the coinductive resumption monad

maciej piróg and jeremy gibbons / u.oxford

mfpsxxx / ithaca, ny / june 2014

ingredient 1: resumptions

constructions to interpret processes

$$\nu X.(O \times X)^I$$
 [Milner, Plotkin, Abramsky]

$$RA = \mu X.M(FX + A)$$
 [Moggi]

$$R'A = \nu X.M(FX + A)$$
 [Goncharov & Schröder's, Piróg & Gibbons]

ingredient 2: modules over monads

M — i'm a monad

S — i'm a (right) M-module, that is, an endofunctor such that there exists

$$\overline{\mu}: SM \rightarrow S$$

coherent with the structure of M

ingredient 3: idealised monads

 $\langle M, \mu \rangle$ — i'm a monad and my own module

 $\langle S, \overline{\mu}^S \rangle \to \langle G, \overline{\mu}^G \rangle$ — morphisms between M-modules are coherent morphisms $S \to G$

M is idealised with an M-module S if there exists a module morphism $\sigma: S \to M$.

ingredient 4: completely iterative monads

M — i'm idealised with $\langle \overline{M}, \ \overline{\mu} : \overline{M}M \to \overline{M} \rangle$

$$e: X \rightarrow M(X + A)$$

i'm an equation morphism i'm guarded if i factor as:

$$X o \overline{M}(X+A) + A \xrightarrow{[\sigma, \eta \cdot \mathsf{inr}]} M(X+A)$$

for a guarded morphism

$$e:X\to M(X+A)$$

there exists unique $e^{\dagger}:X o MA$ such that

$$X \xrightarrow{e^{\dagger}} MA$$

$$\downarrow e \qquad \qquad \downarrow \mu_A$$

$$M(X + A) \xrightarrow{M[e^{\dagger}, \eta_A]} M^2A$$

we define a morphism between two cims

$$M$$
 w.r.t. $\langle \overline{M}, \overline{\mu}^M \rangle$ and T w.r.t. $\langle \overline{T}, \overline{\mu}^T \rangle$

a monad morphism $m: M \to T$ s.t. there exists

$$\overline{m}:\overline{M} o\overline{T}$$

with
$$\mathbf{m} \cdot \sigma^{\mathbf{M}} = \sigma^{\mathsf{T}} \cdot \overline{\mathbf{m}} : \overline{\mathbf{M}} \to \mathsf{T}$$

F — i'm an endofunctor!

$$F^{\infty}A = \nu X.FX + A$$

i'm a monad! i'm a cim w.r.t. *FF*∞! i'm the **free** cim!

[Aczel & Adámek & Milius & Velebil]

preparation

M — i'm a completely iterative monad!

S – i'm an M-module!

 MS^{∞}

for example:

$$\nu X.M(FX + A) \cong M(\nu X.FMX + A) \cong M(FM)^{\infty}$$

some **results**

M — i'm a completely iterative monad!

S – i'm an M-module!

 MS^{∞}

i'm a monad!

monadic structure — the construction

M has a lifting $\langle\!\langle M \rangle\!\rangle$ in the category of Eilenberg-Moore algebras of S^{∞} , aka the category of Elgot algebras.

hence, there is a distributive law $\lambda: S^{\infty}M \to MS^{\infty}$.

hence, there is a monadic structure on MS^{∞} .

example a

 \mathcal{D} — i'm the probability distribution monad

$$O = \{'a', 'b', \ldots\}$$
 — i'm an alphabet $O \times \mathcal{D}$ — i'm a \mathcal{D} -module

 $\mathcal{D}(O \times \mathcal{D})^{\infty}X$ — i model a probabilistic process with variables from X that outputs possibly infinite words

example a continues

example b

A — i'm an object of possible states

 $\mathcal{R}X = X^A$ — i'm a reader monad

 $WX = X \times A$ — i'm reader's module

$$\mathcal{RW}^{\infty}X = ((-\times A)^{\infty}X)^A$$
 — i'm a "logging" state monad

M — i'm a completely iterative monad!

S - i'm an M-module!

 MS^{∞}

i'm a monad!
i'm a completely iterative monad!

MS^{∞}

is a cim with respect to

$$\overline{M}S^{\infty} + MSS^{\infty}$$

back to example a

$$e:X\to \mathcal{D}(O\times\mathcal{D})^\infty(X+A)$$
 — transition system

$$\rho: 1 \rightarrow X$$
 — initial state

$$e^{\dagger} \cdot \rho : 1 \rightarrow \mathcal{D}(O \times \mathcal{D})^{\infty} A$$

the pessimistic module

 $\mathcal{D}'X = \mathcal{D}(X+1)$ — i'm the probability distribution monad with failure and a cim with respect to 'at least 50% failure'

$$\mathcal{D}'(O \times \mathcal{D}')^{\infty}X$$

M — i'm a completely iterative monad!

S – i'm an M-module!

 MS^{∞}

i'm a monad!
i'm a completely iterative monad!
i instantiate to a coproduct

$M(FM)^*$

is a coproduct of M and F^* in the category of monads

[Hyland & Plotkin & Power]

it turns out that

$$M(FM)^{\infty}$$

is a coproduct of M and F^{∞} in the category of completely iterative monads

actually...

 $M(FM)^{\infty}$ is the coproduct of M and F^{∞} in the category of monads completely iterative w.r.t. two-sided ideals.

but don't worry...

this category is a full reflective subcategory of the original one with an identity-on-the-monadic-structure left adjoint.

dessert: future work

semantics of processes along the lines of Abramsky *et al.*'s interaction categories?

least- vs greatest fixed points?

finitary case?

M — i'm a completely iterative monad!

S – i'm an M-module!

 MS^{∞}

i'm a monad! i'm a cim! am i the free cim?

the end

thank you for your attention / do read the paper / do ask me some questions