Conditional Independence,
Computability, and Measurability

Daniel M. Roy

Research Fellow
Emmanuel College
University of Cambridge

MFPS XXX, Cornell University, Ithaca, June 14, 2014

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 1/31

Computer Science

Probability

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 2/31

Computer Science

Probability

Algorithmic processes that describe and
transform uncertainty:.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 2/31

The stochastic inference problem (informal version)

Daniel Roy, Cambridge Conditional Ind: d C bility, and M bili 3/31

The stochastic inference problem (informal version)

INPUT: guesser and checker probabilistic programs.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 3/31

The stochastic inference problem (informal version)

INPUT: guesser and checker probabilistic programs.

OUTPUT: a sample from the same distribution as the program

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 3/31

The stochastic inference problem (informal version)

INPUT: guesser and checker probabilistic programs.

OUTPUT: a sample from the same distribution as the program

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

This computation captures Bayesian statistical inference.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

3/31

The stochastic inference problem (informal version)

INPUT: guesser and checker probabilistic programs.

OUTPUT: a sample from the same distribution as the program

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

This computation captures Bayesian statistical inference.

“prior” distribution <— distribution of guesser ()
“likelihood(g)” «— Pr(checker(g) is True)

“posterior” distribution +— distribution of return value

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

3/31

Example: predicting next coin toss in a sequence

Daniel Roy, Cambridge Conditional Ind: d C bility, and M bili 4/31

Example: predicting next coin toss in a sequence

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 4/31

Example: predicting next coin toss in a sequence

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let n >0 and z4,...,z, € {0,1}. E.g., 0,0,1,0,0,0,7

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 4/31

Example: predicting next coin toss in a sequence

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let n >0 and z4,...,z, € {0,1}. E.g., 0,0,1,0,0,0,7

guesser():
e sample 6 and U independently and uniformly in [0, 1], and
e return (6, X) where X = 1(U < 6).

checker(6,z):
e sample Uy, ..., U, independently and uniformly in [0, 1],
o let X; = 1(U; <6), and
e accept if and only if X; = x; for all 3.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 4/31

Let s=x1 + -+ + z, and let U be uniformly distributed.
For all ¢ € [0, 1], we have Pr(U < t) =t and

Pr(checker(t,z) is True) = Pr(Vi (U; <t <= 2;=1))

__4S5(1 _ 4\n—s
bx(acoent) =t°(1—-1)

0.06
0.05

Pyt n=6, se{1,3,5}.
0.02

0.01
t

02 04 06 08 10

! s$)l(n — s)!
Pr(checker(U, z) is True) = /0 1 —t)" dt = W =:Z(s)

Let p(t)dt be the probability that the accepted 0 € [¢,t + dt).

tb(l _ t)n—s

Z0s dt

p(t)dt =~ t°(1 —)" ~*dt + (1 — Z(s))p(t)dt ~

Probability that the accepted X =1 is then [t p(t)dt =

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 5/31

Example: fitting a line to data (aka linear regression)

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let (2;,v;) € R? and o,v,e > 0.

guesser():
e sample coefficients «, 8 independently from Normal(0, o2).

checker («,3):
e sample independent noise variables &; from Normal(0, v/?),
o let F(z) =ax+ 8 and Y; = F(z;) + &, and
e accept if and only if |Y; — y;| < € for all 4.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 6/31

Example: fitting a line to data (aka linear regression)

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let (2;,v;) € R? and o,v,e > 0.

guesser():
e sample coefficients «, 8 independently from Normal(0, o2).

checker («,3):
e sample independent noise variables &; from Normal(0, v/?),
o let F(z) =ax+ 8 and Y; = F(z;) + &, and
e accept if and only if |Y; — y;| < € for all 4.

