
Conditional Independence,

Computability, and Measurability

Daniel M. Roy

Research Fellow
Emmanuel College

University of Cambridge

MFPS XXX, Cornell University, Ithaca, June 14, 2014

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 1/31



Computer Science

Statistics Probability

Algorithmic processes that describe and
transform uncertainty.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 2/31



Computer Science

Statistics Probability

Algorithmic processes that describe and
transform uncertainty.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 2/31



The stochastic inference problem (informal version)

Input: guesser and checker probabilistic programs.

Output: a sample from the same distribution as the program

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

This computation captures Bayesian statistical inference.

“prior” distribution ←→ distribution of guesser()

“likelihood(g)” ←→ Pr
(
checker(g) is True

)
“posterior” distribution ←→ distribution of return value

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 3/31



The stochastic inference problem (informal version)

Input: guesser and checker probabilistic programs.

Output: a sample from the same distribution as the program

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

This computation captures Bayesian statistical inference.

“prior” distribution ←→ distribution of guesser()

“likelihood(g)” ←→ Pr
(
checker(g) is True

)
“posterior” distribution ←→ distribution of return value

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 3/31



The stochastic inference problem (informal version)

Input: guesser and checker probabilistic programs.

Output: a sample from the same distribution as the program

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

This computation captures Bayesian statistical inference.

“prior” distribution ←→ distribution of guesser()

“likelihood(g)” ←→ Pr
(
checker(g) is True

)
“posterior” distribution ←→ distribution of return value

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 3/31



The stochastic inference problem (informal version)

Input: guesser and checker probabilistic programs.

Output: a sample from the same distribution as the program

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

This computation captures Bayesian statistical inference.

“prior” distribution ←→ distribution of guesser()

“likelihood(g)” ←→ Pr
(
checker(g) is True

)
“posterior” distribution ←→ distribution of return value

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 3/31



The stochastic inference problem (informal version)

Input: guesser and checker probabilistic programs.

Output: a sample from the same distribution as the program

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

This computation captures Bayesian statistical inference.

“prior” distribution ←→ distribution of guesser()

“likelihood(g)” ←→ Pr
(
checker(g) is True

)
“posterior” distribution ←→ distribution of return value

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 3/31



Example: predicting next coin toss in a sequence

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let n ≥ 0 and x1, . . . , xn ∈ {0, 1}. E.g., 0, 0, 1, 0, 0, 0, ?

guesser():
• sample θ and U independently and uniformly in [0, 1], and
• return (θ,X) where X = 1(U ≤ θ).

checker(θ,x):
• sample U1, . . . , Un independently and uniformly in [0, 1],
• let Xi = 1(Ui ≤ θ), and
• accept if and only if Xi = xi for all i.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 4/31



Example: predicting next coin toss in a sequence

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let n ≥ 0 and x1, . . . , xn ∈ {0, 1}. E.g., 0, 0, 1, 0, 0, 0, ?

guesser():
• sample θ and U independently and uniformly in [0, 1], and
• return (θ,X) where X = 1(U ≤ θ).

checker(θ,x):
• sample U1, . . . , Un independently and uniformly in [0, 1],
• let Xi = 1(Ui ≤ θ), and
• accept if and only if Xi = xi for all i.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 4/31



Example: predicting next coin toss in a sequence

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let n ≥ 0 and x1, . . . , xn ∈ {0, 1}. E.g., 0, 0, 1, 0, 0, 0, ?

guesser():
• sample θ and U independently and uniformly in [0, 1], and
• return (θ,X) where X = 1(U ≤ θ).

checker(θ,x):
• sample U1, . . . , Un independently and uniformly in [0, 1],
• let Xi = 1(Ui ≤ θ), and
• accept if and only if Xi = xi for all i.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 4/31



Example: predicting next coin toss in a sequence

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let n ≥ 0 and x1, . . . , xn ∈ {0, 1}. E.g., 0, 0, 1, 0, 0, 0, ?

guesser():
• sample θ and U independently and uniformly in [0, 1], and
• return (θ,X) where X = 1(U ≤ θ).

checker(θ,x):
• sample U1, . . . , Un independently and uniformly in [0, 1],
• let Xi = 1(Ui ≤ θ), and
• accept if and only if Xi = xi for all i.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 4/31



Let s = x1 + · · ·+ xn and let U be uniformly distributed.
For all t ∈ [0, 1], we have Pr

(
U ≤ t

)
= t and

Pr
(
checker(t, x) is True

)
= Pr

(
∀i ( Ui ≤ t ⇐⇒ xi = 1 )

)
= ts(1− t)n−s.

0.2 0.4 0.6 0.8 1.0
t

0.01

0.02

0.03

0.04

0.05

0.06

PrHacceptL

n = 6, s ∈ {1, 3, 5}.

Pr
(
checker(U, x) is True

)
=

∫ 1

0

ts(1− t)n−s dt =
(s)!(n− s)!

(n+ 1)!
=: Z(s)

Let p(t)dt be the probability that the accepted θ ∈ [t, t+ dt).

p(t)dt ≈ ts(1− t)n−sdt+
(
1− Z(s)

)
p(t)dt ≈ ts(1− t)n−s

Z(s)
dt

Probability that the accepted X = 1 is then
∫
t p(t)dt = s+1

n+2 .

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 5/31



Example: fitting a line to data (aka linear regression)

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let (xi, yi) ∈ R2 and σ, ν, ε > 0.

guesser():
• sample coefficients α, β independently from Normal(0, σ2).

checker(α,β):
• sample independent noise variables ξi from Normal(0, ν2),
• let F (x) = αx+ β and Yi = F (xi) + ξi, and
• accept if and only if |Yi − yi| < ε for all i.

Note that ε = 0 doesn’t work, but the limit ε→ 0 makes sense.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 6/31



Example: fitting a line to data (aka linear regression)

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let (xi, yi) ∈ R2 and σ, ν, ε > 0.

guesser():
• sample coefficients α, β independently from Normal(0, σ2).

checker(α,β):
• sample independent noise variables ξi from Normal(0, ν2),
• let F (x) = αx+ β and Yi = F (xi) + ξi, and
• accept if and only if |Yi − yi| < ε for all i.

Note that ε = 0 doesn’t work, but the limit ε→ 0 makes sense.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 6/31



Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 7/31



Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 7/31



Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 7/31



Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

checker−−−−−−→

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 7/31



Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

checker−−−−−−→

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 7/31



Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

checker−−−−−−→

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 7/31



Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

inference←−−−−−−

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 7/31



Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

inference←−−−−−−

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 7/31



Fantasy example: extracting 3D structure from images

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

inference←−−−−−−

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 7/31



Example: not so fantastical [Mansinghka et al.]

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 8/31



The stochastic inference problem

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let U be a Uniform(0, 1) random variable.
Let S and T be a computable metric space.

Input:
X : [0, 1]→ S,
Y : [0, 1]→ T , and
x ∈ S.

Output:
a sample from Pr

(
Y (U)|X(U) = x

)
,

i.e., the conditional distribution of Y (U) given X(U) = x.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 9/31



The stochastic inference problem

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let U be a Uniform(0, 1) random variable.

Let S and T be a computable metric space.

Input:
X : [0, 1]→ S,
Y : [0, 1]→ T , and
x ∈ S.

Output:
a sample from Pr

(
Y (U)|X(U) = x

)
,

i.e., the conditional distribution of Y (U) given X(U) = x.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 9/31



The stochastic inference problem

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let U be a Uniform(0, 1) random variable.
Let S and T be a computable metric space.

Input:
X : [0, 1]→ S,
Y : [0, 1]→ T , and
x ∈ S.

Output:
a sample from Pr

(
Y (U)|X(U) = x

)
,

i.e., the conditional distribution of Y (U) given X(U) = x.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 9/31



The stochastic inference problem

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let U be a Uniform(0, 1) random variable.
Let S and T be a computable metric space.

Input:
X : [0, 1]→ S,
Y : [0, 1]→ T , and
x ∈ S.

Output:
a sample from Pr

(
Y (U)|X(U) = x

)
,

i.e., the conditional distribution of Y (U) given X(U) = x.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 9/31



The stochastic inference problem

accept = False

while (not accept):

guess = guesser()

accept = checker(guess)

return guess

Let U be a Uniform(0, 1) random variable.
Let S and T be a computable metric space.

Input:
X : [0, 1]→ S,
Y : [0, 1]→ T , and
x ∈ S.

Output:
a sample from Pr

(
Y (U)|X(U) = x

)
,

i.e., the conditional distribution of Y (U) given X(U) = x.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 9/31



Bayesian statistics

1. Express statistical assumptions via probability distributions.

Pr(parameters,data)︸ ︷︷ ︸
joint

= Pr(parameters)︸ ︷︷ ︸
prior

Pr(data | parameters)︸ ︷︷ ︸
model/likelihood

2. Statistical inference from data → parameters via conditioning.

Pr(parameters,data), x
conditioning7−−−−−−−−−−→ Pr(parameters | data = x)︸ ︷︷ ︸

posterior

Probabilistic programming

1. Represent probability distributions by formulas probabilistic
programs that generate samples.

2. Build generic algorithms for probabilistic conditioning
using probabilistic programs as representations.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 10/31



Talk Outline
1. The stochastic inference problem

2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 11/31



Talk Outline
1. The stochastic inference problem

2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 11/31



MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),

FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), . . .

Questions raised

I Which operations in probability theory can we perform
when distributions are represented by programs?

I When can we perform these computations efficiently?

I How are statistical properties (e.g., symmetries) of a distribution
reflected in the structure of the computation representing it?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 12/31



MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),

FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), . . .

Questions raised

I Which operations in probability theory can we perform
when distributions are represented by programs?

I When can we perform these computations efficiently?

I How are statistical properties (e.g., symmetries) of a distribution
reflected in the structure of the computation representing it?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 12/31



MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),

FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), . . .

Questions raised

I Which operations in probability theory can we perform
when distributions are represented by programs?

I When can we perform these computations efficiently?

I How are statistical properties (e.g., symmetries) of a distribution
reflected in the structure of the computation representing it?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 12/31



MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),

FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), . . .

