Labelled Markov Processes

A tutorial overview

Prakash Panangaden

School of Computer Science
McGill University

12th June 2014, Cornell University
Collaborators

Josée Desharnais
Collaborators

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
Collaborators

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
Collaborators

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Philippe Chaput, Vincent Danos, Gordon Plotkin
Collaborators

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Philippe Chaput, Vincent Danos, Gordon Plotkin
- François Laviolette
Collaborators

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Philippe Chaput, Vincent Danos, Gordon Plotkin
- Françoise Laviolette
- Norm Ferns, Doina Precup, Gheorghe Comanici
Collaborators

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Philippe Chaput, Vincent Danos, Gordon Plotkin
- François Laviolette
- Norm Ferns, Doina Precup, Gheorghe Comanici
- Dexter Kozen, Kim Larsen, Radu Mardare
Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
Logical characterization. [LICS98, Info and Comp 2002]
Approximation of LMPs. [LICS00, Info and Comp 2003, QEST 2005]
Weak bisimulation. [LICS02, CONCUR02]
Real time. [QEST 2004, JLAP 2003, LMCS 2006]
Event bisimulation [CMCS 2004, Info and Comp 2006]
Duality [LICS 2013, MFCS 2013, MFPS 2014]
Approximation by averaging [CONCUR 2003, ICALP 2009, JACM 2014]
Logic and approximation [MFCS 2012]
Definition

Just like a labelled transition system with probabilities associated with the transitions.
Definition

Just like a labelled transition system with probabilities associated with the transitions.

\[(S, L, \forall a \in L \ T_a : S \times S \rightarrow [0, 1])\]
Definition

- Just like a labelled transition system with probabilities associated with the transitions.

\[(S, L, \forall a \in L \ T_a : S \times S \rightarrow [0, 1]) \]

- The model is reactive: All probabilistic data is internal - no probabilities associated with environment behaviour.
Examples of PTSs
Bisimulation for PTS: Larsen and Skou

Consider

\[
\begin{align*}
P_1 & \quad t_0 \\
& \quad \downarrow \quad \downarrow \\
& \quad t_1 \quad t_2 \\
& \quad a[\frac{1}{3}] \quad a[\frac{2}{3}] \\
& \quad \downarrow \quad \downarrow \\
& \quad t_3 \\
& \quad b[1] \\
\end{align*}
\]

\[
\begin{align*}
P_2 & \quad s_0 \\
& \quad \downarrow \quad \downarrow \\
& \quad s_1 \quad s_2 \\
& \quad a[\frac{1}{3}] \quad a[\frac{1}{3}] \\
& \quad \downarrow \quad \downarrow \\
& \quad s_3 \quad s_4 \\
& \quad b[1] \quad b[1]
\end{align*}
\]

Should \(s_0 \) and \(t_0 \) be bisimilar?
Consider

Should s_0 and t_0 be bisimilar?

Yes, but we need to add the probabilities.
Let $S = (S, L, T_a)$ be a PTS. An equivalence relation R on S is a **bisimulation** if whenever sR_s', with $s, s' \in S$, we have that for all $a \in A$ and every R-equivalence class, A, $T_a(s, A) = T_a(s', A)$.

The notation $T_a(s, A)$ means “the probability of starting from s and jumping to a state in the set A.”

Two states are bisimilar if there is some bisimulation relation R relating them.
What are labelled Markov processes?

Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
What are labelled Markov processes?

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.

- All probabilistic data is internal - no probabilities associated with environment behaviour.
What are labelled Markov processes?

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.

- All probabilistic data is internal - no probabilities associated with environment behaviour.

- We observe the interactions - not the internal states.
What are labelled Markov processes?

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal - no probabilities associated with environment behaviour.
- We observe the interactions - not the internal states.
- In general, the state space of a labelled Markov process may be a continuum.
Motivation

Model and reason about systems with continuous state spaces or continuous time evolution or both.

