Adequacy and Complete Axiomatization for Timed Modal Logic

Bingtian Xue
Aalborg University

Joint work with

Samy Jaziri

Radu Mardare

Kim G. Larsen

MFPS, June 12, 2014

Motivation

- To model real-time behaviors:
 - Timed transition system; timed automata
 - MTL, MITL, TPTL, ECL -- extensions of LTL
 - $TCTL, T_{\mu}, L_{\nu}$ -- extensions of CTL, μ -calculus
- Our achievements:
 - Adequacy of TML (Timed Modal Logic)
 - Undecidability of satisfiability problem for TML
 - Strong-complete axiomatization

Timed Transition System (TTS)

Timed Transition System (TTS)

- $M = (M, \Sigma, \theta, \oplus)$
 - M: non-empty set of states
 - Σ: non-empty set of actions
 - $\theta: M \times \Sigma \longrightarrow 2^M$ labeled transition function
 - \bigoplus : $\mathbb{R}_{\geq 0} \times M \to M$ delay transition function
 - \bullet 0 \bigoplus m=m;
 - $d \oplus (d' \oplus m) \cong (d + d') \oplus m$

Timed Bisimulation

- $R \subseteq M \times M$ s.t. whenever $(m_1, m_2) \in R$:
 - If $m_1 \stackrel{a}{\rightarrow} m_1'$, then $\exists m_2' \in M \text{ s.t. } m_2 \stackrel{a}{\rightarrow} m_2'$, and $(m_1', m_2') \in R$;
 - If $d \oplus m_1$ defined, then $d \oplus m_2$ defined, and $(d \oplus m_1, d \oplus m_2) \in R$.

Timed Bisimulation

Syntax

$$\mathcal{L}: \quad \phi ::= \bot \mid x \leq r \mid \phi \rightarrow \phi \mid [a]\phi \mid \forall \phi \mid \forall x.\phi$$

$$\text{where: } r \in \mathbb{Q}_{\geq 0}, \leq \{\leq, \geq\}, x \in \mathcal{K}$$

- Semantics:
 - $M, m, i \models \phi$

where
$$i: \mathcal{K} \to \mathbb{R}_{\geq 0}$$

Syntax

$$\mathcal{L}: \quad \phi ::= \bot \mid x \leq r \mid \phi \rightarrow \phi \mid [a]\phi \mid \forall \phi \mid \forall x.\phi$$

$$\text{where: } r \in \mathbb{Q}_{\geq 0}, \leq \{\leq, \geq\}, x \in \mathcal{K}$$

- Semantics:
 - $M, m, i \models x \trianglelefteq r \text{ iff } i(x) \trianglelefteq r$

- i(x) = 2
- $\bullet \ M, m_0, i \models x \geq 2$

Syntax

$$\mathcal{L}: \quad \phi ::= \bot \mid x \leq r \mid \phi \rightarrow \phi \mid [a]\phi \mid \forall \phi \mid \forall x. \phi$$

- Semantics:
 - $M, m, i \models \forall \phi \text{ iff}$ for any $d \in \mathbb{R}_{\geq 0}$ $s.t.m' = d \oplus m, M, m', i + d \models \phi$

Syntax

$$\mathcal{L}: \quad \phi ::= \bot \mid x \leq r \mid \phi \rightarrow \phi \mid [a]\phi \mid \forall \phi \mid \forall x. \phi$$

- Semantics:
 - $\blacksquare \ \phi = \neg(\forall (\neg \phi))$
 - $M, m, i \models \exists \phi$ iff there exists $d \in \mathbb{R}_{\geq 0}$ $s.t.m' = d \oplus m$ and $M, m', i + d \models \phi$

- i(x) = 2
- $M, m_0, i \models \forall (x \leq 4 \rightarrow \exists \langle a \rangle \top)$

Syntax

$$\mathcal{L}: \quad \phi ::= \bot \mid x \leq r \mid \phi \rightarrow \phi \mid [a]\phi \mid \forall \phi \mid \forall x.\phi$$

- Semantics:
 - $M, m, i \models \forall x. \phi \text{ iff}$ for any $t \in \mathbb{R}_{\geq 0}, M, m, i[x \mapsto t] \models \phi$

Syntax

$$\mathcal{L}: \quad \phi ::= \bot \mid x \leq r \mid \phi \rightarrow \phi \mid [a]\phi \mid \forall \phi \mid \forall x.\phi$$

- Semantics:
 - $\exists x. \phi = \neg(\forall x. \neg \phi)$
 - $M, m, i \models \exists x. \phi \text{ iff}$ there exists $t \in \mathbb{R}_{\geq 0}$ s.t. $M, m, i[x \mapsto t] \models \phi$

- i(x) = 2
- $M, m_0, i \models \forall x. (x = 0 \rightarrow \forall (x \le 2 \rightarrow \exists \langle a \rangle \top))$

Undecidability

- Theorem
 - The satisfiability question for TML is Σ_1^1 -hard, hence undecidable.
 - Proof: encode a non-deterministic 2-counter machine

Undecidability

- Theorem
 - The satisfiability question for TML is Σ_1^1 -hard, hence undecidable.