Questions raised

I Which operations in probability theory can we perform
when distributions are represented by programs?

I When can we perform these computations efficiently?

I How are statistical properties (e.g., symmetries) of a distribution
reflected in the structure of the computation representing it?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 12/31



MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),

FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), . . .

Questions raised

I Which operations in probability theory can we perform
when distributions are represented by programs?

I When can we perform these computations efficiently?

I How are statistical properties (e.g., symmetries) of a distribution
reflected in the structure of the computation representing it?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 12/31



Q: Can we automate conditioning?

Pr(X,Y ), x 7−−−−−−→ Pr(Y |X = x)

A: No, but almost.

Y

X

Y

X

Y

X

X + ξ

ξ

Y

S

X

· · ·

X discrete X continuous Pr(ξ) smooth p(X|S) given√ × √ √
[Freer and R., 2010] [Ackerman, Freer, and R., 2011] . . .

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 13/31



Q: What about EFFICIENT inference?

Pr(X,Y ), x 7−−−−−−→ Pr(Y |X = x)

A: It’s complicated.

Y

X
X discrete×

def hash_of_random_string(n):

str = random_binary_string(n)

return cryptographic_hash(str)

Q: What explains the success of probabilistic
methods?
A: Structure like conditional independence.

• Bayes nets are representations of distributions that
expose conditional independence structure via a di-
rected graph.
• The complexity of exact inference in Bayes nets is
controlled by the the tree width of the graph.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 14/31



Q: What about EFFICIENT inference?

Pr(X,Y ), x 7−−−−−−→ Pr(Y |X = x)

A: It’s complicated.

Y

X
X discrete×

def hash_of_random_string(n):

str = random_binary_string(n)

return cryptographic_hash(str)

Q: What explains the success of probabilistic
methods?

A: Structure like conditional independence.

• Bayes nets are representations of distributions that
expose conditional independence structure via a di-
rected graph.
• The complexity of exact inference in Bayes nets is
controlled by the the tree width of the graph.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 14/31



Q: What about EFFICIENT inference?

Pr(X,Y ), x 7−−−−−−→ Pr(Y |X = x)

A: It’s complicated.

Y

X
X discrete×

def hash_of_random_string(n):

str = random_binary_string(n)

return cryptographic_hash(str)

Q: What explains the success of probabilistic
methods?
A: Structure like conditional independence.

• Bayes nets are representations of distributions that
expose conditional independence structure via a di-
rected graph.
• The complexity of exact inference in Bayes nets is
controlled by the the tree width of the graph.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 14/31



Q: Are probabilistic programs sufficiently general as
representations for stochastic processes?

We are missing a notion of approximation!

Theorem (Avigad, Freer, R., and Rute).
“Approximate samplers can represent conditional independencies that
exact samplers cannot.”

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 15/31



Talk Outline
1. The stochastic inference problem

2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 16/31



Talk Outline
1. The stochastic inference problem

2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 16/31



Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():

global Sum, Total

y = bernoulli(Sum/Total)

Sum += y; Total += 1

return y

>>> repeat(next_draw, 10)

[0, 1, 1, 0, 1, 1, 1, 0, 1, 0]

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 17/31



Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():

global Sum, Total

y = bernoulli(Sum/Total)

Sum += y; Total += 1

return y

>>> repeat(next_draw, 10)

[0, 1, 1, 0, 1, 1, 1, 0, 1, 0]

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 17/31



Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():

global Sum, Total

y = bernoulli(Sum/Total)

Sum += y; Total += 1

return y

>>> repeat(next_draw, 10)

[0, 1, 1, 0, 1, 1, 1, 0, 1, 0]

2 Total

1

S
u

m

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 17/31



Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():

global Sum, Total

y = bernoulli(Sum/Total)

Sum += y; Total += 1

return y

>>> repeat(next_draw, 10)

[0, 1, 1, 0, 1, 1, 1, 0, 1, 0]

2 Total

1

S
u

m

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 17/31



Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():

global Sum, Total

y = bernoulli(Sum/Total)

Sum += y; Total += 1

return y

>>> repeat(next_draw, 10)

[0, 1, 1, 0, 1, 1, 1, 0, 1, 0]

2 Total

1

S
u

m

2 Total
1

S
u

m

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 17/31



Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():

global Sum, Total

y = bernoulli(Sum/Total)

Sum += y; Total += 1

return y

>>> repeat(next_draw, 10)

[0, 1, 1, 0, 1, 1, 1, 0, 1, 0]

2 Total

1

S
u

m

2 Total
1

S
u

m

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 17/31



Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():

global Sum, Total

y = bernoulli(Sum/Total)

Sum += y; Total += 1

return y

theta = uniform(0,1)

def next_draw():

return bernoulli(theta)

>>> repeat(next_draw, 10)

[0, 1, 1, 0, 1, 1, 1, 0, 1, 0]

2 Total

1

S
u

m

2 Total
1

S
u

m

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 18/31



Exchangeability and Conditional Independence

Definition. A sequence Y = (Y1, Y2, . . . ) of random variables is
exchangeable when

(Y1, . . . , Yn)
d
= (Yπ(1), . . . , Yπ(n)), (1)

for all n ∈ N and permutation π of {1, . . . , n}.

Theorem (de Finetti). The following are equivalent:

1. (Y1, Y2, . . . ) is exchangeable;

2. (Y1, Y2, . . . ) is conditionally i.i.d. given some θ;

3. Exists f such that

(Y1, Y2, Y3, . . . )
d
= (f(θ, U1), f(θ, U2), f(θ, U3), . . . ) (2)

for i.i.d. uniform θ, U1, U2, . . . .

Y1 Y2 Y3 Y4 Y5

θ

Y1 Y2 Y3 Y4 Y5

Informally: using f , we can sample Yi’s in parallel.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 19/31



Exchangeability and Conditional Independence

Definition. A sequence Y = (Y1, Y2, . . . ) of random variables is
exchangeable when

(Y1, . . . , Yn)
d
= (Yπ(1), . . . , Yπ(n)), (1)

for all n ∈ N and permutation π of {1, . . . , n}.

Theorem (de Finetti). The following are equivalent:

1. (Y1, Y2, . . . ) is exchangeable;

2. (Y1, Y2, . . . ) is conditionally i.i.d. given some θ;

3. Exists f such that

(Y1, Y2, Y3, . . . )
d
= (f(θ, U1), f(θ, U2), f(θ, U3), . . . ) (2)

for i.i.d. uniform θ, U1, U2, . . . .

Y1 Y2 Y3 Y4 Y5

θ

Y1 Y2 Y3 Y4 Y5

Informally: using f , we can sample Yi’s in parallel.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 19/31



Exchangeability and Conditional Independence

Definition. A sequence Y = (Y1, Y2, . . . ) of random variables is
exchangeable when

(Y1, . . . , Yn)
d
= (Yπ(1), . . . , Yπ(n)), (1)

for all n ∈ N and permutation π of {1, . . . , n}.

Theorem (de Finetti). The following are equivalent:

1. (Y1, Y2, . . . ) is exchangeable;

2. (Y1, Y2, . . . ) is conditionally i.i.d. given some θ;

3. Exists f such that

(Y1, Y2, Y3, . . . )
d
= (f(θ, U1), f(θ, U2), f(θ, U3), . . . ) (2)

for i.i.d. uniform θ, U1, U2, . . . .

Y1 Y2 Y3 Y4 Y5

θ

Y1 Y2 Y3 Y4 Y5

Informally: using f , we can sample Yi’s in parallel.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 19/31



Exchangeability and Conditional Independence

Definition. A sequence Y = (Y1, Y2, . . . ) of random variables is
exchangeable when

(Y1, . . . , Yn)
d
= (Yπ(1), . . . , Yπ(n)), (1)

for all n ∈ N and permutation π of {1, . . . , n}.

Theorem (de Finetti). The following are equivalent:

1. (Y1, Y2, . . . ) is exchangeable;

2. (Y1, Y2, . . . ) is conditionally i.i.d. given some θ;

3. Exists f such that

(Y1, Y2, Y3, . . . )
d
= (f(θ, U1), f(θ, U2), f(θ, U3), . . . ) (2)

for i.i.d. uniform θ, U1, U2, . . . .

Y1 Y2 Y3 Y4 Y5

θ

Y1 Y2 Y3 Y4 Y5

Informally: using f , we can sample Yi’s in parallel.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 19/31



Exchangeability and Conditional Independence

Definition. A sequence Y = (Y1, Y2, . . . ) of random variables is
exchangeable when

(Y1, . . . , Yn)
d
= (Yπ(1), . . . , Yπ(n)), (1)

for all n ∈ N and permutation π of {1, . . . , n}.

Theorem (de Finetti). The following are equivalent:

1. (Y1, Y2, . . . ) is exchangeable;

2. (Y1, Y2, . . . ) is conditionally i.i.d. given some θ;

3. Exists f such that

(Y1, Y2, Y3, . . . )
d
= (f(θ, U1), f(θ, U2), f(θ, U3), . . . ) (2)

for i.i.d. uniform θ, U1, U2, . . . .

Y1 Y2 Y3 Y4 Y5

θ

Y1 Y2 Y3 Y4 Y5

Informally: using f , we can sample Yi’s in parallel.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 19/31



We can extract the hidden parallelism. [Freer and R., 2012]

Sum = 1.0; Total = 2.0

def next_draw():

global Sum, Total

y = bernoulli(Sum/Total)

Sum += y; Total += 1

return y

theta = uniform(0,1)

def next_draw():

return bernoulli(theta)

Y1 Y2 Y3 Y4 Y5

?−−−→

θ

Y1 Y2 Y3 Y4 Y5

Theorem (Freer and R., 2012). The distribution of an
exchangeable sequence Y is computable if and only if there is an

almost computable f such that (Y1, Y2, . . . )
d
= (f(θ, U1), f(θ, U2), . . . ).

