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Computer Science

Probability

Algorithmic processes that describe and
transform uncertainty:.
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The stochastic inference problem (informal version)

INPUT: guesser and checker probabilistic programs.

OUTPUT: a sample from the same distribution as the program

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

This computation captures Bayesian statistical inference.

“prior” distribution <— distribution of guesser ()
“likelihood(g)” «— Pr( checker(g) is True)

“posterior” distribution +— distribution of return value
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Example: predicting next coin toss in a sequence

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let n >0 and z4,...,z, € {0,1}. E.g., 0,0,1,0,0,0,7

guesser():
e sample 6 and U independently and uniformly in [0, 1], and
e return (6, X) where X = 1(U < 6).

checker(6,z):
e sample Uy, ..., U, independently and uniformly in [0, 1],
o let X; = 1(U; <6), and
e accept if and only if X; = x; for all 3.
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Let s=x1 + -+ + z, and let U be uniformly distributed.
For all ¢ € [0, 1], we have Pr(U < t) =t and

Pr(checker(t,z) is True) = Pr( Vi (U; <t <= 2;=1))
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Pr(checker(U, z) is True) = /0 1 —t)" dt = W =:Z(s)

Let p(t)dt be the probability that the accepted 0 € [¢,t + dt).

tb(l _ t)n—s

Z0s dt

p(t)dt =~ t°(1 — )" ~*dt + (1 — Z(s))p(t)dt ~

Probability that the accepted X =1 is then [t p(t)dt =
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Example: fitting a line to data (aka linear regression)

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let (2;,v;) € R? and o,v,e > 0.

guesser():
e sample coefficients «, 8 independently from Normal(0, o2).

checker («,3):
e sample independent noise variables &; from Normal(0, v/?),
o let F(z) =ax+ 8 and Y; = F(z;) + &, and
e accept if and only if |Y; — y;| < € for all 4.
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Example: fitting a line to data (aka linear regression)

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let (2;,v;) € R? and o,v,e > 0.

guesser():
e sample coefficients «, 8 independently from Normal(0, o2).

checker («,3):
e sample independent noise variables &; from Normal(0, v/?),
o let F(z) =ax+ 8 and Y; = F(z;) + &, and
e accept if and only if |Y; — y;| < € for all 4.

Note that ¢ = 0 doesn’t work, but the limit £ — 0 makes sense.
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Fantasy example: extracting 3D structure from images

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

) inference

A

lity, and M.
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Example: not so fantastical [Mansinghka et al.]
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The stochastic inference problem

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let U be a Uniform(0, 1) random variable.
Let S and T be a computable metric space.

INPUT:
X :[0,1] = S,
Y :[0,1] = T, and
reS.
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The stochastic inference problem

accept = False
while (not accept):
guess = guesser()
accept = checker(guess)
return guess

Let U be a Uniform(0, 1) random variable.
Let S and T be a computable metric space.

INPUT:
X :[0,1] = S,
Y :[0,1] = T, and
reS.

OvurruT:
a sample from Pr(Y (U)|X(U) = z),

i.e., the conditional distribution of Y (U) given X (U) = x.
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Bayesian statistics

1. Express statistical assumptions via probability distributions.

Pr(parameters, data) = Pr(parameters) Pr(data | parameters)

joint prior model/likelihood
2. Statistical inference from data — parameters via conditioning.

conditioning

Pr(parameters, data), « Pr(parameters | data = x)

posterior

Probabilistic programming

1. Represent probability distributions by fermutas probabilistic
programs that generate samples.

2. Build generic algorithms for probabilistic conditioning
using probabilistic programs as representations.
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Talk Outline
1. The stochastic inference problem
2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion
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MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),
FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), ...

PPAML

PROBABILISTIC PROGRAMMING FOR ADVANCED MACHINE LEARNING
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MIT-Church, Venture (MIT), webchurch (Stanford), BUGS, Tabular (MSR)
Stan (Columbia), BLOG (Berkeley), Infer.NET (MSR), Figaro (CRA),
FACTORIE (UMass), ProbLog (KU Leuven), HANSEI (Indiana), ...

