis
that the results obtained are of course preliminary. In order

3In essence, an RDF database instance is a finite set
of facts of the form (subject, predicate, object). These
“triples” are often interpreted as statements of the form
“subject has relationship predicate to object.” See
http://www.w3.org/RDF/
4http://www.w3.org/TR/rdf-sparql-query/
5http://www.dbpedia.org/
6http://www.uniprot.org/



Simulation
k = 0 k = 1 k = 2 k = 3 k =∞

DBPedia 0.001 0.005 0.020 0.084 0.508
Uniprot 0.001 0.008 0.035 0.084 0.163

Simulation with Predicate Filtering
k = 0 k = 1 k = 2 k = 3 k =∞

DBPedia 0.296 0.725 0.746 0.752 0.752
Uniprot 0.049 0.187 0.210 0.213 0.214

Figure 2: Average reduction factor (i.e., the ratio of the number of blocks in the partition to the number of
facts in the original database) of five random samples of 1000 triples from the DBPedia and Uniprot RDF
datasets, for neighborhood size k.

to compute simulation on the full datasets, we are currently
in the process of developing external memory simulation al-
gorithms, as we have found that current internal memory
algorithms have difficulty scaling to large instances.

The results obtained are presented in Figure 2. Consider-
ing constants in the predicate position in RDF, following the
approach discussed in Section 2, makes sense when values in
this position are interpreted as “attribute” names. Indeed,
such an interpretation is often the case in practice. Hence,
in Figure 2 we give results both with and without such pred-
icate “filtering.” We also give results when only considering
neighboring nodes within a finite radius k in the tuple-based
join graph when computing similarity (i.e., the definition of
simulation is recursively applied only to depth k). Such
“localization” of the structure considered is often used in
index design [8, 17]. We see significant reductions across all
variations of similarity, indicating that it is indeed worth-
while to investigate practical applications of these database
reductions, in particular for RDF data.

6. CONCLUDING REMARKS
We have given a language-independent characterization

of the acyclic conjunctive queries, a fragment of first order
logic which is central to the study of database query lan-
guages. To our knowledge, this is the first such character-
ization found. The key notion was that of guarded simula-
tions between database instances. This result complements
the established characterization of acyclic first order logic in
terms of guarded bisimulations. We also presented results
of a preliminary empirical investigation, which indicate the
practicality of the characterization.

The study was motivated both internally, as an investiga-
tion of a basic fragment of first order logic, and externally
by the applications of structural characterizations of the lan-
guage. There are many interesting directions for future work
along both of these lines. We close by listing a few which
we are currently pursuing:

• Investigate characterizations of well-behaved general-
izations of conjGF, such as the packed guarded frag-
ment [22].

• Current simulation algorithms are designed for inter-
nal memory (e.g., [7, 15]). Study efficient similarity
computation for databases on external memory

• Study guarded simulation-based indexing data struc-
tures and their use in conjunctive query processing.
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