We can always recover hidden parallel structure, exposing
conditional independence to the inference engine.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 20/31



We can extract the hidden parallelism. [Freer and R., 2012]

Sum = 1.0; Total = 2.0

def next_draw():

global Sum, Total

y = bernoulli(Sum/Total)

Sum += y; Total += 1

return y

theta = uniform(0,1)

def next_draw():

return bernoulli(theta)

Y1 Y2 Y3 Y4 Y5 ?−−−→

θ

Y1 Y2 Y3 Y4 Y5

Theorem (Freer and R., 2012). The distribution of an
exchangeable sequence Y is computable if and only if there is an

almost computable f such that (Y1, Y2, . . . )
d
= (f(θ, U1), f(θ, U2), . . . ).

We can always recover hidden parallel structure, exposing
conditional independence to the inference engine.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 20/31



We can extract the hidden parallelism. [Freer and R., 2012]

Sum = 1.0; Total = 2.0

def next_draw():

global Sum, Total

y = bernoulli(Sum/Total)

Sum += y; Total += 1

return y

theta = uniform(0,1)

def next_draw():

return bernoulli(theta)

Y1 Y2 Y3 Y4 Y5 ?−−−→

θ

Y1 Y2 Y3 Y4 Y5

Theorem (Freer and R., 2012). The distribution of an
exchangeable sequence Y is computable if and only if there is an

almost computable f such that (Y1, Y2, . . . )
d
= (f(θ, U1), f(θ, U2), . . . ).

We can always recover hidden parallel structure, exposing
conditional independence to the inference engine.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 20/31



Where else can we find
hidden conditional independence?

Can we extract it for inference?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 21/31



Exchangeable arrays in models of graph/relational data

Definition.
structure symmetry definition

sequence (Yn) exchangeable (Yn)
d
= (Yπ(n))

array (Xi,j) separately exchangeable (Xi,j)
d
= (Xπ(i),τ(j))

array (Xi,j) jointly exchangeable (Xi,j)
d
= (Xπ(i),π(j))

Example. Adjacency matrix (Xi,j)i,j∈N of an undirected graph on N.EXCHANGEABILITY FOR CORRESPONDING ARRAYS

1
2

3

4

5
6

7

8

9

10
2

7

6

5

3
1

10

8

4

9

⌘

⌘

James Lloyd 9 / 45

Orbanz and R. (2014).

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 22/31



Exchangeable arrays in models of graph/relational data

Definition.
structure symmetry definition

sequence (Yn) exchangeable (Yn)
d
= (Yπ(n))

array (Xi,j) separately exchangeable (Xi,j)
d
= (Xπ(i),τ(j))

array (Xi,j) jointly exchangeable (Xi,j)
d
= (Xπ(i),π(j))

Example. Adjacency matrix (Xi,j)i,j∈N of an undirected graph on N.EXCHANGEABILITY FOR CORRESPONDING ARRAYS

1
2

3

4

5
6

7

8

9

10
2

7

6

5

3
1

10

8

4

9

⌘

⌘

James Lloyd 9 / 45

Orbanz and R. (2014).

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 22/31



Exchangeable arrays in models of graph/relational data

Theorem (Aldous-Hoover). θ, Ui, Vj ,Wi,j all i.i.d. uniform.

structure symmetry representation

array (Xi,j) (Xi,j)
d
= (Xπ(i),τ(j)) (Xi,j)

d
= (f(θ, Vi, Uj ,Wi,j))

sequence (Yn) (Yn)
d
= (Yπ(n)) (Yn)

d
= (f(θ, Un))

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 23/31



Exchangeable arrays in models of graph/relational data

Theorem (Aldous-Hoover). θ, Ui, Vj ,Wi,j all i.i.d. uniform.

structure symmetry representation

array (Xi,j) (Xi,j)
d
= (Xπ(i),τ(j)) (Xi,j)

d
= (f(θ, Vi, Uj ,Wi,j))

sequence (Yn) (Yn)
d
= (Yπ(n)) (Yn)

d
= (f(θ, Un))

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 23/31



Exchangeable arrays in models of graph/relational data

Theorem (Aldous-Hoover). θ, Ui, Vj ,Wi,j all i.i.d. uniform.

structure symmetry representation

array (Xi,j) (Xi,j)
d
= (Xπ(i),τ(j)) (Xi,j)

d
= (f(θ, Vi, Uj ,Wi,j))

sequence (Yn) (Yn)
d
= (Yπ(n)) (Yn)

d
= (f(θ, Un))

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 23/31



Visualization of Aldous-Hoover theorem for
exchangeable arrays

x

x

Θ U1 U2 U3 U4

X1,1

X2,1

X3,1

X4,1

X1,2

X2,2

X3,2

X4,2

X1,3

X2,3

X3,3

X4,3

X1,4

X2,4

X3,4

X4,4

?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 24/31



Visualization of Aldous-Hoover theorem for
exchangeable arrays

x

x

Θ U1 U2 U3 U4

X1,1

X2,1

X3,1

X4,1

X1,2

X2,2

X3,2

X4,2

X1,3

X2,3

X3,3

X4,3

X1,4

X2,4

X3,4

X4,4

?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 24/31



Visualization of Aldous-Hoover theorem for
exchangeable arrays

x

x

θ U1 U2 U3 U4

V1

V2

V3

V4

X1,1

X2,1

X3,1

X4,1

X1,2

X2,2

X3,2

X4,2

X1,3

X2,3

X3,3

X4,3

X1,4

X2,4

X3,4

X4,4

X3,4

?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 24/31



Visualization of Aldous-Hoover theorem for
exchangeable arrays

x

x

θ U1 U2 U3 U4

V1

V2

V3

V4

X1,1

X2,1

X3,1

X4,1

X1,2

X2,2

X3,2

X4,2

X1,3

X2,3

X3,3

X4,3

X1,4

X2,4

X3,4

X4,4

X3,4

?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 24/31



Q: Is the Aldous-Hoover theorem computable?
A: No.

Theorem (Avigad, Freer, R., and Rute). There is an
exchangeable array X with a computable distribution but no
a.e. computable f satisfying Aldous-Hoover.

Even “computationally universal” probabilistic programming
languages cannot represent certain conditional independence
structure.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 25/31



Computably-distributed array X, noncomputable f [AFRR]

The construction (an aliens dating site).

I Let rows/columns represent aliens.
Xi,j = 1 means aliens i and j are matched.

I Each alien answers an infinitely-long questionnaire.

I Question k ∈ {1, 2, . . . } has 2k possible answers.

I Aliens hate answering questionnaires, so they answer randomly.

I Two aliens are matched if they agree on ANY question.

Proof sketch.

I Note: f is “return 1 iff two aliens agree somewhere”.

I (f not a.e. computable) [Topological obstruction.]

Given two questionnaires, can’t accurately check in finite time.

I (array computably-distributed)
The probability of agreeing on any question n, n+ 1, . . . decays.
Using only first n questions yields an approximation.

Approximating f sufficed to sample. Q: The converse?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 26/31



Computably-distributed array X, noncomputable f [AFRR]

The construction (an aliens dating site).

I Let rows/columns represent aliens.
Xi,j = 1 means aliens i and j are matched.

I Each alien answers an infinitely-long questionnaire.

I Question k ∈ {1, 2, . . . } has 2k possible answers.

I Aliens hate answering questionnaires, so they answer randomly.

I Two aliens are matched if they agree on ANY question.

Proof sketch.

I Note: f is “return 1 iff two aliens agree somewhere”.

I (f not a.e. computable) [Topological obstruction.]

Given two questionnaires, can’t accurately check in finite time.

I (array computably-distributed)
The probability of agreeing on any question n, n+ 1, . . . decays.
Using only first n questions yields an approximation.

Approximating f sufficed to sample. Q: The converse?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 26/31



Silver lining? f is always “nearly computable”

Let µ be a computable probability measure.

Definition. Say f is a.e. computable when
we can compute f on a set of µ-measure one.

Definition (Kriesel-Lacombe (1957), Šanin (1968), Ko (1986)).

Say f is computably measurable when,
uniformly for any ε > 0,
we can compute f on a set of µ-measure at least 1− ε.

Theorem (Avigad, Freer, R., and Rute). The distribution of an
exchangeable array X is computable if and only if there is a
computably measurable function f satisfying Aldous-Hoover.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 27/31



Exchangeability and probabilistic programming

Exchangeable random structures possess a lot of structure.

(Yi)
d
= (f(θ, Ui))

(Xi,j)
d
= (f(θ, Ui, Vj ,Wi,j))

Can your favorite PPL represent f?

Theorem (FR12). f a.e. computable for sequences.
Theorem (AFRR). f merely computably measurable for arrays.

Approximation essential for capturing structure.

But do such arrays appear in practice?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 28/31



Exchangeability and probabilistic programming

Exchangeable random structures possess a lot of structure.

(Yi)
d
= (f(θ, Ui))

(Xi,j)
d
= (f(θ, Ui, Vj ,Wi,j))

Can your favorite PPL represent f?

Theorem (FR12). f a.e. computable for sequences.
Theorem (AFRR). f merely computably measurable for arrays.

Approximation essential for capturing structure.

But do such arrays appear in practice?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 28/31



Exchangeability and probabilistic programming

Exchangeable random structures possess a lot of structure.

(Yi)
d
= (f(θ, Ui))

(Xi,j)
d
= (f(θ, Ui, Vj ,Wi,j))

Can your favorite PPL represent f?

Theorem (FR12). f a.e. computable for sequences.
Theorem (AFRR). f merely computably measurable for arrays.

Approximation essential for capturing structure.

But do such arrays appear in practice?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 28/31



Do such arrays X appear in practice?

YES!