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,
- continuous time systems,
- probabilistic process algebra with recursion.
An Example of a Continuous-State System

a - turn left

b - turn right

c - straight
Actions

\(a \) - turn left, \(b \) - turn right, \(c \) - keep on course

The actions move the craft sideways with some probability distributions on how far it moves. The craft may “drift” even with \(c \). The action \(a \) (\(b \)) must be disabled when the craft is too near the left (right) boundary.
This picture is misleading: unless very special conditions hold the process cannot be compressed into an equivalent (?) finite-state model. In general, the transition probabilities should depend on the position.
A stochastic kernel (Markov kernel) is a function $h : S \times \Sigma \rightarrow [0, 1]$ with (a) $h(s, \cdot) : \Sigma \rightarrow [0, 1]$ a (sub)probability measure and (b) $h(\cdot, A) : X \rightarrow [0, 1]$ a measurable function.
A stochastic kernel (Markov kernel) is a function \(h : S \times \Sigma \rightarrow [0, 1] \) with (a) \(h(s, \cdot) : \Sigma \rightarrow [0, 1] \) a (sub)probability measure and (b) \(h(\cdot, A) : X \rightarrow [0, 1] \) a measurable function.

Though apparently asymmetric, these are the stochastic analogues of binary relations.
Stochastic Kernels

- A stochastic kernel (Markov kernel) is a function $h : S \times \Sigma \rightarrow [0, 1]$ with (a) $h(s, \cdot) : \Sigma \rightarrow [0, 1]$ a (sub)probability measure and (b) $h(\cdot, A) : X \rightarrow [0, 1]$ a measurable function.

- Though apparently asymmetric, these are the stochastic analogues of binary relations.

- and the uncountable generalization of a matrix.
Formal Definition of LMPs

- An LMP is a tuple \((S, \Sigma, L, \forall \alpha \in L. \tau_\alpha)\) where \(\tau_\alpha : S \times \Sigma \rightarrow [0, 1]\) is a transition probability function such that
- \(\forall s : S. \lambda A : \Sigma. \tau_\alpha(s, A)\) is a subprobability measure and
- \(\forall A : \Sigma. \lambda s : S. \tau_\alpha(s, A)\) is a measurable function.
Example of LMP

For $x \in [0, 1)$, $\tau_a(x, [2.1, 2.4]) = \frac{x}{4} 0.3$
Larsen-Skou Bisimulation

Let $S = (S, i, \Sigma, \tau)$ be a labelled Markov process. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-closed measurable set $A \in \Sigma$, $\tau_a(s, A) = \tau_a(s', A)$.

Two states are bisimilar if they are related by a bisimulation relation.

Can be extended to bisimulation between two different LMPs.
Larsen-Skou Bisimulation - Example
Logical Characterization

\[\mathcal{L} ::= T | \phi_1 \land \phi_2 | \langle a \rangle_q \phi \]

We say \(s \models \langle a \rangle_q \phi \) iff

\[\exists A \in \Sigma. (\forall s' \in A. s' \models \phi) \land (\tau_a(s, A) > q). \]
Logical Characterization

\[\mathcal{L} ::= T | \phi_1 \land \phi_2 | \langle a \rangle_q \phi \]

We say \(s \models \langle a \rangle_q \phi \) iff

\[\exists A \in \Sigma.(\forall s' \in A. s' \models \phi) \land (\tau_a(s, A) > q). \]

Two systems are bisimilar iff they obey the same formulas of \(\mathcal{L} \).
[DEP 1998 LICS, I and C 2002]
In measure theory one should focus on measurable sets rather than on points.
Event bisimulation

- In measure theory one should focus on measurable sets rather than on points.
- Vincent Danos proposed the idea of event bisimulation, which was developed by him and Desharnais, Laviolette and P.
Event bisimulation

- In measure theory one should focus on measurable sets rather than on points.
- Vincent Danos proposed the idea of event bisimulation, which was developed by him and Desharnais, Laviolette and P.

Event Bisimulation

Given a LMP \((X, \Sigma, \tau_a)\), an **event-bisimulation** is a sub-\(\sigma\)-algebra \(\Lambda\) of \(\Sigma\) such that \((X, \Lambda, \tau_a)\) is still an LMP.
Process Equivalence is Fundamental

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation
- Labelled Concurrent Markov Chains with τ transitions: Weak Bisimulation
But...

- In the context of probability is exact equivalence reasonable?
But...

- In the context of probability is exact equivalence reasonable?
- We say “no”. A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very “close” in behaviour.
In the context of probability is exact equivalence reasonable?

We say “no”. A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very “close” in behaviour.