Note that ¢ = 0 doesn’t work, but the limit £ — 0 makes sense.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 6/31

Fantasy example: extracting 3D structure from images

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

7/31

Fantasy example: extracting 3D structure from images

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

4§§§

Daniel Roy, Cambridge Conditional Ind: | C bility, and M

7/31

Fantasy example: extracting 3D structure from images

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Daniel Roy, Cambridge Conditional Ind: d C bility, and M

7/31

Fantasy example: extracting 3D structure from images

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

checker

~

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

7/31

Fantasy example: extracting 3D structure from images

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

checker

~

Daniel Roy, Cambridge Conditional Ind: | C bility, and M bili 7/31

Fantasy example: extracting 3D structure from images

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

checker

~

Daniel Roy, Cambridge Conditional Ind: d C bility, and M bili 7/31

Fantasy example: extracting 3D structure from images

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Daniel Roy, Cambridge Conditional Ind:

ility, and M

7/31

Fantasy example: extracting 3D structure from images

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

) inference

\

Daniel Roy, Cambridge Conditional Ind: ! C

ility, and M

7/31

Fantasy example: extracting 3D structure from images

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

) inference

A

lity, and M.

Daniel Roy, Cambridge Conditional Ind: d C

7/31

Example: not so fantastical [Mansinghka et al.]

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 8/31

The stochastic inference problem

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

9/31

The stochastic inference problem

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let U be a Uniform(0, 1) random variable.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 9/31

The stochastic inference problem

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let U be a Uniform(0, 1) random variable.
Let S and T be a computable metric space.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 9/31

The stochastic inference problem

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let U be a Uniform(0, 1) random variable.
Let S and T be a computable metric space.

INPUT:
X :[0,1] = S,
Y :[0,1] = T, and
reS.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 9/31

The stochastic inference problem

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let U be a Uniform(0, 1) random variable.
Let S and T be a computable metric space.

INPUT:
X :[0,1] = S,
Y :[0,1] = T, and
reS.

OvurruT:
a sample from Pr(Y (U)|X(U) = z),

i.e., the conditional distribution of Y (U) given X (U) = x.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

9/31

Bayesian statistics

1. Express statistical assumptions via probability distributions.

Pr(parameters, data) = Pr(parameters) Pr(data | parameters)

joint prior model/likelihood
2. Statistical inference from data — parameters via conditioning.

conditioning

Pr(parameters, data), « Pr(parameters | data = x)

posterior

Probabilistic programming

1. Represent probability distributions by fermutas probabilistic
programs that generate samples.

2. Build generic algorithms for probabilistic conditioning
using probabilistic programs as representations.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 10/31

Talk Outline
1. The stochastic inference problem
2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 11/31

Talk Outline
1. The stochastic inference problem
2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 11/31

MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),
FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), ...

PPAML

PROBABILISTIC PROGRAMMING FOR ADVANCED MACHINE LEARNING

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 12/31

MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),
FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), ...

PPAML

PROBABILISTIC PROGRAMMING FOR ADVANCED MACHINE LEARNING

Questions raised

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

12/31

MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),
FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), ...

PPAML

PROBABILISTIC PROGRAMMING FOR ADVANCED MACHINE LEARNING

Questions raised

» Which operations in probability theory can we perform
when distributions are represented by programs?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

12/31

MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),
FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), ...

PPAML

PROBABILISTIC PROGRAMMING FOR ADVANCED MACHINE LEARNING

Questions raised

» Which operations in probability theory can we perform
when distributions are represented by programs?

» When can we perform these computations efficiently?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 12/31

MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),
FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), ...

PPAML

PROBABILISTIC PROGRAMMING FOR ADVANCED MACHINE LEARNING

Questions raised
» Which operations in probability theory can we perform
when distributions are represented by programs?
» When can we perform these computations efficiently?

» How are statistical properties (e.g., symmetries) of a distribution
reflected in the structure of the computation representing it?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 12/31

Q: Can we automate conditioning?
Pr(X,)Y), 2 — Pr(Y|X =)

A: No, but almost.

X discrete | X continuous smooth p(X|S) given

vV X

[Freer and R., 2010] [Ackerman, Freer, and R.., 2011] ...