Food Tools Vehicles Animals

st
ra

wb
er

ry
pi

ne
ap

pl
e

gr
ap

ef
ru

it
ap

pl
e

ta
ng

er
in

e
ne

ct
ar

in
e

le
m

on
gr

ap
e

or
an

ge
cu

cu
m

be
r

ca
rro

t
ra

di
sh

on
io

ns
le

ttu
ce

po
ta

to
cla

m
p

dr
ill

pl
ie

rs
wr

en
ch

sh
ov

el
ch

ise
l

to
m

ah
aw

k
sle

dg
eh

am
m

er ax
e

ha
m

m
er

ho
e

sc
iss

or
s

sc
re

wd
riv

er
ra

ke
cr

ow
ba

r
va

n
ca

r
tru

ck bu
s

je
ep

sh
ip

bi
ke

he
lic

op
te

r
tra

in
m

ot
or

cy
cle

tri
cy

cle
wh

ee
lb

ar
ro

w
su

bm
ar

in
e

ya
ch

t
je

t
se

al
lio

n
do

lp
hi

n
m

ou
se

du
ck tig
er ra
t

ch
ick

en ca
t

de
er

sq
ui

rre
l

sh
ee

p pi
g

ho
rs

e
co

w

a tool
an animal

made of metal
is edible

has a handle
is juicy
is fast

eaten in salads
is white

has 4 wheels
has 4 legs

Figure 2: MAP tree recovered from a data set including 60 objects from four domains. MAP partitions for
several features are shown: the model discovers, for example, that “is juicy” is associated with only one part of
the tree. The weight of each edge in the tree is proportional to its vertical extent.

Diseases Chemicals

Ac
qu

ire
d 

Ab
no

rm
al

ity

Co
ng

en
ita

l A
bn

or
m

al
ity

O
rg

an
 F

un
ct

io
n

Ce
ll F

un
ct

io
n

Ph
ys

io
lo

gi
c 

Fu
nc

tio
n

Di
se

as
e 

or
 S

yn
dr

om
e

Pa
th

ol
og

ic 
Fu

nc
tio

n

Ce
ll D

ys
fu

nc
tio

n

Ti
ss

ue Ce
ll

An
at

om
ica

l S
tru

ct
ur

e

An
im

al

Bi
rd

Pl
an

t

M
am

m
al

Na
tu

ra
l P

ro
ce

ss

Hu
m

an
−c

au
se

d 
Pr

oc
es

s

Th
er

ap
eu

tic
 P

ro
ce

du
re

La
bo

ra
to

ry
 P

ro
ce

du
re

Di
ag

no
st

ic 
Pr

oc
ed

ur
e

La
bo

ra
to

ry
 R

es
ul

t

Fi
nd

in
g

Si
gn

 o
r S

ym
pt

om

St
er

oi
d

Ca
rb

oh
yd

ra
te

Li
pi

d

Am
in

o 
Ac

id

Ho
rm

on
e

En
zy

m
e

An
tib

io
tic

analyzes affects process of causes causes (IRM)

Figure 3: MAP tree recovered from 49 relations between entities in a biomedical data set. Four relations are
shown (rows and columns permuted to match in-order traversal of the MAP tree). Consider the circled subset of
the t-c partition for causes. This block captures the knowledge that “chemicals” cause “diseases.” The Infinite
Relational Model (IRM) does not capture the appropriate structure in the relation cause because it does not
model the latent hierarchy, instead choosing a single partition to describe the structure across all relations.

representative features. The model discovers that some features are associated only with certain
parts of the tree: “is juicy” is associated with the fruits, and “is metal” is associated with the man-
made items. Discovering domains is a fundamental cognitive problem that may be solved early
in development [11], but that is ignored by many cognitive models, which consider only carefully
chosen data from a single domain (e.g. data including only animals and only biological features). By
organizing the 60 objects into domains and identifying a subset of features that are associated with
each domain, our model begins to suggest how infants may parse their environment into coherent
domains of objects and features.

Our second application explores the acquisition of ontological knowledge, a problem that has been
previously discussed by Keil [7]. We demonstrate that our model discovers a simple biomedical
ontology given data from the Unified Medical Language System (UMLS) [12]. The full data set in-
cludes 135 entities and 49 binary relations, where the entities are ontological categories like ‘Sign or
Symptom’, ‘Cell’, and ‘Disease or Syndrome,’ and the relations include verbs like causes, analyzes
and affects. We applied our model to a subset of the data including the 30 entities shown in Figure 3.

“OR-nonexch” — 2013/6/12 — 14:07 — page 13 — #13

13

Fig. 7: Typical directing random functions underlying, from left to right, 1) an IRM (where partitions correspond with a Chinese restaurant process) with
conditionally i.i.d. link probabilities; 2) a more flexible variant of the IRM with merely exchangeable link probabilities as in Example IV.3; 3) a LFRM (where
partitions correspond with an Indian buffet process) with feature-exchangeable link probabilities as in Example IV.10; 4) a Mondrian-process-based model
with a single latent dimension; 5) a Gaussian-processed-based model with a single latent dimension. (Note that, in practice, one would use more than one
latent dimension in the last two examples, although this complicates visualization. In the first four figures, we have truncated each of the “stick-breaking”
constructions at a finite depth, although, at the resolution of the figures, it is very difficult to notice the effect.)

Then, two objects represented by random variables U and U 0

are equivalent iff U, U 0 2 E(N) for some finite set N ⇢ N. As
before, we could consider a simple, cluster-based representing
function where the block values are given by an (fN,M ),
indexed now by finite subsets N, M ✓ N. Then fN,M would
determine how two objects relate when they possess features
N and M , respectively.

However, if we want to capture the idea that the rela-
tionships between objects depend on the individual features
the objects possess, we would not want to assume that the
entries of fN,M formed an exchangeable array, as in the case
of a simple, cluster-based model. E.g., we might choose
to induce more dependence between fN,M and fN 0,M when
N \N 0 6= ; than otherwise. The following definition captures
the appropriate relaxation of exchangeability:

Definition IV.9 (feature-exchangeable array). Let Y :=
(YN,M ) be an array of random variables indexed by pairs
N, M ✓ N of finite subsets. For a permutation ⇡ of N and
N ✓ N, write ⇡(N) := {⇡(n) : n 2 N} for the image. Then,
we say that Y is feature-exchangeable when

(YN,M )
d
= (Y⇡(N),⇡(M)), (IV.7)

for all permutations ⇡ of N. /

Informally, an array Y indexed by sets of features is feature-
exchangeable if its distribution is invariant to permutations of
the underlying feature labels (i.e., of N). The following is an
example of a feature-exchangeable array, which we will use
when we re-describe the Latent Feature Relational Model in
the language of feature-based models:

Example IV.10 (feature-exchangeable link probabilities). Let
w := (wij) be a conditionally i.i.d. array of random variables
in R, and define ✓ := (✓N,M ) by

✓N,M = sig(
P

i2N

P
j2M wij), (IV.8)

where sig : R ! [0, 1] maps real values to probabilities via,
e.g., the sigmoid or probit functions. It is straightforward to
verify that ✓ is feature-exchangeable. /

We can now define simple feature-based models:

Definition IV.11. We say that a Bayesian model of an ex-
changeable array X is simple feature-based when, for some

random function F representing X , there are random feature
allocations B and C of the unit interval [0, 1] such that, for
every pair N, M ✓ N of finite subsets, F takes the constant
value fN,M on the block

AN,M := B(N) ⇥ C(M) ⇥ [0, 1], (IV.9)

and the values f := (fN,M ) themselves form a feature-
exchangeable array, independent of B and C. We say an array
is simple feature-based if its distribution is. /

We can relate this definition back to cluster-based models
by pointing out that simple feature-based arrays are simple
cluster-based arrays when either i) the feature allocations
are partitions or ii) the array f is exchangeable. The latter
case highlights the fact that feature-based arrays relax the
exchangeability assumption of the underlying block values.

As in the case of simple cluster-based models, nonparamet-
ric simple feature-based models will place positive mass on
feature allocations with an arbitrary number of distinct sets.
As we did with general cluster-based models, we will define
general feature-based models as randomizations of simple
models:

Definition IV.12 (feature-based models). We say that a
Bayesian model for an exchangeable array X := (Xij) in X
is feature-based when X is a P -randomization of a simple,
feature-based, exchangeable array ✓ := (✓ij) taking values in
a space T , for some probability kernel P from T to X. We
say an array is feature-based when its distribution is. /

Comparing Definitions IV.5 and IV.12, we see that the
relationship between random functions representing ✓ and X
are the same as with cluster-based models. We now return to
the LFRM model, and describe it in the language of feature-
based models:

Example IV.13 (Latent Feature Relational Model continued).
The random feature allocations underlying the LFRM can be
described in terms of so-called “stick-breaking” constructions
of the Indian buffet process. One of the simplest stick-breaking
constructions, and the one we will use here, is due to Teh,
Görür, and Ghahramani [61]. (See also [63], [52] and [53].)

Let W1, W2, . . . be an i.i.d. sequence of Beta(↵, 1) random
variables for some concentration parameter ↵ > 0. For every
n, we define Pn :=

Qn
j=1 Wj . (The relationship between

Roy and Teh. The Mondrian process. (2009)

Orbanz and Roy (2014).

Lloyd, Orbanz, Ghahramani, and Roy (2012).

Savova, Roy, Schmidt, and Tenenbaum (2007).

Roy, Kemp, Mansinghka, and Tenenbaum (2007)
√

a.e. computable f
× merely computably measurable f

√
Infinite Relational Model

Dirichlet process

(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)√
Linear Relational Model

Mondrian process

(R. and Teh 2009)

× Infinite Feature Relational Model

Beta process

(Miller, Griffiths, and Jordan 2010)

× Random Function Model

Gaussian process

(Lloyd, Orbanz, R., and Ghahramani 2012)

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 29/31



Do such arrays X appear in practice?

YES!