Instead one should have a (pseudo)metric for probabilistic processes.
A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).

Formalize distance as a metric:

\[d(s, s) = 0, \quad d(s, t) = d(t, s), \quad d(s, u) \leq d(s, t) + d(t, u). \]

Quantitative analogue of an equivalence relation.
A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Formalize distance as a metric:

\[d(s, s) = 0, \quad d(s, t) = d(t, s), \quad d(s, u) \leq d(s, t) + d(t, u). \]

Quantitative analogue of an equivalence relation.
Summary of results

- Establishing closeness of states: Coinduction
Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by *Non-Expansivity*. Process-combinators take nearby processes to nearby processes.

\[
d(s_1, t_1) < \epsilon_1, \quad d(s_2, t_2) < \epsilon_2 \\
\Rightarrow d(s_1 \parallel s_2, t_1 \parallel t_2) < \epsilon_1 + \epsilon_2
\]
Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by *Non-Expansivity*. Process-combinators take nearby processes to nearby processes.

\[
d(s_1, t_1) < \epsilon_1, \quad d(s_2, t_2) < \epsilon_2
\]
\[
d(s_1 || s_2, t_1 || t_2) < \epsilon_1 + \epsilon_2
\]

- Results work for Markov chains, Labelled Markov processes, Markov decision processes and Labelled Concurrent Markov chains with \(\tau\)-transitions.
Criteria on Metrics

- Soundness:
 \[d(s, t) = 0 \iff s, t \text{ are bisimilar} \]

- Stability of distance under temporal evolution: “Nearby states stay close forever.”

- Metrics should be computable (efficiently?).
Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: $s \sim R t$ if:

$$(s \xrightarrow{} P) \Rightarrow [t \xrightarrow{} Q, P =_R Q]$$

$$(t \xrightarrow{} Q) \Rightarrow [s \xrightarrow{} P, P =_R Q]$$

where $P =_R Q$ if

$$(\forall R - \text{closed } E) P(E) = Q(E)$$
A putative definition of a metric-bisimulation

- m is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$

\[
\begin{align*}
 s &\quad \xrightarrow{} P \quad \Rightarrow \quad t \quad \xrightarrow{} Q, \quad m(P, Q) < \epsilon \\
 t &\quad \xrightarrow{} Q \quad \Rightarrow \quad s \quad \xrightarrow{} P, \quad m(P, Q) < \epsilon
\end{align*}
\]
A putative definition of a metric-bisimulation

- m is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$

 \[
 s \rightarrow P \Rightarrow t \rightarrow Q, \quad m(P, Q) < \epsilon
 \]
 \[
 t \rightarrow Q \Rightarrow s \rightarrow P, \quad m(P, Q) < \epsilon
 \]

- Problem: what is $m(P, Q)$? — Type mismatch!!
A putative definition of a metric-bisimulation

- m is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$

 $s \xrightarrow{P} t \xrightarrow{Q}, \quad m(P, Q) < \epsilon$

 $t \xrightarrow{Q} s \xrightarrow{P}, \quad m(P, Q) < \epsilon$

- Problem: what is $m(P, Q)$? — Type mismatch!!
- Need a way to lift distances from states to a distances on distributions of states.
A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- \mathcal{M}: 1-bounded pseudometrics on states.
A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- \mathcal{M}: 1-bounded pseudometrics on states.

$$d(\mu, \nu) = \sup_f | \int f d\mu - \int f d\nu |, f \text{ 1-Lipschitz}$$
A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- \mathcal{M}: 1-bounded pseudometrics on states.

$$d(\mu, \nu) = \sup_f |\int f d\mu - \int f d\nu|, f \text{ 1-Lipschitz}$$

- Arises in the solution of an LP problem: transshipment.
An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions. Then:

$$m(P, Q) = \max \sum_i (P(s_i) - Q(s_i))a_i$$

subject to:

$$\forall i. 0 \leq a_i \leq 1$$
$$\forall i, j. a_i - a_j \leq m(s_i, s_j).$$
The Dual Form

- Dual form from Worrell and van Breugel:

\[
\min \sum_{i,j} l_{ij}m(s_i, s_j) + \sum_i x_i + \sum_j y_j
\]

subject to:

\[
\forall i. \sum_j l_{ij} + x_i = P(s_i) \\
\forall j. \sum_i l_{ij} + y_j = Q(s_j) \\
\forall i,j. l_{ij}, x_i, y_j \geq 0.
\]

