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Introduction

Summary of Results

Probabilistic bisimulation can be defined for continuous
state-space systems. [LICS97]
Logical characterization. [LICS98,Info and Comp 2002]
Metrics. [CONCUR99, TCS2004, UAI 2004, UAI 2005, SIAM J.
Comp. 2011, QEST 2012]
Approximation of LMPs. [LICS00,Info and Comp 2003, QEST
2005]
Weak bisimulation. [LICS02,CONCUR02]
Real time. [QEST 2004, JLAP 2003, LMCS 2006]
Event bisimulation [CMCS 2004, Info and Comp 2006]
Duality [LICS 2013, MFCS 2013, MFPS 2014]
Approximation by averaging [CONCUR 2003, ICALP 2009, JACM
2014]
Logic and approximation [MFCS 2012]
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Discrete probabilistic transition systems

Definition

Just like a labelled transition system with probabilities associated
with the transitions.

(S,L,∀a ∈ L Ta : S× S −→ [0, 1])

The model is reactive: All probabilistic data is internal - no
probabilities associated with environment behaviour.
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Discrete probabilistic transition systems

Examples of PTSs
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Discrete probabilistic transition systems

Bisimulation for PTS: Larsen and Skou

Consider
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Should s0 and t0 be bisimilar?

Yes, but we need to add the probabilities.
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Discrete probabilistic transition systems

The Official Definition

Let S = (S,L,Ta) be a PTS. An equivalence relation R on S is a
bisimulation if whenever sRs′, with s, s′ ∈ S, we have that for all
a ∈ A and every R-equivalence class, A, Ta(s,A) = Ta(s′,A).
The notation Ta(s,A) means “the probability of starting from s and
jumping to a state in the set A.”
Two states are bisimilar if there is some bisimulation relation R
relating them.

Panangaden (McGill) Labelled Markov Processes MFPS XXX 7 / 41



Labelled Markov processes

What are labelled Markov processes?

Labelled Markov processes are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.

All probabilistic data is internal - no probabilities associated with
environment behaviour.
We observe the interactions - not the internal states.
In general, the state space of a labelled Markov process may
be a continuum.
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Labelled Markov processes

Motivation

Model and reason about systems with continuous state spaces or
continuous time evolution or both.

hybrid control systems; e.g. flight management systems.
telecommunication systems with spatial variation; e.g. cell phones
performance modelling,
continuous time systems,
probabilistic process algebra with recursion.
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Labelled Markov processes

An Example of a Continuous-State System
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a - turn left

b - turn right

c - straight
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Labelled Markov processes

Actions

a - turn left, b - turn right, c - keep on course
The actions move the craft sideways with some probability distributions
on how far it moves. The craft may “drift” even with c. The action a (b)
must be disabled when the craft is too near the left (right) boundary.
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Labelled Markov processes

Schematic of Example

L

a,c !! a,c
-- M

a,b,c
==b,c

mm
a,c

-- R

b,c}}

b,c
mm

This picture is misleading: unless very special conditions hold the
process cannot be compressed into an equivalent (?) finite-state
model. In general, the transition probabilities should depend on
the position.
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Labelled Markov processes

Stochastic Kernels

A stochastic kernel (Markov kernel) is a function h : S× Σ −→ [0, 1]
with (a) h(s, ·) : Σ −→ [0, 1] a (sub)probability measure and (b)
h(·,A) : X −→ [0, 1] a measurable function.

Though apparantly asymmetric, these are the stochastic
analogues of binary relations
and the uncountable generalization of a matrix.
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Labelled Markov processes

Formal Definition of LMPs

An LMP is a tuple (S,Σ,L,∀α ∈ L.τα) where τα : S×Σ −→ [0, 1] is a
transition probability function such that
∀s : S.λA : Σ.τα(s,A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s,A) is a measurable function.
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Labelled Markov processes

Example of LMP

initial state
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For x ∈ [0, 1), τa(x, [2.1, 2.4]) = x
4 0.3
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Labelled Markov processes

Larsen-Skou Bisimulation

Let S = (S, i,Σ, τ) be a labelled Markov process. An equivalence
relation R on S is a bisimulation if whenever sRs′, with s, s′ ∈ S, we
have that for all a ∈ A and every R-closed measurable set A ∈ Σ,
τa(s,A) = τa(s′,A).
Two states are bisimilar if they are related by a bisimulation
relation.
Can be extended to bisimulation between two different LMPs.
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Labelled Markov processes

Larsen-Skou Bisimulation - Example
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Labelled Markov processes

Logical Characterization

L ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
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Labelled Markov processes

Event bisimulation

In measure theory one should focus on measurable sets rather
than on points.