Food Tools Vehicles Animals

st
ra

wb
er

ry
pi

ne
ap

pl
e

gr
ap

ef
ru

it
ap

pl
e

ta
ng

er
in

e
ne

ct
ar

in
e

le
m

on
gr

ap
e

or
an

ge
cu

cu
m

be
r

ca
rro

t
ra

di
sh

on
io

ns
le

ttu
ce

po
ta

to
cla

m
p

dr
ill

pl
ie

rs
wr

en
ch

sh
ov

el
ch

ise
l

to
m

ah
aw

k
sle

dg
eh

am
m

er ax
e

ha
m

m
er

ho
e

sc
iss

or
s

sc
re

wd
riv

er
ra

ke
cr

ow
ba

r
va

n
ca

r
tru

ck bu
s

je
ep

sh
ip

bi
ke

he
lic

op
te

r
tra

in
m

ot
or

cy
cle

tri
cy

cle
wh

ee
lb

ar
ro

w
su

bm
ar

in
e

ya
ch

t
je

t
se

al
lio

n
do

lp
hi

n
m

ou
se

du
ck tig
er ra
t

ch
ick

en ca
t

de
er

sq
ui

rre
l

sh
ee

p pi
g

ho
rs

e
co

w

a tool
an animal

made of metal
is edible

has a handle
is juicy
is fast

eaten in salads
is white

has 4 wheels
has 4 legs

Figure 2: MAP tree recovered from a data set including 60 objects from four domains. MAP partitions for
several features are shown: the model discovers, for example, that “is juicy” is associated with only one part of
the tree. The weight of each edge in the tree is proportional to its vertical extent.

Diseases Chemicals

Ac
qu

ire
d 

Ab
no

rm
al

ity

Co
ng

en
ita

l A
bn

or
m

al
ity

O
rg

an
 F

un
ct

io
n

Ce
ll F

un
ct

io
n

Ph
ys

io
lo

gi
c 

Fu
nc

tio
n

Di
se

as
e 

or
 S

yn
dr

om
e

Pa
th

ol
og

ic 
Fu

nc
tio

n

Ce
ll D

ys
fu

nc
tio

n

Ti
ss

ue Ce
ll

An
at

om
ica

l S
tru

ct
ur

e

An
im

al

Bi
rd

Pl
an

t

M
am

m
al

Na
tu

ra
l P

ro
ce

ss

Hu
m

an
−c

au
se

d 
Pr

oc
es

s

Th
er

ap
eu

tic
 P

ro
ce

du
re

La
bo

ra
to

ry
 P

ro
ce

du
re

Di
ag

no
st

ic 
Pr

oc
ed

ur
e

La
bo

ra
to

ry
 R

es
ul

t

Fi
nd

in
g

Si
gn

 o
r S

ym
pt

om

St
er

oi
d

Ca
rb

oh
yd

ra
te

Li
pi

d

Am
in

o 
Ac

id

Ho
rm

on
e

En
zy

m
e

An
tib

io
tic

analyzes affects process of causes causes (IRM)

Figure 3: MAP tree recovered from 49 relations between entities in a biomedical data set. Four relations are
shown (rows and columns permuted to match in-order traversal of the MAP tree). Consider the circled subset of
the t-c partition for causes. This block captures the knowledge that “chemicals” cause “diseases.” The Infinite
Relational Model (IRM) does not capture the appropriate structure in the relation cause because it does not
model the latent hierarchy, instead choosing a single partition to describe the structure across all relations.

representative features. The model discovers that some features are associated only with certain
parts of the tree: “is juicy” is associated with the fruits, and “is metal” is associated with the man-
made items. Discovering domains is a fundamental cognitive problem that may be solved early
in development [11], but that is ignored by many cognitive models, which consider only carefully
chosen data from a single domain (e.g. data including only animals and only biological features). By
organizing the 60 objects into domains and identifying a subset of features that are associated with
each domain, our model begins to suggest how infants may parse their environment into coherent
domains of objects and features.

Our second application explores the acquisition of ontological knowledge, a problem that has been
previously discussed by Keil [7]. We demonstrate that our model discovers a simple biomedical
ontology given data from the Unified Medical Language System (UMLS) [12]. The full data set in-
cludes 135 entities and 49 binary relations, where the entities are ontological categories like ‘Sign or
Symptom’, ‘Cell’, and ‘Disease or Syndrome,’ and the relations include verbs like causes, analyzes
and affects. We applied our model to a subset of the data including the 30 entities shown in Figure 3.

“OR-nonexch” — 2013/6/12 — 14:07 — page 13 — #13

13

Fig. 7: Typical directing random functions underlying, from left to right, 1) an IRM (where partitions correspond with a Chinese restaurant process) with
conditionally i.i.d. link probabilities; 2) a more flexible variant of the IRM with merely exchangeable link probabilities as in Example IV.3; 3) a LFRM (where
partitions correspond with an Indian buffet process) with feature-exchangeable link probabilities as in Example IV.10; 4) a Mondrian-process-based model
with a single latent dimension; 5) a Gaussian-processed-based model with a single latent dimension. (Note that, in practice, one would use more than one
latent dimension in the last two examples, although this complicates visualization. In the first four figures, we have truncated each of the “stick-breaking”
constructions at a finite depth, although, at the resolution of the figures, it is very difficult to notice the effect.)

Then, two objects represented by random variables U and U 0

are equivalent iff U, U 0 2 E(N) for some finite set N ⇢ N. As
before, we could consider a simple, cluster-based representing
function where the block values are given by an (fN,M ),
indexed now by finite subsets N, M ✓ N. Then fN,M would
determine how two objects relate when they possess features
N and M , respectively.

However, if we want to capture the idea that the rela-
tionships between objects depend on the individual features
the objects possess, we would not want to assume that the
entries of fN,M formed an exchangeable array, as in the case
of a simple, cluster-based model. E.g., we might choose
to induce more dependence between fN,M and fN 0,M when
N \N 0 6= ; than otherwise. The following definition captures
the appropriate relaxation of exchangeability:

Definition IV.9 (feature-exchangeable array). Let Y :=
(YN,M ) be an array of random variables indexed by pairs
N, M ✓ N of finite subsets. For a permutation ⇡ of N and
N ✓ N, write ⇡(N) := {⇡(n) : n 2 N} for the image. Then,
we say that Y is feature-exchangeable when

(YN,M )
d
= (Y⇡(N),⇡(M)), (IV.7)

for all permutations ⇡ of N. /

Informally, an array Y indexed by sets of features is feature-
exchangeable if its distribution is invariant to permutations of
the underlying feature labels (i.e., of N). The following is an
example of a feature-exchangeable array, which we will use
when we re-describe the Latent Feature Relational Model in
the language of feature-based models:

Example IV.10 (feature-exchangeable link probabilities). Let
w := (wij) be a conditionally i.i.d. array of random variables
in R, and define ✓ := (✓N,M ) by

✓N,M = sig(
P

i2N

P
j2M wij), (IV.8)

where sig : R ! [0, 1] maps real values to probabilities via,
e.g., the sigmoid or probit functions. It is straightforward to
verify that ✓ is feature-exchangeable. /

We can now define simple feature-based models:

Definition IV.11. We say that a Bayesian model of an ex-
changeable array X is simple feature-based when, for some

random function F representing X , there are random feature
allocations B and C of the unit interval [0, 1] such that, for
every pair N, M ✓ N of finite subsets, F takes the constant
value fN,M on the block

AN,M := B(N) ⇥ C(M) ⇥ [0, 1], (IV.9)

and the values f := (fN,M ) themselves form a feature-
exchangeable array, independent of B and C. We say an array
is simple feature-based if its distribution is. /

We can relate this definition back to cluster-based models
by pointing out that simple feature-based arrays are simple
cluster-based arrays when either i) the feature allocations
are partitions or ii) the array f is exchangeable. The latter
case highlights the fact that feature-based arrays relax the
exchangeability assumption of the underlying block values.

As in the case of simple cluster-based models, nonparamet-
ric simple feature-based models will place positive mass on
feature allocations with an arbitrary number of distinct sets.
As we did with general cluster-based models, we will define
general feature-based models as randomizations of simple
models:

Definition IV.12 (feature-based models). We say that a
Bayesian model for an exchangeable array X := (Xij) in X
is feature-based when X is a P -randomization of a simple,
feature-based, exchangeable array ✓ := (✓ij) taking values in
a space T , for some probability kernel P from T to X. We
say an array is feature-based when its distribution is. /

Comparing Definitions IV.5 and IV.12, we see that the
relationship between random functions representing ✓ and X
are the same as with cluster-based models. We now return to
the LFRM model, and describe it in the language of feature-
based models:

Example IV.13 (Latent Feature Relational Model continued).
The random feature allocations underlying the LFRM can be
described in terms of so-called “stick-breaking” constructions
of the Indian buffet process. One of the simplest stick-breaking
constructions, and the one we will use here, is due to Teh,
Görür, and Ghahramani [61]. (See also [63], [52] and [53].)

Let W1, W2, . . . be an i.i.d. sequence of Beta(↵, 1) random
variables for some concentration parameter ↵ > 0. For every
n, we define Pn :=

Qn
j=1 Wj . (The relationship between

Roy and Teh. The Mondrian process. (2009)

Orbanz and Roy (2014).

Lloyd, Orbanz, Ghahramani, and Roy (2012).

Savova, Roy, Schmidt, and Tenenbaum (2007).

Roy, Kemp, Mansinghka, and Tenenbaum (2007)
√

a.e. computable f
× merely computably measurable f

√
Infinite Relational Model Dirichlet process

(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)√
Linear Relational Model

Mondrian process

(R. and Teh 2009)

× Infinite Feature Relational Model

Beta process

(Miller, Griffiths, and Jordan 2010)

× Random Function Model

Gaussian process

(Lloyd, Orbanz, R., and Ghahramani 2012)

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 29/31



Do such arrays X appear in practice?

YES!

Food Tools Vehicles Animals

st
ra

wb
er

ry
pi

ne
ap

pl
e

gr
ap

ef
ru

it
ap

pl
e

ta
ng

er
in

e
ne

ct
ar

in
e

le
m

on
gr

ap
e

or
an

ge
cu

cu
m

be
r

ca
rro

t
ra

di
sh

on
io

ns
le

ttu
ce

po
ta

to
cla

m
p

dr
ill

pl
ie

rs
wr

en
ch

sh
ov

el
ch

ise
l

to
m

ah
aw

k
sle

dg
eh

am
m

er ax
e

ha
m

m
er

ho
e

sc
iss

or
s

sc
re

wd
riv

er
ra

ke
cr

ow
ba

r
va

n
ca

r
tru

ck bu
s

je
ep

sh
ip

bi
ke

he
lic

op
te

r
tra

in
m

ot
or

cy
cle

tri
cy

cle
wh

ee
lb

ar
ro

w
su

bm
ar

in
e

ya
ch

t
je

t
se

al
lio

n
do

lp
hi

n
m

ou
se

du
ck tig
er ra
t

ch
ick

en ca
t

de
er

sq
ui

rre
l

sh
ee

p pi
g

ho
rs

e
co

w

a tool
an animal

made of metal
is edible

has a handle
is juicy
is fast

eaten in salads
is white

has 4 wheels
has 4 legs

Figure 2: MAP tree recovered from a data set including 60 objects from four domains. MAP partitions for
several features are shown: the model discovers, for example, that “is juicy” is associated with only one part of
the tree. The weight of each edge in the tree is proportional to its vertical extent.