- We prove many equations by using the primal form to show one direction and the dual to show the other.
Return from Detour

Summary of detour: Given a metric on states in a metric space, can lift to a metric on probability distributions on states.
Metric “Bisimulation”

- \(m \) is a metric-bisimulation if: \(m(s, t) < \epsilon \Rightarrow: \)

\[
s \xrightarrow{} P \Rightarrow t \xrightarrow{} Q, \quad m(P, Q) < \epsilon
\]

\[
t \xrightarrow{} Q \Rightarrow s \xrightarrow{} P, \quad m(P, Q) < \epsilon
\]

- The required canonical metric on processes is the least such: ie. the distances are the least possible.

- Thm: Canonical least metric exists. Usual fixed-point theory arguments.
Metrics: some details

- \mathcal{M}: 1-bounded pseudometrics on states with ordering

$$ m_1 \preceq m_2 \text{ if } (\forall s, t) \left[m_1(s, t) \geq m_2(s, t) \right] $$

- (\mathcal{M}, \preceq) is a complete lattice.

$$ \bot(s, t) = \begin{cases} 0 & \text{if } s = t \\ 1 & \text{otherwise} \end{cases} $$

$$ \top(s, t) = 0, (\forall s, t) $$

$$ (\sqcap \{m_i\})(s, t) = \sup_i m_i(s, t) $$
Maximum fixed point definition

Let \(m \in M \). \(F(m)(s, t) < \epsilon \) if:

\[
\begin{align*}
 s \rightarrow P & \Rightarrow t \rightarrow Q, \quad m(P, Q) < \epsilon \\
 t \rightarrow Q & \Rightarrow s \rightarrow P, \quad m(P, Q) < \epsilon
\end{align*}
\]
Maximum fixed point definition

- Let $m \in \mathcal{M}$. $F(m)(s, t) < \epsilon$ if:

 \[s \rightarrow P \Rightarrow t \rightarrow Q, \quad m(P, Q) < \epsilon \]

 \[t \rightarrow Q \Rightarrow s \rightarrow P, \quad m(P, Q) < \epsilon \]

- $F(m)(s, t)$ can be given by an explicit expression.
Maximum fixed point definition

- Let $m \in \mathcal{M}$. $F(m)(s, t) < \epsilon$ if:

$$s \rightarrow P \Rightarrow t \rightarrow Q, \quad m(P, Q) < \epsilon$$

$$t \rightarrow Q \Rightarrow s \rightarrow P, \quad m(P, Q) < \epsilon$$

- $F(m)(s, t)$ can be given by an explicit expression.
- F is monotone on \mathcal{M}, and metric-bisimulation is the greatest fixed point of F.
Maximum fixed point definition

- Let $m \in M$. $F(m)(s, t) < \epsilon$ if:

 $s \rightarrow P \Rightarrow t \rightarrow Q, \quad m(P, Q) < \epsilon$

 $t \rightarrow Q \Rightarrow s \rightarrow P, \quad m(P, Q) < \epsilon$

- $F(m)(s, t)$ can be given by an explicit expression.
- F is monotone on M, and metric-bisimulation is the greatest fixed point of F.
- The closure ordinal of F is ω.
A logical metric

Develop a real-valued “modal logic” based on the analogy due to Kozen:

<table>
<thead>
<tr>
<th>Program Logic</th>
<th>Probabilistic Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>State s</td>
<td>Distribution μ</td>
</tr>
<tr>
<td>Formula ϕ</td>
<td>Random Variable f</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>$s \models \phi = \int f , d\mu$</td>
</tr>
</tbody>
</table>
A logical metric

- Develop a real-valued “modal logic” based on the analogy due to Kozen:

<table>
<thead>
<tr>
<th>Program Logic</th>
<th>Probabilistic Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>State s</td>
<td>Distribution μ</td>
</tr>
<tr>
<td>Formula ϕ</td>
<td>Random Variable f</td>
</tr>
<tr>
<td>Satisfaction $s \models \phi$</td>
<td>$\int f , d\mu$</td>
</tr>
</tbody>
</table>