Vincent Danos proposed the idea of event bisimulation, which was
developed by him and Desharnais, Laviolette and P.

Event Bisimulation
Given a LMP (X,Σ, τa), an event-bisimulation is a sub-σ-algebra Λ of
Σ such that (X,Λ, τa) is still an LMP.
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Metrics

Process Equivalence is Fundamental

Markov chains:
Lumpability
Labelled Markov processes: Bisimulation
Markov decision processes: Bisimulation
Labelled Concurrent Markov Chains with τ transitions: Weak
Bisimulation
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Metrics

But...

In the context of probability is exact equivalence reasonable?

We say “no”. A small change in the probability distributions may
result in bisimilar processes no longer being bisimilar though they
may be very “close” in behaviour.
Instead one should have a (pseudo)metric for probabilistic
processes.
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Metrics

A metric-based approximate viewpoint

Move from equality between processes to distances between
processes (Jou and Smolka 1990).

Formalize distance as a metric:

d(s, s) = 0, d(s, t) = d(t, s), d(s, u) ≤ d(s, t) + d(t, u).

Quantitative analogue of an equivalence relation.
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Metrics

Summary of results

Establishing closeness of states: Coinduction

Distinguishing states: Real-valued modal logics
Equational and logical views coincide: Metrics yield same
distances as real-valued modal logics
Compositional reasoning by Non-Expansivity.
Process-combinators take nearby processes to nearby processes.

d(s1, t1) < ε1, d(s2, t2) < ε2

d(s1 || s2, t1 ||t2) < ε1 + ε2

Results work for Markov chains, Labelled Markov processes,
Markov decision processes and Labelled Concurrent Markov
chains with τ -transitions.
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Metrics

Criteria on Metrics

Soundness:
d(s, t) = 0⇔ s, t are bisimilar

Stability of distance under temporal evolution:“Nearby states stay
close forever.”
Metrics should be computable (efficiently?).
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Metrics

Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: s R t if:

(s −→ P)⇒ [t −→ Q,P =R Q]

(t −→ Q)⇒ [s −→ P,P =R Q]

where P =R Q if
(∀R− closed E) P(E) = Q(E)
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Metrics

A putative definition of a metric-bisimulation

m is a metric-bisimulation if: m(s, t) < ε⇒:

s −→ P⇒ t −→ Q, m(P,Q) < ε

t −→ Q⇒ s −→ P, m(P,Q) < ε

Problem: what is m(P,Q)? — Type mismatch!!
Need a way to lift distances from states to a distances on
distributions of states.
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Metrics

A detour: Kantorovich metric

Metrics on probability measures on metric spaces.

M: 1-bounded pseudometrics on states.

d(µ, ν) = sup
f
|
∫

fdµ−
∫

fdν|, f 1-Lipschitz

Arises in the solution of an LP problem: transshipment.
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Metrics

An LP version for Finite-State Spaces

When state space is finite: Let P,Q be probability distributions. Then:

m(P,Q) = max
∑

i

(P(si)− Q(si))ai

subject to:
∀i.0 ≤ ai ≤ 1
∀i, j. ai − aj ≤ m(si, sj).
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Metrics

The Dual Form

Dual form from Worrell and van Breugel:

min
∑

i,j

lijm(si, sj) +
∑

i

xi +
∑

j

yj

subject to:
∀i.
∑

j lij + xi = P(si)

∀j.
∑

i lij + yj = Q(sj)
∀i, j. lij, xi, yj ≥ 0.

