Labelled Markov Processes A tutorial overview

Prakash Panangaden

School of Computer Science McGill University

12th June 2014, Cornell University

Josée Desharnais

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Philippe Chaput, Vincent Danos, Gordon Plotkin

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Philippe Chaput, Vincent Danos, Gordon Plotkin
- Franois Laviolette

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Philippe Chaput, Vincent Danos, Gordon Plotkin
- Franois Laviolette
- Norm Ferns, Doina Precup, Gheorghe Comanici

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Philippe Chaput, Vincent Danos, Gordon Plotkin
- Franois Laviolette
- Norm Ferns, Doina Precup, Gheorghe Comanici
- Dexter Kozen, Kim Larsen, Radu Mardare

Summary of Results

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metrics. [CONCUR99, TCS2004, UAI 2004, UAI 2005, SIAM J. Comp. 2011, QEST 2012]
- Approximation of LMPs. [LICS00,Info and Comp 2003, QEST 2005]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003, LMCS 2006]
- Event bisimulation [CMCS 2004, Info and Comp 2006]
- Duality [LICS 2013, MFCS 2013, MFPS 2014]
- Approximation by averaging [CONCUR 2003, ICALP 2009, JACM 2014]
- Logic and approximation [MFCS 2012]

Definition

 Just like a labelled transition system with probabilities associated with the transitions.

Definition

 Just like a labelled transition system with probabilities associated with the transitions.

•

$$(S, \mathsf{L}, \forall a \in \mathsf{L} \ T_a : S \times S \longrightarrow [0, 1])$$

Definition

 Just like a labelled transition system with probabilities associated with the transitions.

•

$$(S, \mathsf{L}, \forall a \in \mathsf{L} \ T_a : S \times S \longrightarrow [0, 1])$$

• The model is reactive: All probabilistic data is internal - no probabilities associated with environment behaviour.

Examples of PTSs

Bisimulation for PTS: Larsen and Skou

Consider

• Should s_0 and t_0 be bisimilar?

Bisimulation for PTS: Larsen and Skou

Consider

- Should s_0 and t_0 be bisimilar?
- Yes, but we need to add the probabilities.

The Official Definition

- Let $S = (S, L, T_a)$ be a PTS. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-equivalence class, A, $T_a(s, A) = T_a(s', A)$.
- The notation $T_a(s,A)$ means "the probability of starting from s and jumping to a state in the set A."
- Two states are bisimilar if there is some bisimulation relation R relating them.

 Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal no probabilities associated with environment behaviour.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal no probabilities associated with environment behaviour.
- We observe the interactions not the internal states.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal no probabilities associated with environment behaviour.
- We observe the interactions not the internal states.
- In general, the state space of a labelled Markov process may be a continuum.

Motivation

Model and reason about systems with continuous state spaces or continuous time evolution or both.

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,
- continuous time systems,
- probabilistic process algebra with recursion.

An Example of a Continuous-State System

a - turn left

b - turn right

c - straight

Actions

a - turn left, b - turn right, c - keep on course The actions move the craft sideways with some probability distributions on how far it moves. The craft may "drift" even with c. The action a (b) must be disabled when the craft is too near the left (right) boundary.

Schematic of Example

•

 This picture is misleading: unless very special conditions hold the process cannot be compressed into an equivalent (?) finite-state model. In general, the transition probabilities should depend on the position.

Stochastic Kernels

• A stochastic kernel (Markov kernel) is a function $h: S \times \Sigma \to [0,1]$ with (a) $h(s,\cdot): \Sigma \to [0,1]$ a (sub)probability measure and (b) $h(\cdot,A): X \to [0,1]$ a measurable function.

Stochastic Kernels

- A stochastic kernel (Markov kernel) is a function $h: S \times \Sigma \to [0,1]$ with (a) $h(s,\cdot): \Sigma \to [0,1]$ a (sub)probability measure and (b) $h(\cdot,A): X \to [0,1]$ a measurable function.
- Though apparantly asymmetric, these are the stochastic analogues of binary relations

Stochastic Kernels

- A stochastic kernel (Markov kernel) is a function $h: S \times \Sigma \to [0,1]$ with (a) $h(s,\cdot): \Sigma \to [0,1]$ a (sub)probability measure and (b) $h(\cdot,A): X \to [0,1]$ a measurable function.
- Though apparantly asymmetric, these are the stochastic analogues of binary relations
- and the uncountable generalization of a matrix.