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 13/31

Q: What about EFFICIENT inference?
Pr(X,)Y), 2 — Pr(Y|X =)

A: It’s complicated.

def hash_of_random_string(n):
str = random_binary_string(n)
return cryptographic_hash(str)

X discrete

X

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

14/31

Q: What about EFFICIENT inference?
Pr(X,)Y), 2 — Pr(Y|X =)

A: It’s complicated.

def hash_of_random_string(n):
str = random_binary_string(n)
return cryptographic_hash(str)

Q: What explains the success of probabilistic
methods?

X discrete

X

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 14/31

Q: What about EFFICIENT inference?
Pr(X,)Y), 2 — Pr(Y|X =)

A: It’s complicated.

def hash_of_random_string(n):
str = random_binary_string(n)
return cryptographic_hash(str)

Q: What explains the success of probabilistic
methods?
A: Structure like conditional independence.

e Bayes nets are representations of distributions that

X discrete expose conditional independence structure via a di-
rected graph.
>< e The complexity of exact inference in Bayes nets is

controlled by the the tree width of the graph.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

14/31

Q: Are probabilistic programs sufficiently general as
representations for stochastic processes?
We are missing a notion of approximation!

Theorem (Avigad, Freer, R., and Rute).

“Approximate samplers can represent conditional independencies that
exact samplers cannot.”

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 15/31

Talk Outline
1. The stochastic inference problem
2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 16/31

Talk Outline

1. The stochastic inference problem
2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 16/31

Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():
global Sum, Total
y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 17/31

Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():
global Sum, Total
y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

>>> repeat (next_draw, 10)
[O) 1’ 1, O) 1’ 1’ 1’ O, 1) O]

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 17/31

Concrete example of an exchangeable sequence

def next_draw():

return y

Sum = 1.0; Total = 2.0

global Sum, Total
y = bernoulli(Sum/Total)
Sum += y; Total += 1

>>> repeat (next_draw, 10)
[O) 1’ 1, O) 1’ 1’ 1’ O, 1) O]

Sum

2 Tot al

Daniel Roy, Cambridge

Conditional Independence, Computability, and Measurability

17/31

Concrete example of an exchangeable sequence

def next_draw():

return y

Sum = 1.0; Total = 2.0

global Sum, Total
y = bernoulli(Sum/Total)
Sum += y; Total += 1

>>> repeat (next_draw, 10)
[O) 1’ 1, O) 1’ 1’ 1’ O, 1) O]

Sum

2 Tot al

Daniel Roy, Cambridge

Conditional Independence, Computability, and Measurability

17/31

Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():
global Sum, Total
y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

>>> repeat (next_draw, 10)
[O) 1’ 1, O) 1’ 1’ 1’ O, 1) O]

Sum
Surr

2 Tot al Tot al

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

17/31

Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():
global Sum, Total
y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

>>> repeat (next_draw, 10)
[O) 1’ 1, O) 1’ 1’ 1’ O, 1) O]

Sum
Surr

2 Tot al Tot al

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

17/31

Concrete example of an exchangeable sequence

Sum

Daniel Roy, Cambridge

Sum = 1.0; Total = 2.0

def next_draw():
global Sum, Total
y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

theta = uniform(0,1)
def next_draw():
return bernoulli(theta)

>>> repeat (next_draw, 10)
[O’ 1’ 1, O) 1’ 1’ 1’ O, 1) O]

Surr

2 Tot al Tot al

Conditional Independence, Computability, and Measurability

18/31

Exchangeability and Conditional Independence

Definition. A sequence Y = (Y7,Y3,...) of random variables is
exchangeable when

d
(}/1)"‘7Y’Vl):(Y‘IT(I)?"'?YTK‘(TL))? (1)
for all n € N and permutation 7 of {1,...,n}.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 19/31

Exchangeability and Conditional Independence

Definition. A sequence Y = (Y7,Y3,...) of random variables is
exchangeable when

d
(}/].a"wyn):(Y'Ir(l)a"'7Y7'r(n))7 (1)
for all n € N and permutation 7 of {1,...,n}.