PPAML

PROBABILISTIC PROGRAMMING FOR ADVANCED MACHINE LEARNING

Questions raised
» Which operations in probability theory can we perform
when distributions are represented by programs?
» When can we perform these computations efficiently?

» How are statistical properties (e.g., symmetries) of a distribution
reflected in the structure of the computation representing it?
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Q: Can we automate conditioning?
Pr(X,)Y), 2 — Pr(Y|X =)

A: No, but almost.

X discrete | X continuous smooth p(X|S) given

vV X

[Freer and R., 2010] [Ackerman, Freer, and R.., 2011] ...
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Q: What about EFFICIENT inference?
Pr(X,)Y), 2 — Pr(Y|X =)

A: It’s complicated.

def hash_of_random_string(n):
str = random_binary_string(n)
return cryptographic_hash(str)

X discrete

X
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Q: What about EFFICIENT inference?
Pr(X,)Y), 2 — Pr(Y|X =)

A: It’s complicated.

def hash_of_random_string(n):
str = random_binary_string(n)
return cryptographic_hash(str)

Q: What explains the success of probabilistic
methods?
A: Structure like conditional independence.

e Bayes nets are representations of distributions that

X discrete expose conditional independence structure via a di-
rected graph.
>< e The complexity of exact inference in Bayes nets is

controlled by the the tree width of the graph.
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Q: Are probabilistic programs sufficiently general as
representations for stochastic processes?
We are missing a notion of approximation!

Theorem (Avigad, Freer, R., and Rute).

“Approximate samplers can represent conditional independencies that
exact samplers cannot.”
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Concrete example of an exchangeable sequence

Sum = 1.0; Total = 2.0

def next_draw():
global Sum, Total
y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y
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Concrete example of an exchangeable sequence

Sum

Daniel Roy, Cambridge

Sum = 1.0; Total = 2.0

def next_draw():
global Sum, Total
y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

theta = uniform(0,1)
def next_draw():
return bernoulli(theta)

>>> repeat (next_draw, 10)
[O’ 1’ 1, O) 1’ 1’ 1’ O, 1) O]

Surr

2 Tot al Tot al
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Exchangeability and Conditional Independence

Definition. A sequence Y = (Y7,Y3,...) of random variables is
exchangeable when

d
(}/1)"‘7Y’Vl):(Y‘IT(I)?"'?YTK‘(TL))? (1)
for all n € N and permutation 7 of {1,...,n}.
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for all n € N and permutation 7 of {1,...,n}.
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Definition. A sequence Y = (Y7,Y3,...) of random variables is
exchangeable when

d
(}/1)"‘7Y’Vl):(Y‘IT(I)?"'?YTK‘(TL))? (1)
for all n € N and permutation 7 of {1,...,n}.

Theorem (de Finetti). The following are equivalent:
1. (,Ys,...) is exchangeable;
2. (Y1,Ya,...) is conditionally i.i.d. given some 6;
3. Ezists f such that
(V1,Y2,Y3,...) £ (f(0,00), f(0,U), f(0,U3),...)  (2)
for i.di.d. uniform 0,Uy,Us,. ...

(0)
OBOBOROROINOMOBCRORG

Informally: using f, we can sample Y;’s in parallel.
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We can extract the hidden parallelism. [Freer and R., 2012]

Sum = 1.0; Total = 2.0 theta = uniform(0,1)
def next_draw(): def next_draw():
global Sum, Total return bernoulli(theta)

y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

@
o8080RoRC IO HORORORE
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We can extract the hidden parallelism. [Freer and R., 2012]

Sum = 1.0; Total = 2.0 theta = uniform(0,1)
def next_draw(): def next_draw():
global Sum, Total return bernoulli(theta)

y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y
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We can extract the hidden parallelism. [Freer and R., 2012]