- Define a metric based on how closely the random variables agree.
A logical metric

- Develop a real-valued “modal logic” based on the analogy due to Kozen:

<table>
<thead>
<tr>
<th>Program Logic</th>
<th>Probabilistic Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>State s</td>
<td>Distribution μ</td>
</tr>
<tr>
<td>Formula ϕ</td>
<td>Random Variable f</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>$s \models \phi$, $\int f , d\mu$</td>
</tr>
</tbody>
</table>

- Define a metric based on how closely the random variables agree.
- We did this before the LP based techniques became available.
Real-valued Modal Logic

\[f ::= 1 \mid \max(f, f) \mid h \circ f \mid \langle a \rangle f \]
Real-valued Modal Logic

\[f ::= 1 \mid \max(f, f) \mid h \circ f \mid \langle a \rangle f \]

1(s) = 1 \quad \text{True}

\max(f_1, f_2)(s) = \max(f_1(s), f_2(s)) \quad \text{Conjunction}

h \circ f(s) = h(f(s)) \quad \text{Lipschitz}

\langle a \rangle f(s) = \gamma \int_{s' \in S} f(s') \tau_a(s, ds') \quad \text{a-transition}

where \(h \) 1-Lipschitz : \([0, 1] \rightarrow [0, 1]\) and \(\gamma \in (0, 1] \).
Real-valued Modal Logic

\[f ::= 1 \mid \max(f, f) \mid h \circ f \mid \langle a \rangle f \]

- \(1(s) = 1\) \hspace{1cm} True
- \(\max(f_1, f_2)(s) = \max(f_1(s), f_2(s))\) \hspace{1cm} Conjunction
- \(h \circ f(s) = h(f(s))\) \hspace{1cm} Lipschitz
- \(\langle a \rangle f(s) = \gamma \int_{s' \in S} f(s') \tau_a(s, ds')\) \hspace{1cm} \(a\)-transition

where \(h\) 1-Lipschitz : \([0, 1] \rightarrow [0, 1]\) and \(\gamma \in (0, 1]\).

\[d(s, t) = \sup_f |f(s) - f(t)| \]
Real-valued Modal Logic

\[f ::= 1 | \max(f, f) | h \circ f | \langle a \rangle f \]

\[1(s) = 1 \quad \text{True} \]
\[\max(f_1, f_2)(s) = \max(f_1(s), f_2(s)) \quad \text{Conjunction} \]
\[h \circ f(s) = h(f(s)) \quad \text{Lipschitz} \]
\[\langle a \rangle f(s) = \gamma \int_{s' \in S} f(s') \tau_a(s, ds') \quad \text{a-transition} \]

where \(h \) 1-Lipschitz \(: [0, 1] \rightarrow [0, 1] \) and \(\gamma \in (0, 1] \).

\[d(s, t) = \sup_f |f(s) - f(t)| \]

Thm: \(d \) coincides with the canonical metric-bisimulation.
The role of γ

- γ discounts the value of future steps.
The role of γ

- γ discounts the value of future steps.
- $\gamma < 1$ and $\gamma = 1$ yield very different topologies.
The role of γ

- γ discounts the value of future steps.
- $\gamma < 1$ and $\gamma = 1$ yield very different topologies.
- For $\gamma < 1$ there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.
The role of γ

- γ discounts the value of future steps.
- $\gamma < 1$ and $\gamma = 1$ yield very different topologies.
- For $\gamma < 1$ there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.
- For $\gamma = 1$ an algorithm to compute the metric has been discovered by van Breugel et al.
Our main result is a systematic approximation scheme for labelled Markov processes. The set of LMPs is a Polish space.
Approximation Results

Our main result is a systematic approximation scheme for labelled Markov processes. The set of LMPs is a Polish space.

For any LMP, we explicitly provide a (countable) sequence of approximants to it such that:

1. For every logical property satisfied by a process, there is an element of the chain that also satisfies the property.
2. The sequence of approximants converges, in the metric defined before, to the process that is being approximated.
Our main result is a systematic approximation scheme for labelled Markov processes. The set of LMPs is a Polish space.

For any LMP, we explicitly provide a (countable) sequence of approximants to it such that:

1. For every logical property satisfied by a process, there is an element of the chain that also satisfies the property.
2. The sequence of approximants converges, in the metric defined before, to the process that is being approximated.