Theorem (de Finetti). The following are equivalent:

1. (,Ys,...) is exchangeable;

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 19/31

Exchangeability and Conditional Independence

Definition. A sequence Y = (Y7,Y3,...) of random variables is
exchangeable when

d
(}/].a"wyn):(Y'Ir(l)a"'7Y7'r(n))7 (1)
for all n € N and permutation 7 of {1,...,n}.

Theorem (de Finetti). The following are equivalent:
1. (,Ys,...) is exchangeable;

2. (Y1,Ya,...) is conditionally i.i.d. given some 6;

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 19/31

Exchangeability and Conditional Independence

Definition. A sequence Y = (Y7,Y3,...) of random variables is
exchangeable when
d
(Yla"'7Yn) = (Y'Ir(l)a"'7Y7'r(n)), (1)
for all n € N and permutation 7 of {1,...,n}.

Theorem (de Finetti). The following are equivalent:
1. (,Ys,...) is exchangeable;
2. (Y1,Ya,...) is conditionally i.i.d. given some 6;
3. Ezists f such that
(V1,Y2,Y3,...) £ (f(0,00), f(0,U), f(0,U3),...) (2)
for i.di.d. uniform 0,Uy,Us,. ...

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 19/31

Exchangeability and Conditional Independence

Definition. A sequence Y = (Y7,Y3,...) of random variables is
exchangeable when

d
(}/1)"‘7Y’Vl):(Y‘IT(I)?"'?YTK‘(TL))? (1)
for all n € N and permutation 7 of {1,...,n}.

Theorem (de Finetti). The following are equivalent:
1. (,Ys,...) is exchangeable;
2. (Y1,Ya,...) is conditionally i.i.d. given some 6;
3. Ezists f such that
(V1,Y2,Y3,...) £ (f(0,00), f(0,U), f(0,U3),...) (2)
for i.di.d. uniform 0,Uy,Us,. ...

(0)
OBOBOROROINOMOBCRORG

Informally: using f, we can sample Y;’s in parallel.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 19/31

We can extract the hidden parallelism. [Freer and R., 2012]

Sum = 1.0; Total = 2.0 theta = uniform(0,1)
def next_draw(): def next_draw():
global Sum, Total return bernoulli(theta)

y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

@
o8080RoRC IO HORORORE

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 20/31

We can extract the hidden parallelism. [Freer and R., 2012]

Sum = 1.0; Total = 2.0 theta = uniform(0,1)
def next_draw(): def next_draw():
global Sum, Total return bernoulli(theta)

y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

(0}
e
— ?
OROROAOROIEINOECEOROND

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 20/31

We can extract the hidden parallelism. [Freer and R., 2012]

Sum = 1.0; Total = 2.0 theta = uniform(0,1)
def next_draw(): def next_draw():
global Sum, Total return bernoulli(theta)

y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

()
P —

e ‘)

OROROAOROIEINOECEOROND

Theorem (Freer and R., 2012). The distribution of an
exchangeable sequence Y is computable if and only if there is an

almost computable f such that (Y1,Ya,...) 2 (f(8,U1), f(0,Us),...).
We can always recover hidden parallel structure, exposing
conditional independence to the inference engine.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 20/31

Where else can we find
hidden conditional independence?

Can we extract it for inference?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 21/31

Exchangeable arrays in models of graph/relational data

Definition.
structure symmetry definition
sequence (Y;,) exchangeable (V) 4 (Yrn))
array (X; ;) separately exchangeable (X ;) £l (Xr(i)r (i)
array (X; ;) jointly exchangeable (Xi5) &l (X))

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 22/31

Exchangeable arrays in models of graph/relational data

Definition.
structure symmetry definition
sequence (Y;,) exchangeable (V) 4 (Yrn))
array (X; ;) separately exchangeable (X ;) £l (Xr(i)r (i)
array (X; ;) jointly exchangeable (Xi5) &l (X))

Example. Adjacency matrix (X; ;); jen of an undirected graph on N.

Orbanz and R. (2014).