Formal Definition of LMPs

- An LMP is a tuple $(S, \Sigma, \mathsf{L}, \forall \alpha \in \mathsf{L}.\tau_{\alpha})$ where $\tau_{\alpha}: S \times \Sigma \to [0,1]$ is a transition probability function such that
- $\forall s: S.\lambda A: \Sigma.\tau_{\alpha}(s,A)$ is a subprobability measure and

 $\forall A: \Sigma.\lambda s: S.\tau_{\alpha}(s,A)$ is a measurable function.

Example of LMP

Panangaden (McGill)

Larsen-Skou Bisimulation

- Let $S=(S,i,\Sigma,\tau)$ be a labelled Markov process. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s,s'\in S$, we have that for all $a\in \mathcal{A}$ and every R-closed measurable set $A\in \Sigma$, $\tau_a(s,A)=\tau_a(s',A)$. Two states are bisimilar if they are related by a bisimulation relation.
- Can be extended to bisimulation between two different **LMPs**.

Larsen-Skou Bisimulation - Example

Logical Characterization

•

$$\mathcal{L} ::== \mathsf{T}|\phi_1 \wedge \phi_2|\langle a \rangle_q \phi$$

• We say $s \models \langle a \rangle_q \phi$ iff

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \phi) \land (\tau_a(s,A) > q).$$

Logical Characterization

•

$$\mathcal{L} ::== \mathsf{T}|\phi_1 \wedge \phi_2|\langle a \rangle_q \phi$$

• We say $s \models \langle a \rangle_q \phi$ iff

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \phi) \land (\tau_a(s,A) > q).$$

• Two systems are bisimilar iff they obey the same formulas of \mathcal{L} . [DEP 1998 LICS, I and C 2002]

Event bisimulation

 In measure theory one should focus on measurable sets rather than on points.

Event bisimulation

- In measure theory one should focus on measurable sets rather than on points.
- Vincent Danos proposed the idea of event bisimulation, which was developed by him and Desharnais, Laviolette and P.

Event bisimulation

- In measure theory one should focus on measurable sets rather than on points.
- Vincent Danos proposed the idea of event bisimulation, which was developed by him and Desharnais, Laviolette and P.

Event Bisimulation

Given a LMP (X, Σ, τ_a) , an **event-bisimulation** is a sub- σ -algebra Λ of Σ such that (X, Λ, τ_a) is still an LMP.

Process Equivalence is Fundamental

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation
- Labelled Concurrent Markov Chains with τ transitions: Weak Bisimulation

But....

• In the context of probability is exact equivalence reasonable?

But...

- In the context of probability is exact equivalence reasonable?
- We say "no". A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very "close" in behaviour.

But...

- In the context of probability is exact equivalence reasonable?
- We say "no". A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very "close" in behaviour.
- Instead one should have a (pseudo)metric for probabilistic processes.

A metric-based approximate viewpoint

 Move from equality between processes to distances between processes (Jou and Smolka 1990).

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Formalize distance as a metric:

$$d(s,s) = 0, d(s,t) = d(t,s), d(s,u) \le d(s,t) + d(t,u).$$

Quantitative analogue of an equivalence relation.

Establishing closeness of states: Coinduction

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by Non-Expansivity.
 Process-combinators take nearby processes to nearby processes.

$$\frac{d(s_1, t_1) < \epsilon_1, \quad d(s_2, t_2) < \epsilon_2}{d(s_1 \mid\mid s_2, t_1 \mid\mid t_2) < \epsilon_1 + \epsilon_2}$$

Equational and logical views coincide: Metrics yield same

Summary of results

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- distances as real-valued modal logics

 Compositional reasoning by Non-Expansivity.
- Compositional reasoning by Non-Expansivity.
 Process-combinators take nearby processes to nearby processes.

$$\frac{d(s_1, t_1) < \epsilon_1, \quad d(s_2, t_2) < \epsilon_2}{d(s_1 \mid\mid s_2, t_1 \mid\mid t_2) < \epsilon_1 + \epsilon_2}$$

 Results work for Markov chains, Labelled Markov processes, Markov decision processes and Labelled Concurrent Markov chains with τ-transitions.