Sum = 1.0; Total = 2.0 theta = uniform(0,1)
def next_draw(): def next_draw():
global Sum, Total return bernoulli(theta)

y = bernoulli(Sum/Total)
Sum += y; Total += 1
return y

()
P —

e ‘)

OROROAOROIEINOECEOROND

Theorem (Freer and R., 2012). The distribution of an
exchangeable sequence Y is computable if and only if there is an

almost computable f such that (Y1,Ya,...) 2 (f(8,U1), f(0,Us),...).
We can always recover hidden parallel structure, exposing
conditional independence to the inference engine.
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Where else can we find
hidden conditional independence?

Can we extract it for inference?

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 21/31



Exchangeable arrays in models of graph/relational data

Definition.
structure symmetry definition
sequence (Y;,) exchangeable (V) 4 (Yrn))
array (X; ;) separately exchangeable (X ;) £l (Xr(i)r (i)
array (X; ;) jointly exchangeable (Xi5) &l (X))
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Exchangeable arrays in models of graph/relational data

Definition.
structure symmetry definition
sequence (Y;,) exchangeable (V) 4 (Yrn))
array (X; ;) separately exchangeable (X ;) £l (Xr(i)r (i)
array (X; ;) jointly exchangeable (Xi5) &l (X))

Example. Adjacency matrix (X; ;); jen of an undirected graph on N.

Orbanz and R. (2014).
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Exchangeable arrays in models of graph/relational data

Theorem (Aldous-Hoover). 6,U;,V;, W, ; all i.i.d. uniform.

structure symmetry representation
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Exchangeable arrays in models of graph/relational data

Theorem (Aldous-Hoover). 6,U;,V;, W, ; all i.i.d. uniform.

structure symmetry representation
d d
array (Xi,;) (Xi,j)dZ (X (i), () (Xz',j)dz (f(6,V;,Uj, Wi 5))
sequence (V) (Yn) = (Yr(m)) (Yn) = (f(0,Un))
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Visualization of Aldous-Hoover theorem for
exchangeable arrays
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Visualization of Aldous-Hoover theorem for
exchangeable arrays
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Q: Is the Aldous-Hoover theorem computable?
A: No.

Theorem (Avigad, Freer, R., and Rute). There is an
exchangeable array X with a computable distribution but no
a.e. computable f satisfying Aldous-Hoover.

Even “computationally universal” probabilistic programming
languages cannot represent certain conditional independence
structure.

oo
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Computably-distributed array X, noncomputable f [AFRR]

The construction (an aliens dating site).

» Let rows/columns represent aliens.
X;; = 1 means aliens 7 and j are matched.

Each alien answers an infinitely-long questionnaire.

Question k € {1,2,...} has 2¥ possible answers.

Aliens hate answering questionnaires, so they answer randomly.

vV v v Y

Two aliens are matched if they agree on ANY question.
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Computably-distributed array X, noncomputable f [AFRR]

The construction (an aliens dating site).

» Let rows/columns represent aliens.
X;; = 1 means aliens 7 and j are matched.

Each alien answers an infinitely-long questionnaire.

>
» Question k € {1,2,...} has 2% possible answers.
» Aliens hate answering questionnaires, so they answer randomly.
» Two aliens are matched if they agree on ANY question.

Proof sketch.
» Note: f is “return 1 iff two aliens agree somewhere”.

> (f not a.e. computable) [Topological obstruction.]
Given two questionnaires, can’t accurately check in finite time.

» (array computably-distributed)

The probability of agreeing on any question n,n + 1,... decays.

Using only first n questions yields an approximation.

Approximating f sufficed to sample. Q: The converse?
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Silver lining? f is always “nearly computable”
Let p be a computable probability measure.

Definition. Say f is a.e. computable when
we can compute f on a set of y-measure one.

Definition (Kriesel-Lacombe (1957), Sanin (1968), Ko (1986)).
Say f is computably measurable when,

uniformly for any € > 0,

we can compute f on a set of y-measure at least 1 — €.