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 22/31

Exchangeable arrays in models of graph/relational data

Theorem (Aldous-Hoover). 6,U;,V;, W, ; all i.i.d. uniform.

structure symmetry representation

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 23/31

Exchangeable arrays in models of graph/relational data

Theorem (Aldous-Hoover). 6,U;,V;, W, ; all i.i.d. uniform.

structure symmetry representation
d d
array (X; ;) (Xij) = (Xagiyr)) (Xig) = (£(0,V, U, Wi 5))

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 23/31

Exchangeable arrays in models of graph/relational data

Theorem (Aldous-Hoover). 6,U;,V;, W, ; all i.i.d. uniform.

structure symmetry representation
d d
array (Xi,;) (Xi,j)dZ (X (i), () (Xz',j)dz (f(6,V;,Uj, Wi 5))
sequence (V) (Yn) = (Yr(m)) (Yn) = (f(0,Un))

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 23/31

Visualization of Aldous-Hoover theorem for
exchangeable arrays

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

24/31

Visualization of Aldous-Hoover theorem for
exchangeable arrays

‘I
\\.,;_\x‘,«?),mm

*‘\\A'zﬁ\ 6‘;‘»‘/\" »‘\\\"‘ ’
5 :
‘Vﬂ ; \’/A

.2 :) 3 4
vy "" X ,:""&/A
' vrﬂ % 'A ‘&1"}&:‘",

/ ‘i’o

¢

v

y'

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

24/31

Visualization of Aldous-Hoover theorem for
exchangeable arrays

Q@ @ @ @

3 X34

ONORONG

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 24/31

Visualization of Aldous-Hoover theorem for
exchangeable arrays

Q@ @ @ @

3 X34

ONORONG

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 24/31

Q: Is the Aldous-Hoover theorem computable?
A: No.

Theorem (Avigad, Freer, R., and Rute). There is an
exchangeable array X with a computable distribution but no
a.e. computable f satisfying Aldous-Hoover.

Even “computationally universal” probabilistic programming
languages cannot represent certain conditional independence
structure.

oo

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 25/31

Computably-distributed array X, noncomputable f [AFRR]

The construction (an aliens dating site).

» Let rows/columns represent aliens.
X;; = 1 means aliens 7 and j are matched.

Each alien answers an infinitely-long questionnaire.

Question k € {1,2,...} has 2¥ possible answers.

Aliens hate answering questionnaires, so they answer randomly.

vV v v Y

Two aliens are matched if they agree on ANY question.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 26/31

Computably-distributed array X, noncomputable f [AFRR]

The construction (an aliens dating site).

» Let rows/columns represent aliens.
X;; = 1 means aliens 7 and j are matched.

Each alien answers an infinitely-long questionnaire.

>
» Question k € {1,2,...} has 2% possible answers.
» Aliens hate answering questionnaires, so they answer randomly.
» Two aliens are matched if they agree on ANY question.

Proof sketch.
» Note: f is “return 1 iff two aliens agree somewhere”.

> (f not a.e. computable) [Topological obstruction.]
Given two questionnaires, can’t accurately check in finite time.

» (array computably-distributed)

The probability of agreeing on any question n,n + 1,... decays.

Using only first n questions yields an approximation.

Approximating f sufficed to sample. Q: The converse?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

26/31

Silver lining? f is always “nearly computable”
Let p be a computable probability measure.

Definition. Say f is a.e. computable when
we can compute f on a set of y-measure one.

Definition (Kriesel-Lacombe (1957), Sanin (1968), Ko (1986)).
Say f is computably measurable when,

uniformly for any € > 0,

we can compute f on a set of y-measure at least 1 — €.

Theorem (Avigad, Freer, R., and Rute). The distribution of an
exchangeable array X is computable if and only if there is a
computably measurable function f satisfying Aldous-Hoover.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 27/31

Exchangeability and probabilistic programming

Exchangeable random structures possess a lot of structure.

(Y;) £ (£(6,U:))
(Xij) L (0,04, V5, Wi)

Can your favorite PPL represent f7

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 28/31

Exchangeability and probabilistic programming

Exchangeable random structures possess a lot of structure.