Diseases Chemicals

Ac
qu

ire
d 

Ab
no

rm
al

ity

Co
ng

en
ita

l A
bn

or
m

al
ity

O
rg

an
 F

un
ct

io
n

Ce
ll F

un
ct

io
n

Ph
ys

io
lo

gi
c 

Fu
nc

tio
n

Di
se

as
e 

or
 S

yn
dr

om
e

Pa
th

ol
og

ic 
Fu

nc
tio

n

Ce
ll D

ys
fu

nc
tio

n

Ti
ss

ue Ce
ll

An
at

om
ica

l S
tru

ct
ur

e

An
im

al

Bi
rd

Pl
an

t

M
am

m
al

Na
tu

ra
l P

ro
ce

ss

Hu
m

an
−c

au
se

d 
Pr

oc
es

s

Th
er

ap
eu

tic
 P

ro
ce

du
re

La
bo

ra
to

ry
 P

ro
ce

du
re

Di
ag

no
st

ic 
Pr

oc
ed

ur
e

La
bo

ra
to

ry
 R

es
ul

t

Fi
nd

in
g

Si
gn

 o
r S

ym
pt

om

St
er

oi
d

Ca
rb

oh
yd

ra
te

Li
pi

d

Am
in

o 
Ac

id

Ho
rm

on
e

En
zy

m
e

An
tib

io
tic

analyzes affects process of causes causes (IRM)

Figure 3: MAP tree recovered from 49 relations between entities in a biomedical data set. Four relations are
shown (rows and columns permuted to match in-order traversal of the MAP tree). Consider the circled subset of
the t-c partition for causes. This block captures the knowledge that “chemicals” cause “diseases.” The Infinite
Relational Model (IRM) does not capture the appropriate structure in the relation cause because it does not
model the latent hierarchy, instead choosing a single partition to describe the structure across all relations.

representative features. The model discovers that some features are associated only with certain
parts of the tree: “is juicy” is associated with the fruits, and “is metal” is associated with the man-
made items. Discovering domains is a fundamental cognitive problem that may be solved early
in development [11], but that is ignored by many cognitive models, which consider only carefully
chosen data from a single domain (e.g. data including only animals and only biological features). By
organizing the 60 objects into domains and identifying a subset of features that are associated with
each domain, our model begins to suggest how infants may parse their environment into coherent
domains of objects and features.

Our second application explores the acquisition of ontological knowledge, a problem that has been
previously discussed by Keil [7]. We demonstrate that our model discovers a simple biomedical
ontology given data from the Unified Medical Language System (UMLS) [12]. The full data set in-
cludes 135 entities and 49 binary relations, where the entities are ontological categories like ‘Sign or
Symptom’, ‘Cell’, and ‘Disease or Syndrome,’ and the relations include verbs like causes, analyzes
and affects. We applied our model to a subset of the data including the 30 entities shown in Figure 3.

“OR-nonexch” — 2013/6/12 — 14:07 — page 13 — #13

13

Fig. 7: Typical directing random functions underlying, from left to right, 1) an IRM (where partitions correspond with a Chinese restaurant process) with
conditionally i.i.d. link probabilities; 2) a more flexible variant of the IRM with merely exchangeable link probabilities as in Example IV.3; 3) a LFRM (where
partitions correspond with an Indian buffet process) with feature-exchangeable link probabilities as in Example IV.10; 4) a Mondrian-process-based model
with a single latent dimension; 5) a Gaussian-processed-based model with a single latent dimension. (Note that, in practice, one would use more than one
latent dimension in the last two examples, although this complicates visualization. In the first four figures, we have truncated each of the “stick-breaking”
constructions at a finite depth, although, at the resolution of the figures, it is very difficult to notice the effect.)

Then, two objects represented by random variables U and U 0

are equivalent iff U, U 0 2 E(N) for some finite set N ⇢ N. As
before, we could consider a simple, cluster-based representing
function where the block values are given by an (fN,M ),
indexed now by finite subsets N, M ✓ N. Then fN,M would
determine how two objects relate when they possess features
N and M , respectively.

However, if we want to capture the idea that the rela-
tionships between objects depend on the individual features
the objects possess, we would not want to assume that the
entries of fN,M formed an exchangeable array, as in the case
of a simple, cluster-based model. E.g., we might choose
to induce more dependence between fN,M and fN 0,M when
N \N 0 6= ; than otherwise. The following definition captures
the appropriate relaxation of exchangeability:

Definition IV.9 (feature-exchangeable array). Let Y :=
(YN,M ) be an array of random variables indexed by pairs
N, M ✓ N of finite subsets. For a permutation ⇡ of N and
N ✓ N, write ⇡(N) := {⇡(n) : n 2 N} for the image. Then,
we say that Y is feature-exchangeable when

(YN,M )
d
= (Y⇡(N),⇡(M)), (IV.7)

for all permutations ⇡ of N. /

Informally, an array Y indexed by sets of features is feature-
exchangeable if its distribution is invariant to permutations of
the underlying feature labels (i.e., of N). The following is an
example of a feature-exchangeable array, which we will use
when we re-describe the Latent Feature Relational Model in
the language of feature-based models:

Example IV.10 (feature-exchangeable link probabilities). Let
w := (wij) be a conditionally i.i.d. array of random variables
in R, and define ✓ := (✓N,M ) by

✓N,M = sig(
P

i2N

P
j2M wij), (IV.8)

where sig : R ! [0, 1] maps real values to probabilities via,
e.g., the sigmoid or probit functions. It is straightforward to
verify that ✓ is feature-exchangeable. /

We can now define simple feature-based models:

Definition IV.11. We say that a Bayesian model of an ex-
changeable array X is simple feature-based when, for some

random function F representing X , there are random feature
allocations B and C of the unit interval [0, 1] such that, for
every pair N, M ✓ N of finite subsets, F takes the constant
value fN,M on the block

AN,M := B(N) ⇥ C(M) ⇥ [0, 1], (IV.9)

and the values f := (fN,M ) themselves form a feature-
exchangeable array, independent of B and C. We say an array
is simple feature-based if its distribution is. /

We can relate this definition back to cluster-based models
by pointing out that simple feature-based arrays are simple
cluster-based arrays when either i) the feature allocations
are partitions or ii) the array f is exchangeable. The latter
case highlights the fact that feature-based arrays relax the
exchangeability assumption of the underlying block values.

As in the case of simple cluster-based models, nonparamet-
ric simple feature-based models will place positive mass on
feature allocations with an arbitrary number of distinct sets.
As we did with general cluster-based models, we will define
general feature-based models as randomizations of simple
models:

Definition IV.12 (feature-based models). We say that a
Bayesian model for an exchangeable array X := (Xij) in X
is feature-based when X is a P -randomization of a simple,
feature-based, exchangeable array ✓ := (✓ij) taking values in
a space T , for some probability kernel P from T to X. We
say an array is feature-based when its distribution is. /

Comparing Definitions IV.5 and IV.12, we see that the
relationship between random functions representing ✓ and X
are the same as with cluster-based models. We now return to
the LFRM model, and describe it in the language of feature-
based models:

Example IV.13 (Latent Feature Relational Model continued).
The random feature allocations underlying the LFRM can be
described in terms of so-called “stick-breaking” constructions
of the Indian buffet process. One of the simplest stick-breaking
constructions, and the one we will use here, is due to Teh,
Görür, and Ghahramani [61]. (See also [63], [52] and [53].)

Let W1, W2, . . . be an i.i.d. sequence of Beta(↵, 1) random
variables for some concentration parameter ↵ > 0. For every
n, we define Pn :=

Qn
j=1 Wj . (The relationship between

Roy and Teh. The Mondrian process. (2009)

Orbanz and Roy (2014).

Lloyd, Orbanz, Ghahramani, and Roy (2012).

Savova, Roy, Schmidt, and Tenenbaum (2007).

Roy, Kemp, Mansinghka, and Tenenbaum (2007)
√

a.e. computable f
× merely computably measurable f

√
Infinite Relational Model Dirichlet process

(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)√
Linear Relational Model Mondrian process

(R. and Teh 2009)

× Infinite Feature Relational Model

Beta process

(Miller, Griffiths, and Jordan 2010)

× Random Function Model

Gaussian process

(Lloyd, Orbanz, R., and Ghahramani 2012)

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 29/31



Do such arrays X appear in practice?

YES!

Food Tools Vehicles Animals

st
ra

wb
er

ry
pi

ne
ap

pl
e

gr
ap

ef
ru

it
ap

pl
e

ta
ng

er
in

e
ne

ct
ar

in
e

le
m

on
gr

ap
e

or
an

ge
cu

cu
m

be
r

ca
rro

t
ra

di
sh

on
io

ns
le

ttu
ce

po
ta

to
cla

m
p

dr
ill

pl
ie

rs
wr

en
ch

sh
ov

el
ch

ise
l

to
m

ah
aw

k
sle

dg
eh

am
m

er ax
e

ha
m

m
er

ho
e

sc
iss

or
s

sc
re

wd
riv

er
ra

ke
cr

ow
ba

r
va

n
ca

r
tru

ck bu
s

je
ep

sh
ip

bi
ke

he
lic

op
te

r
tra

in
m

ot
or

cy
cle

tri
cy

cle
wh

ee
lb

ar
ro

w
su

bm
ar

in
e

ya
ch

t
je

t
se

al
lio

n
do

lp
hi

n
m

ou
se

du
ck tig
er ra
t

ch
ick

en ca
t

de
er

sq
ui

rre
l

sh
ee

p pi
g

ho
rs

e
co

w

a tool
an animal

made of metal
is edible

has a handle
is juicy
is fast

eaten in salads
is white

has 4 wheels
has 4 legs

Figure 2: MAP tree recovered from a data set including 60 objects from four domains. MAP partitions for
several features are shown: the model discovers, for example, that “is juicy” is associated with only one part of
the tree. The weight of each edge in the tree is proportional to its vertical extent.