Theorem (Avigad, Freer, R., and Rute). The distribution of an
exchangeable array X is computable if and only if there is a
computably measurable function f satisfying Aldous-Hoover.
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Exchangeability and probabilistic programming

Exchangeable random structures possess a lot of structure.

(Y;) £ (£(6,U:))
(Xij) L (0,04, V5, Wi )

Can your favorite PPL represent f7
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Exchangeability and probabilistic programming

Exchangeable random structures possess a lot of structure.

(Y;) £ (£(6,U:))
(Xij) L (0,04, V5, Wi )

Can your favorite PPL represent f7

Theorem (FR12). f a.e. computable for sequences.
Theorem (AFRR). f merely computably measurable for arrays.

Approximation essential for capturing structure.

But do such arrays appear in practice?
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Do such arrays X appear in practice?

YES!

i = !
2y
\\\\\ ////
\/ a.e. computable f 1

X merely computably measurable f &ﬁfﬁr‘

\/ Infinite Relational Model
(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)
\/ Linear Relational Model
(R. and Teh 2009)
X Infinite Feature Relational Model
(Miller, Griffiths, and Jordan 2010)
X Random Function Model
(Lloyd, Orbanz, R., and Ghahramani 2012)
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Do such arrays X appear in practice?
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\/ a.e. computable f

(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)
\/ Linear Relational Model

(R. and Teh 2009)
X Infinite Feature Relational Model

(Miller, Griffiths, and Jordan 2010)
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(Lloyd, Orbanz, R., and Ghahramani 2012)
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Do such arrays X appear in practice?

- E P d 4

T
i =
\/ a.e. computable f
X merely computably measurable f &ﬁfﬁr‘

\/ Infinite Relational Model Dirichlet process

(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)

\/ Linear Relational Model Mondrian process

(R. and Teh 2009)

X Infinite Feature Relational Model
(Miller, Griffiths, and Jordan 2010)

X Random Function Model
(Lloyd, Orbanz, R., and Ghahramani 2012)
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Do such arrays X appear in practice?

YES!

2y
\\\\\ ////
\/ a.e. computable f 1

X merely computably measurable f &ﬁfﬁr‘

\/ Infinite Relational Model Dirichlet process
(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)

\/ Linear Relational Model Mondrian process
(R. and Teh 2009)

X Infinite Feature Relational Model — Beta process
(Miller, Griffiths, and Jordan 2010)

X Random Function Model
(Lloyd, Orbanz, R., and Ghahramani 2012)
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Do such arrays X appear in practice?

YES!

2y
\\\\\ ////
\/ a.e. computable f 1

X merely computably measurable f &ﬁfﬁr‘

\/ Infinite Relational Model Dirichlet process
(Kemp, Tenenbaum, Griffiths, Yamada, and Ueda 2008)

\/ Linear Relational Model Mondrian process
(R. and Teh 2009)

X Infinite Feature Relational Model — Beta process
(Miller, Griffiths, and Jordan 2010)

X Random Function Model Gaussian process
(Lloyd, Orbanz, R., and Ghahramani 2012)
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Talk Outline
1. The stochastic inference problem
2. Where are we now in probabilistic programming?

3. Approximability and Exchangeability:
When can we represent conditional independence?

4. Conclusion
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Conclusion

PPLs H PPLs

a.e. computability \ / computable measurability \

Daniel Roy, Cambridge Conditional Independence, Computability, and Measurability 31/31



Conclusion

PPLs H PPLs

a.e. computability \ / computable measurability \

1. One can see the gap in the literature.
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Conclusion

PPLs H PPLs

a.e. computability \ / computable measurability \

1. One can see the gap in the literature.
Key stochastic processes are merely computably measurable.

2. How do we use such representations?
Exact-approximate inference and computable measurability?

3. Need new programming language constructs.
Naively, we would need to thread €’s everywhere in program.
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