The essential idea: approximate bisimulation.
Domain-theoretic approximation of LMPs

we establish the following equivalence of categories:

\[\text{LMP} \simeq \text{Proc} \]

where \text{LMP} is the category with objects LMPs and with morphisms simulations; and \text{Proc} is the solution to the recursive domain equation

\[\text{Proc} \simeq \prod_{\text{Labels}} \mathcal{P}_{\text{Prob}}(\text{Proc}). \]
Domain-theoretic approximation of LMPs

- we establish the following equivalence of categories:
 \[
 \text{LMP} \simeq \text{Proc}
 \]
 where \text{LMP} is the category with objects LMPs and with morphisms simulations; and \text{Proc} is the solution to the recursive domain equation
 \[
 \text{Proc} \simeq \prod_{\text{Labels}} \mathcal{P}_{\text{Prob}}(\text{Proc}).
 \]

- We show that there is a perfect match between:
 - bisimulation and equality in \text{Proc},
 - simulation and the partial order of \text{Proc},
 - strict simulation and way below in \text{Proc}.
Domain-theoretic approximation of LMPs

- We establish the following equivalence of categories:
 \[\text{LMP} \simeq \text{Proc} \]

 where \(\text{LMP} \) is the category with objects LMPs and with morphisms simulations; and \(\text{Proc} \) is the solution to the recursive domain equation

 \[\text{Proc} \simeq \prod_{\text{Labels}} \mathcal{P}_{\text{Prob}}(\text{Proc}). \]

- We show that there is a perfect match between:
 - bisimulation and equality in \(\text{Proc} \),
 - simulation and the partial order of \(\text{Proc} \),
 - strict simulation and way below in \(\text{Proc} \).

- The sequence of approximants is a directed set in the simulation ordering and the process being approximated is the sup of this directed set.
Approximation by averaging

- The latest idea is to view LMPs as function transformers.
Approximation by averaging

- The latest idea is to view LMPs as function transformers.
- Functorial view of expectation values.
Approximation by averaging

- The latest idea is to view LMPs as function transformers.
- Functorial view of expectation values.
- Then bisimulation is naturally dualized and gives event bisimulation.

Approximation is formalized by “coarsening the σ-algebra” rather than by clustering points. The approximations form a profinite family that gives the bisimulation-minimal version of the original LMP as a projective limit.
Approximation by averaging

- The latest idea is to view LMPs as function transformers.
- Functorial view of expectation values.
- Then bisimulation is naturally dualized and gives event bisimulation.
- Approximation is formalized by “coarsening the σ-algebra” rather than by clustering points.
Approximation by averaging

- The latest idea is to view LMPs as function transformers.
- Functorial view of expectation values.
- Then bisimulation is naturally dualized and gives event bisimulation.
- Approximation is formalized by “coarsening the σ-algebra” rather than by clustering points.
- The approximations form a profinite family that gives the bisimulation-minimal version of the original LMP as a projective limit.
Conclusions

- A very fast overview of some of the work on LMPs.
Conclusions

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C^*-algebra duality for LMPs and also on testing equivalences.
Conclusions

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C^*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d’Argenio, Varacca, Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
Conclusions

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C^*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d’Argenio, Varacca, Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
Conclusions

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C^*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d’Argenio, Varacca, Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
- Radu: Completeness theorems and duality.
Conclusions

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C^*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d’Argenio, Varacca, Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
- Radu: Completeness theorems and duality.
Conclusions

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C^*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d’Argenio, Varacca, Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
- Radu: Completeness theorems and duality.
- Probabilistic reasoning, modelling and programming is in its heyday.
Conclusions

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C^*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d’Argenio, Varacca, Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
- Radu: Completeness theorems and duality.
- Probabilistic reasoning, modelling and programming is in its heyday.
- A major theme of this MFPS: Invited talk and special session plus contributed talks.
Conclusions

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C^*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d’Argenio, Varacca, Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
- Radu: Completeness theorems and duality.
- Probabilistic reasoning, modelling and programming is in its heyday.
- A major theme of this MFPS: Invited talk and special session plus contributed talks.
The End

Thanks for listening!
The End

Thanks for listening!

The End

Thanks for listening!

Available for free on various pirate websites.