Diseases Chemicals

Ac
qu

ire
d 

Ab
no

rm
al

ity

Co
ng

en
ita

l A
bn

or
m

al
ity

O
rg

an
 F

un
ct

io
n

Ce
ll F

un
ct

io
n

Ph
ys

io
lo

gi
c 

Fu
nc

tio
n

Di
se

as
e 

or
 S

yn
dr

om
e

Pa
th

ol
og

ic 
Fu

nc
tio

n

Ce
ll D

ys
fu

nc
tio

n

Ti
ss

ue Ce
ll

An
at

om
ica

l S
tru

ct
ur

e

An
im

al

Bi
rd

Pl
an

t

M
am

m
al

Na
tu

ra
l P

ro
ce

ss

Hu
m

an
−c

au
se

d 
Pr

oc
es

s

Th
er

ap
eu

tic
 P

ro
ce

du
re

La
bo

ra
to

ry
 P

ro
ce

du
re

Di
ag

no
st

ic 
Pr

oc
ed

ur
e

La
bo

ra
to

ry
 R

es
ul

t

Fi
nd

in
g

Si
gn

 o
r S

ym
pt

om

St
er

oi
d

Ca
rb

oh
yd

ra
te

Li
pi

d

Am
in

o 
Ac

id

Ho
rm

on
e

En
zy

m
e

An
tib

io
tic

analyzes affects process of causes causes (IRM)

Figure 3: MAP tree recovered from 49 relations between entities in a biomedical data set. Four relations are
shown (rows and columns permuted to match in-order traversal of the MAP tree). Consider the circled subset of
the t-c partition for causes. This block captures the knowledge that “chemicals” cause “diseases.” The Infinite
Relational Model (IRM) does not capture the appropriate structure in the relation cause because it does not
model the latent hierarchy, instead choosing a single partition to describe the structure across all relations.

representative features. The model discovers that some features are associated only with certain
parts of the tree: “is juicy” is associated with the fruits, and “is metal” is associated with the man-
made items. Discovering domains is a fundamental cognitive problem that may be solved early
in development [11], but that is ignored by many cognitive models, which consider only carefully
chosen data from a single domain (e.g. data including only animals and only biological features). By
organizing the 60 objects into domains and identifying a subset of features that are associated with
each domain, our model begins to suggest how infants may parse their environment into coherent
domains of objects and features.

Our second application explores the acquisition of ontological knowledge, a problem that has been
previously discussed by Keil [7]. We demonstrate that our model discovers a simple biomedical
ontology given data from the Unified Medical Language System (UMLS) [12]. The full data set in-
cludes 135 entities and 49 binary relations, where the entities are ontological categories like ‘Sign or
Symptom’, ‘Cell’, and ‘Disease or Syndrome,’ and the relations include verbs like causes, analyzes
and affects. We applied our model to a subset of the data including the 30 entities shown in Figure 3.

“OR-nonexch” — 2013/6/12 — 14:07 — page 13 — #13

13

Fig. 7: Typical directing random functions underlying, from left to right, 1) an IRM (where partitions correspond with a Chinese restaurant process) with
conditionally i.i.d. link probabilities; 2) a more flexible variant of the IRM with merely exchangeable link probabilities as in Example IV.3; 3) a LFRM (where
partitions correspond with an Indian buffet process) with feature-exchangeable link probabilities as in Example IV.10; 4) a Mondrian-process-based model
with a single latent dimension; 5) a Gaussian-processed-based model with a single latent dimension. (Note that, in practice, one would use more than one
latent dimension in the last two examples, although this complicates visualization. In the first four figures, we have truncated each of the “stick-breaking”
constructions at a finite depth, although, at the resolution of the figures, it is very difficult to notice the effect.)

Then, two objects represented by random variables U and U 0

are equivalent iff U, U 0 2 E(N) for some finite set N ⇢ N. As
before, we could consider a simple, cluster-based representing
function where the block values are given by an (fN,M ),
indexed now by finite subsets N, M ✓ N. Then fN,M would
determine how two objects relate when they possess features
N and M , respectively.

However, if we want to capture the idea that the rela-
tionships between objects depend on the individual features
the objects possess, we would not want to assume that the
entries of fN,M formed an exchangeable array, as in the case
of a simple, cluster-based model. E.g., we might choose
to induce more dependence between fN,M and fN 0,M when
N \N 0 6= ; than otherwise. The following definition captures
the appropriate relaxation of exchangeability:

Definition IV.9 (feature-exchangeable array). Let Y :=
(YN,M ) be an array of random variables indexed by pairs
N, M ✓ N of finite subsets. For a permutation ⇡ of N and
N ✓ N, write ⇡(N) := {⇡(n) : n 2 N} for the image. Then,
we say that Y is feature-exchangeable when

(YN,M )
d
= (Y⇡(N),⇡(M)), (IV.7)

for all permutations ⇡ of N. /

Informally, an array Y indexed by sets of features is feature-
exchangeable if its distribution is invariant to permutations of
the underlying feature labels (i.e., of N). The following is an
example of a feature-exchangeable array, which we will use
when we re-describe the Latent Feature Relational Model in
the language of feature-based models:

Example IV.10 (feature-exchangeable link probabilities). Let
w := (wij) be a conditionally i.i.d. array of random variables
in R, and define ✓ := (✓N,M ) by

✓N,M = sig(
P

i2N

P
j2M wij), (IV.8)

where sig : R ! [0, 1] maps real values to probabilities via,
e.g., the sigmoid or probit functions. It is straightforward to
verify that ✓ is feature-exchangeable. /

We can now define simple feature-based models:

Definition IV.11. We say that a Bayesian model of an ex-
changeable array X is simple feature-based when, for some

random function F representing X , there are random feature
allocations B and C of the unit interval [0, 1] such that, for
every pair N, M ✓ N of finite subsets, F takes the constant
value fN,M on the block

AN,M := B(N) ⇥ C(M) ⇥ [0, 1], (IV.9)

and the values f := (fN,M ) themselves form a feature-
exchangeable array, independent of B and C. We say an array
is simple feature-based if its distribution is. /

We can relate this definition back to cluster-based models
by pointing out that simple feature-based arrays are simple
cluster-based arrays when either i) the feature allocations
are partitions or ii) the array f is exchangeable. The latter
case highlights the fact that feature-based arrays relax the
exchangeability assumption of the underlying block values.

As in the case of simple cluster-based models, nonparamet-
ric simple feature-based models will place positive mass on
feature allocations with an arbitrary number of distinct sets.
As we did with general cluster-based models, we will define
general feature-based models as randomizations of simple
models:

Definition IV.12 (feature-based models). We say that a
Bayesian model for an exchangeable array X := (Xij) in X
is feature-based when X is a P -randomization of a simple,
feature-based, exchangeable array ✓ := (✓ij) taking values in
a space T , for some probability kernel P from T to X. We
say an array is feature-based when its distribution is. /

Comparing Definitions IV.5 and IV.12, we see that the
relationship between random functions representing ✓ and X
are the same as with cluster-based models. We now return to
the LFRM model, and describe it in the language of feature-
based models:

Example IV.13 (Latent Feature Relational Model continued).
The random feature allocations underlying the LFRM can be
described in terms of so-called “stick-breaking” constructions
of the Indian buffet process. One of the simplest stick-breaking
constructions, and the one we will use here, is due to Teh,
Görür, and Ghahramani [61]. (See also [63], [52] and [53].)

Let W1, W2, . . . be an i.i.d. sequence of Beta(↵, 1) random
variables for some concentration parameter ↵ > 0. For every
n, we define Pn :=

Qn
j=1 Wj . (The relationship between

Roy and Teh. The Mondrian process. (2009)

Orbanz and Roy (2014).

Lloyd, Orbanz, Ghahramani, and Roy (2012).

Savova, Roy, Schmidt, and Tenenbaum (2007).

Roy, Kemp, Mansinghka, and Tenenbaum (2007)
√

a.e. computable f
× merely computably measurable f

√
Infinite Relational Model Dirichlet process

(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)√
Linear Relational Model Mondrian process

(R. and Teh 2009)

× Infinite Feature Relational Model Beta process
(Miller, Griffiths, and Jordan 2010)

× Random Function Model

Gaussian process

(Lloyd, Orbanz, R., and Ghahramani 2012)

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 29/31



Do such arrays X appear in practice?

YES!

Food Tools Vehicles Animals

st
ra

wb
er

ry
pi

ne
ap

pl
e

gr
ap

ef
ru

it
ap

pl
e

ta
ng

er
in

e
ne

ct
ar

in
e

le
m

on
gr

ap
e

or
an

ge
cu

cu
m

be
r

ca
rro

t
ra

di
sh

on
io

ns
le

ttu
ce

po
ta

to
cla

m
p

dr
ill

pl
ie

rs
wr

en
ch

sh
ov

el
ch

ise
l

to
m

ah
aw

k
sle

dg
eh

am
m

er ax
e

ha
m

m
er

ho
e

sc
iss

or
s

sc
re

wd
riv

er
ra

ke
cr

ow
ba

r
va

n
ca

r
tru

ck bu
s

je
ep

sh
ip

bi
ke

he
lic

op
te

r
tra

in
m

ot
or

cy
cle

tri
cy

cle
wh

ee
lb

ar
ro

w
su

bm
ar

in
e

ya
ch

t
je

t
se

al
lio

n
do

lp
hi

n
m

ou
se

du
ck tig
er ra
t

ch
ick

en ca
t

de
er

sq
ui

rre
l

sh
ee

p pi
g

ho
rs

e
co

w

a tool
an animal

made of metal
is edible

has a handle
is juicy
is fast

eaten in salads
is white

has 4 wheels
has 4 legs

Figure 2: MAP tree recovered from a data set including 60 objects from four domains. MAP partitions for
several features are shown: the model discovers, for example, that “is juicy” is associated with only one part of
the tree. The weight of each edge in the tree is proportional to its vertical extent.