(Y;) £ (£(6,U:))
(Xij) L (0,04, V5, Wi)

Can your favorite PPL represent f7

Theorem (FR12). f a.e. computable for sequences.
Theorem (AFRR). f merely computably measurable for arrays.

Approximation essential for capturing structure.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 28/31

Exchangeability and probabilistic programming

Exchangeable random structures possess a lot of structure.

(Y;) £ (£(6,U:))
(Xij) L (0,04, V5, Wi)

Can your favorite PPL represent f7

Theorem (FR12). f a.e. computable for sequences.
Theorem (AFRR). f merely computably measurable for arrays.

Approximation essential for capturing structure.

But do such arrays appear in practice?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 28/31

Do such arrays X appear in practice?

YES!

i = !
2y
\\\\\ ////
\/ a.e. computable f 1

X merely computably measurable f &ﬁfﬁr‘

\/ Infinite Relational Model
(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)
\/ Linear Relational Model
(R. and Teh 2009)
X Infinite Feature Relational Model
(Miller, Griffiths, and Jordan 2010)
X Random Function Model
(Lloyd, Orbanz, R., and Ghahramani 2012)

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 29/31

Do such arrays X appear in practice?

YES!

\/ a.e. computable f

(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)
\/ Linear Relational Model

(R. and Teh 2009)
X Infinite Feature Relational Model

(Miller, Griffiths, and Jordan 2010)
X Random Function Model

(Lloyd, Orbanz, R., and Ghahramani 2012)

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

)/
= /

T
ainl =/
X merely computably measurable f &ﬁfﬁr‘

\/ Infinite Relational Model Dirichlet process

29/31

Do such arrays X appear in practice?

- E P d 4

T
i =
\/ a.e. computable f
X merely computably measurable f &ﬁfﬁr‘

\/ Infinite Relational Model Dirichlet process

(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)

\/ Linear Relational Model Mondrian process

(R. and Teh 2009)

X Infinite Feature Relational Model
(Miller, Griffiths, and Jordan 2010)

X Random Function Model
(Lloyd, Orbanz, R., and Ghahramani 2012)

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability

29/31

Do such arrays X appear in practice?

YES!

2y
\\\\\ ////
\/ a.e. computable f 1

X merely computably measurable f &ﬁfﬁr‘

\/ Infinite Relational Model Dirichlet process
(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)

\/ Linear Relational Model Mondrian process
(R. and Teh 2009)

X Infinite Feature Relational Model — Beta process
(Miller, Griffiths, and Jordan 2010)

X Random Function Model
(Lloyd, Orbanz, R., and Ghahramani 2012)

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 29/31

Do such arrays X appear in practice?

YES!

2y
\\\\\ ////
\/ a.e. computable f 1

X merely computably measurable f &ﬁfﬁr‘

\/ Infinite Relational Model Dirichlet process
(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)

\/ Linear Relational Model Mondrian process
(R. and Teh 2009)

X Infinite Feature Relational Model — Beta process
(Miller, Griffiths, and Jordan 2010)

X Random Function Model Gaussian process
(Lloyd, Orbanz, R., and Ghahramani 2012)

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 29/31

Talk Outline
1. The stochastic inference problem
2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 30/31

Talk Outline
1. The stochastic inference problem
2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 30/31

Conclusion

PPLs H PPLs

a.e. computability \ / computable measurability \

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 31/31

Conclusion

PPLs H PPLs

a.e. computability \ / computable measurability \

1. One can see the gap in the literature.
Key stochastic processes are merely computably measurable.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 31/31

Conclusion

PPLs H PPLs

a.e. computability \ / computable measurability \

1. One can see the gap in the literature.
Key stochastic processes are merely computably measurable.

2. How do we use such representations?
Exact-approximate inference and computable measurability?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 31/31

Conclusion

PPLs H PPLs

a.e. computability \ / computable measurability \

1. One can see the gap in the literature.
Key stochastic processes are merely computably measurable.

2. How do we use such representations?
Exact-approximate inference and computable measurability?

3. Need new programming language constructs.
Naively, we would need to thread €’s everywhere in program.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 31/31

	Motivation
	Appendix