We prove many equations by using the primal form to show one
direction and the dual to show the other.
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Metrics

Return from Detour

Summary of detour: Given a metric on states in a metric space, can lift
to a metric on probability distributions on states.
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Metrics

Metric “Bisimulation”

m is a metric-bisimulation if: m(s, t) < ε⇒:

s −→ P⇒ t −→ Q, m(P,Q) < ε

t −→ Q⇒ s −→ P, m(P,Q) < ε

The required canonical metric on processes is the least such: ie.
the distances are the least possible.
Thm: Canonical least metric exists. Usual fixed-point theory
arguments.
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Metrics

Metrics: some details

M: 1-bounded pseudometrics on states with ordering

m1 � m2 if (∀s, t) [m1(s, t) ≥ m2(s, t)]

(M,�) is a complete lattice.

⊥(s, t) =

{
0 if s = t
1 otherwise

>(s, t) = 0, (∀s, t)
(u{mi}(s, t) = sup

i
mi(s, t)
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Metrics

Maximum fixed point definition

Let m ∈M. F(m)(s, t) < ε if:

s −→ P⇒ t −→ Q, m(P,Q) < ε

t −→ Q⇒ s −→ P, m(P,Q) < ε

F(m)(s, t) can be given by an explicit expression.
F is monotone onM, and metric-bisimulation is the greatest fixed
point of F.
The closure ordinal of F is ω.
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Metrics

A logical metric

Develop a real-valued “modal logic” based on the analogy due to
Kozen:

Program Logic Probabilistic Logic
State s Distribution µ
Formula φ Random Variable f
Satisfaction s |= φ

∫
f dµ

Define a metric based on how closely the random variables agree.
We did this before the LP based techniques became available.
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Metrics

Real-valued Modal Logic

f ::= 1 | max(f , f ) | h ◦ f | 〈a〉.f

1(s) = 1 True
max(f1, f2)(s) = max(f1(s), f2(s)) Conjunction
h ◦ f (s) = h(f (s)) Lipschitz
〈a〉.f (s) = γ

∫
s′∈S f (s′)τa(s, ds′) a-transition

where h 1-Lipschitz : [0, 1]→ [0, 1] and γ ∈ (0, 1].
d(s, t) = supf |f (s)− f (t)|
Thm: d coincides with the canonical metric-bisimulation.
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Metrics

The role of γ

γ discounts the value of future steps.

γ < 1 and γ = 1 yield very different topologies.
For γ < 1 there is an LP-based strongly-polynomial (in the number
of constraints, and the number of bits of precision required)
algorithm to compute the metric.
For γ = 1 an algorithm to compute the metric has been discovered
by van Breugel et al.
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Approximation

Approximation Results

Our main result is a systematic approximation scheme for labelled
Markov processes. The set of LMPs is a Polish space.

For any LMP, we explicitly provide a (countable) sequence of
approximants to it such that:

1 For every logical property satisfied by a process, there is an
element of the chain that also satisfies the property.

2 The sequence of approximants converges, in the metric defined
before, to the process that is being approximated.

The essential idea: approximate bisimulation.
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Approximation

Domain-theoretic approximation of LMPs

we establish the following equivalence of categories:

LMP ' Proc

where LMP is the category with objects LMPs and with
morphisms simulations; and Proc is the solution to the recursive
domain equation

Proc '
∏

Labels

PProb(Proc).

We show that there is a perfect match between:
bisimulation and equality in Proc,
simulation and the partial order of Proc,
strict simulation and way below in Proc.

The sequence of approximants is a directed set in the simulation
ordering and the process being approximated is the sup of this
directed set.
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Approximation

Approximation by averaging

The latest idea is to view LMPs as function transformers.

Functorial view of expectation values.
Then bisimulation is naturally dualized and gives event
bisimulation.
Approximation is formalized by “coarsening the σ-algebra” rather
than by clustering points.
The approximations form a profinite family that gives the
bisimulation-minimal version of the original LMP as a projective
limit.
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Approximation

Conclusions

A very fast overview of some of the work on LMPs.

I have skipped the work by Mislove et al. on C∗-algebra duality for
LMPs and also on testing equivalences.
Also many results by Doberkat, d’Argenio, Varacca,
Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
Josée: Logical characterization of bisimulation.
Radu: Completeness theorems and duality.
Doina: Machine learning.
Probabilistic reasoning, modelling and programming is in its
heyday.
A major theme of this MFPS: Invited talk and special session plus
contributed talks.
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Approximation

The End

Thanks for listening!

Buy the book: Labelled Markov Processes Imperial College Press,
2009.

Available for free on various pirate websites.
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