The set of TML-validities is not RE

• Adequacy of modal logics:

•
$$m \sim m'$$
 iff for any ϕ ,
 $M, m \models \phi \Leftrightarrow M, m' \models \phi$

• $i(x) = \pi - 3$, for any ϕ : $M, m, i \models \phi$ iff $M', m', i \models \phi$

Changing the interpretations

where $f_{-}(x) \leq d \leq f_{+}(x)$

$$\Phi + f_{-}/f_{+}$$

•
$$\phi + \frac{f_{-}}{f_{+}}$$
• $\phi + \frac{f_{-}}{f_{+}}$
• $\phi + f$

$$\bullet$$
 $\phi + f$

Lemma:

•
$$M, m, i \models \phi \Longrightarrow M, m, (i + \delta) \circ \sigma^{-1} \models \phi +_{\sigma} f_{-}/f_{+}$$

Corollary:

- $M, m, i \models \phi \iff M, m, i + f \models \phi + f$
- $M, m, i \models \phi \iff M, m, i + \delta \models \phi$

Theorem:

• $m \sim m'$ iff for any i and ϕ , $M, m, i \models \phi \Leftrightarrow M, m', i \models \phi$

```
\blacksquare \vdash \Box (\phi \to \psi) \to (\Box \phi \to \Box \psi)
```

• If
$$\vdash \varphi$$
, then $\vdash \Box \varphi$
where $\Box \in \{[a], \ \forall x.\}$

- Axioms and Rules

- $\blacksquare \vdash \forall \!\!\!\!/ \phi \rightarrow \phi$
- $\blacksquare \vdash \mathscr{W}\phi \to \mathscr{W}\mathscr{W}\phi$
- $\blacksquare \vdash \forall \phi \rightarrow \forall (r \leq x \leq s \rightarrow \phi), r \leq s$

$$\blacksquare \vdash \exists \exists (x = r \land \phi) \rightarrow \forall (x = r \rightarrow \phi)$$

$$\blacksquare \vdash \exists \exists (x \le r \land \forall \phi) \rightarrow \forall (x \ge r \rightarrow \phi)$$

Axioms

 $\blacksquare \vdash x \trianglelefteq r \land y \trianglelefteq s \rightarrow \forall (x \trianglelefteq r + t \rightarrow y \trianglelefteq s + t)$

Infinitary Rules

- $\{x \ge r \mid r \in \mathbb{Q}_{\ge 0}\} \vdash \perp$

Infinitary Rules

- $\{x \ge r \mid r \in \mathbb{Q}_{\ge 0}\} \vdash \perp$
- $\{ \forall (x \leq s \rightarrow \phi) \mid s \in \mathbb{Q}_{\geq 0} \} \vdash \forall \phi$

Infinitary Rules

- $\{C[x \le r] \mid r \rhd s\} \vdash C[x \le s]$
- $\{C[x \ge r] \mid r \in \mathbb{Q}_{\ge 0}\} \vdash C[\bot]$
- $\{C[\phi + \frac{[x \mapsto r]}{[x \mapsto s]}] \mid r \leq s\} \vdash C[\forall x. \phi]$
- $\{C[\Psi(x \le s \to \phi)] \mid s \in \mathbb{Q}_{\ge 0}\} \vdash C[\Psi\phi]$

where C is context: e.g., $\varepsilon[X], [a]X, \forall x. \ \forall X, \forall x. [a] \ \forall [b][c]X$

❖ Kozen, Larsen, Mardare, Panangaden (LICS 2013)

Infinitary Rules

- $\{C[x \le r] \mid r \rhd s\} \vdash C[x \le s]$
- $\{C[x \ge r] \mid r \in \mathbb{Q}_{\ge 0}\} \vdash C[\bot]$
- $\{C[\phi + \frac{[x \mapsto r]}{[x \mapsto s]}] \mid r \le s\} \vdash C[\forall x. \phi]$
- $\{C[\Psi(x \le s \to \phi)] \mid s \in \mathbb{Q}_{\ge 0}\} \vdash C[\Psi\phi]$
- Non-compactness
 - $\Phi = \{ x \ge r \mid r < s \} \cup \{ x < s \}$

Soundness:

$$\Phi \vdash \phi \Longrightarrow \Phi \vDash \phi$$

- Completeness:
 - Weak-completeness

$$\blacksquare \models \phi \Longrightarrow \vdash \phi$$

Strong-completeness

$$\bullet \Phi \models \phi \Longrightarrow \Phi \vdash \phi$$

•
$$\psi = \exists \exists (x = 2 \land \langle a \rangle \top)$$

•
$$i(x) = \pi - 3$$
,
 $M, m, i \not\models \psi$

•
$$i'(x) = 0$$
,
 $M, m, i' \models \psi$

Lemma

• For any maximal consistent set $\Lambda \in \Omega$, there is only one i s.t. $\mathcal{I}(\Lambda) = i$.

Lemma

• For any $\phi \in \Lambda_1$, $\phi +_{\sigma} f_{-}/_{f_{+}} \in \Lambda_2$ where $f_{-} \leq i_2 - i_1 \leq f_{+}$

- Lemma
 - $\gamma: \mathcal{I} \to \Omega$
 - For any $\Lambda \in \Omega$, there exists γ s.t. $\gamma(\mathcal{I}(\Lambda)) = \Lambda$.

Canonical model

- $\Gamma = (\Gamma, \theta, \oplus)$
 - $\Gamma = \{ \gamma \mid \gamma \text{ is a coherent function} \}$
 - $\theta: \gamma \xrightarrow{a} \gamma'$ if for any $i, [a] \phi \in \gamma(i) \Rightarrow \phi \in \gamma'(i)$
 - $\gamma' = d \oplus \gamma$ if for any $i, \forall \phi \in \gamma(i) \Rightarrow \phi \in \gamma'(i+d)$

- Truth Lemma
 - $\Gamma, \gamma, i \models \phi \text{ iff } \phi \in \gamma(i)$
- Strong completeness
 - $\bullet \Phi \models \phi \Longrightarrow \Phi \vdash \phi$

Conclusion and Future work

Conclusion

- Adequacy of TML
- Undecidability of satisfiability problem for TML
- Strong-complete axiomatization

Future work

- Stone duality extend to this setting?
- Extension of Boolean Algebra which represents TML

Timed Modal Logic

Thanks!