Diseases Chemicals

Ac
qu

ire
d 

Ab
no

rm
al

ity

Co
ng

en
ita

l A
bn

or
m

al
ity

O
rg

an
 F

un
ct

io
n

Ce
ll F

un
ct

io
n

Ph
ys

io
lo

gi
c 

Fu
nc

tio
n

Di
se

as
e 

or
 S

yn
dr

om
e

Pa
th

ol
og

ic 
Fu

nc
tio

n

Ce
ll D

ys
fu

nc
tio

n

Ti
ss

ue Ce
ll

An
at

om
ica

l S
tru

ct
ur

e

An
im

al

Bi
rd

Pl
an

t

M
am

m
al

Na
tu

ra
l P

ro
ce

ss

Hu
m

an
−c

au
se

d 
Pr

oc
es

s

Th
er

ap
eu

tic
 P

ro
ce

du
re

La
bo

ra
to

ry
 P

ro
ce

du
re

Di
ag

no
st

ic 
Pr

oc
ed

ur
e

La
bo

ra
to

ry
 R

es
ul

t

Fi
nd

in
g

Si
gn

 o
r S

ym
pt

om

St
er

oi
d

Ca
rb

oh
yd

ra
te

Li
pi

d

Am
in

o 
Ac

id

Ho
rm

on
e

En
zy

m
e

An
tib

io
tic

analyzes affects process of causes causes (IRM)

Figure 3: MAP tree recovered from 49 relations between entities in a biomedical data set. Four relations are
shown (rows and columns permuted to match in-order traversal of the MAP tree). Consider the circled subset of
the t-c partition for causes. This block captures the knowledge that “chemicals” cause “diseases.” The Infinite
Relational Model (IRM) does not capture the appropriate structure in the relation cause because it does not
model the latent hierarchy, instead choosing a single partition to describe the structure across all relations.

representative features. The model discovers that some features are associated only with certain
parts of the tree: “is juicy” is associated with the fruits, and “is metal” is associated with the man-
made items. Discovering domains is a fundamental cognitive problem that may be solved early
in development [11], but that is ignored by many cognitive models, which consider only carefully
chosen data from a single domain (e.g. data including only animals and only biological features). By
organizing the 60 objects into domains and identifying a subset of features that are associated with
each domain, our model begins to suggest how infants may parse their environment into coherent
domains of objects and features.

Our second application explores the acquisition of ontological knowledge, a problem that has been
previously discussed by Keil [7]. We demonstrate that our model discovers a simple biomedical
ontology given data from the Unified Medical Language System (UMLS) [12]. The full data set in-
cludes 135 entities and 49 binary relations, where the entities are ontological categories like ‘Sign or
Symptom’, ‘Cell’, and ‘Disease or Syndrome,’ and the relations include verbs like causes, analyzes
and affects. We applied our model to a subset of the data including the 30 entities shown in Figure 3.

“OR-nonexch” — 2013/6/12 — 14:07 — page 13 — #13

13

Fig. 7: Typical directing random functions underlying, from left to right, 1) an IRM (where partitions correspond with a Chinese restaurant process) with
conditionally i.i.d. link probabilities; 2) a more flexible variant of the IRM with merely exchangeable link probabilities as in Example IV.3; 3) a LFRM (where
partitions correspond with an Indian buffet process) with feature-exchangeable link probabilities as in Example IV.10; 4) a Mondrian-process-based model
with a single latent dimension; 5) a Gaussian-processed-based model with a single latent dimension. (Note that, in practice, one would use more than one
latent dimension in the last two examples, although this complicates visualization. In the first four figures, we have truncated each of the “stick-breaking”
constructions at a finite depth, although, at the resolution of the figures, it is very difficult to notice the effect.)

Then, two objects represented by random variables U and U 0

are equivalent iff U, U 0 2 E(N) for some finite set N ⇢ N. As
before, we could consider a simple, cluster-based representing
function where the block values are given by an (fN,M ),
indexed now by finite subsets N, M ✓ N. Then fN,M would
determine how two objects relate when they possess features
N and M , respectively.

However, if we want to capture the idea that the rela-
tionships between objects depend on the individual features
the objects possess, we would not want to assume that the
entries of fN,M formed an exchangeable array, as in the case
of a simple, cluster-based model. E.g., we might choose
to induce more dependence between fN,M and fN 0,M when
N \N 0 6= ; than otherwise. The following definition captures
the appropriate relaxation of exchangeability:

Definition IV.9 (feature-exchangeable array). Let Y :=
(YN,M ) be an array of random variables indexed by pairs
N, M ✓ N of finite subsets. For a permutation ⇡ of N and
N ✓ N, write ⇡(N) := {⇡(n) : n 2 N} for the image. Then,
we say that Y is feature-exchangeable when

(YN,M )
d
= (Y⇡(N),⇡(M)), (IV.7)

for all permutations ⇡ of N. /

Informally, an array Y indexed by sets of features is feature-
exchangeable if its distribution is invariant to permutations of
the underlying feature labels (i.e., of N). The following is an
example of a feature-exchangeable array, which we will use
when we re-describe the Latent Feature Relational Model in
the language of feature-based models:

Example IV.10 (feature-exchangeable link probabilities). Let
w := (wij) be a conditionally i.i.d. array of random variables
in R, and define ✓ := (✓N,M ) by

✓N,M = sig(
P

i2N

P
j2M wij), (IV.8)

where sig : R ! [0, 1] maps real values to probabilities via,
e.g., the sigmoid or probit functions. It is straightforward to
verify that ✓ is feature-exchangeable. /

We can now define simple feature-based models:

Definition IV.11. We say that a Bayesian model of an ex-
changeable array X is simple feature-based when, for some

random function F representing X , there are random feature
allocations B and C of the unit interval [0, 1] such that, for
every pair N, M ✓ N of finite subsets, F takes the constant
value fN,M on the block

AN,M := B(N) ⇥ C(M) ⇥ [0, 1], (IV.9)

and the values f := (fN,M ) themselves form a feature-
exchangeable array, independent of B and C. We say an array
is simple feature-based if its distribution is. /

We can relate this definition back to cluster-based models
by pointing out that simple feature-based arrays are simple
cluster-based arrays when either i) the feature allocations
are partitions or ii) the array f is exchangeable. The latter
case highlights the fact that feature-based arrays relax the
exchangeability assumption of the underlying block values.

As in the case of simple cluster-based models, nonparamet-
ric simple feature-based models will place positive mass on
feature allocations with an arbitrary number of distinct sets.
As we did with general cluster-based models, we will define
general feature-based models as randomizations of simple
models:

Definition IV.12 (feature-based models). We say that a
Bayesian model for an exchangeable array X := (Xij) in X
is feature-based when X is a P -randomization of a simple,
feature-based, exchangeable array ✓ := (✓ij) taking values in
a space T , for some probability kernel P from T to X. We
say an array is feature-based when its distribution is. /

Comparing Definitions IV.5 and IV.12, we see that the
relationship between random functions representing ✓ and X
are the same as with cluster-based models. We now return to
the LFRM model, and describe it in the language of feature-
based models:

Example IV.13 (Latent Feature Relational Model continued).
The random feature allocations underlying the LFRM can be
described in terms of so-called “stick-breaking” constructions
of the Indian buffet process. One of the simplest stick-breaking
constructions, and the one we will use here, is due to Teh,
Görür, and Ghahramani [61]. (See also [63], [52] and [53].)

Let W1, W2, . . . be an i.i.d. sequence of Beta(↵, 1) random
variables for some concentration parameter ↵ > 0. For every
n, we define Pn :=

Qn
j=1 Wj . (The relationship between

Roy and Teh. The Mondrian process. (2009)

Orbanz and Roy (2014).

Lloyd, Orbanz, Ghahramani, and Roy (2012).

Savova, Roy, Schmidt, and Tenenbaum (2007).

Roy, Kemp, Mansinghka, and Tenenbaum (2007)
√

a.e. computable f
× merely computably measurable f

√
Infinite Relational Model Dirichlet process

(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)√
Linear Relational Model Mondrian process

(R. and Teh 2009)

× Infinite Feature Relational Model Beta process
(Miller, Griffiths, and Jordan 2010)

× Random Function Model Gaussian process
(Lloyd, Orbanz, R., and Ghahramani 2012)

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 29/31



Talk Outline
1. The stochastic inference problem

2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 30/31



Talk Outline
1. The stochastic inference problem

2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 30/31



Conclusion

a.e. computability

PPLs −→

computable measurability

PPLs

1. One can see the gap in the literature.
Key stochastic processes are merely computably measurable.

2. How do we use such representations?
Exact-approximate inference and computable measurability?

3. Need new programming language constructs.
Näıvely, we would need to thread ε’s everywhere in program.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 31/31



Conclusion

a.e. computability

PPLs −→

computable measurability

PPLs

1. One can see the gap in the literature.
Key stochastic processes are merely computably measurable.

2. How do we use such representations?
Exact-approximate inference and computable measurability?

3. Need new programming language constructs.
Näıvely, we would need to thread ε’s everywhere in program.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 31/31



Conclusion

a.e. computability

PPLs −→

computable measurability

PPLs

1. One can see the gap in the literature.
Key stochastic processes are merely computably measurable.

2. How do we use such representations?
Exact-approximate inference and computable measurability?

3. Need new programming language constructs.
Näıvely, we would need to thread ε’s everywhere in program.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 31/31



Conclusion

a.e. computability

PPLs −→

computable measurability

PPLs

1. One can see the gap in the literature.
Key stochastic processes are merely computably measurable.

2. How do we use such representations?
Exact-approximate inference and computable measurability?

3. Need new programming language constructs.
Näıvely, we would need to thread ε’s everywhere in program.

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 31/31


	Motivation
	Appendix