Criteria on Metrics

Soundness:

$$d(s,t) = 0 \Leftrightarrow s,t$$
 are bisimilar

- Stability of distance under temporal evolution: "Nearby states stay close forever."
- Metrics should be computable (efficiently?).

Bisimulation Recalled

Let *R* be an equivalence relation. *R* is a bisimulation if: *s R t* if:

$$(s \longrightarrow P) \Rightarrow [t \longrightarrow Q, P =_R Q]$$

$$(t \longrightarrow Q) \Rightarrow [s \longrightarrow P, P =_R Q]$$

where $P =_R Q$ if

$$(\forall R - \mathsf{closed}\ E)\ P(E) = Q(E)$$

A putative definition of a metric-bisimulation

• m is a metric-bisimulation if: $m(s,t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

A putative definition of a metric-bisimulation

• m is a metric-bisimulation if: $m(s,t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

• Problem: what is m(P,Q)? — Type mismatch!!

A putative definition of a metric-bisimulation

• m is a metric-bisimulation if: $m(s,t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- Problem: what is m(P,Q)? Type mismatch!!
- Need a way to lift distances from states to a distances on distributions of states.

• Metrics on probability measures on metric spaces.

- Metrics on probability measures on metric spaces.
- \mathcal{M} : 1-bounded pseudometrics on states.

- Metrics on probability measures on metric spaces.
- \mathcal{M} : 1-bounded pseudometrics on states.

•

$$d(\mu, \nu) = \sup_{f} |\int f d\mu - \int f d\nu|, f$$
 1-Lipschitz

- Metrics on probability measures on metric spaces.
- \mathcal{M} : 1-bounded pseudometrics on states.

•

$$d(\mu, \nu) = \sup_{f} |\int f d\mu - \int f d\nu|, f$$
 1-Lipschitz

Arises in the solution of an LP problem: transshipment.

An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions. Then:

$$m(P,Q) = \max \sum_{i} (P(s_i) - Q(s_i))a_i$$

subject to:

$$\forall i.0 \leq a_i \leq 1$$

 $\forall i,j. \ a_i - a_j \leq m(s_i,s_j).$

The Dual Form

Dual form from Worrell and van Breugel:

•

$$\min \sum_{i,j} l_{ij} m(s_i, s_j) + \sum_i x_i + \sum_j y_j$$

subject to:

$$\forall i. \sum_{j} l_{ij} + x_i = P(s_i)$$

$$\forall j. \sum_{i} l_{ij} + y_j = Q(s_j)$$

$$\forall i, j. \ l_{ij}, x_i, y_j \ge 0.$$

 We prove many equations by using the primal form to show one direction and the dual to show the other.

Return from Detour

Summary of detour: Given a metric on states in a metric space, can lift to a metric on probability distributions on states.

Metric "Bisimulation"

• m is a metric-bisimulation if: $m(s,t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- The required canonical metric on processes is the least such: ie. the distances are the least possible.
- Thm: Canonical least metric exists. Usual fixed-point theory arguments.

Metrics: some details

M: 1-bounded pseudometrics on states with ordering

$$m_1 \leq m_2$$
 if $(\forall s, t)$ $[m_1(s, t) \geq m_2(s, t)]$

• (\mathcal{M}, \prec) is a complete lattice.

•

• Let $m \in \mathcal{M}$. $F(m)(s,t) < \epsilon$ if:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

• Let $m \in \mathcal{M}$. $F(m)(s,t) < \epsilon$ if:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

• F(m)(s,t) can be given by an explicit expression.

• Let $m \in \mathcal{M}$. $F(m)(s,t) < \epsilon$ if:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- F(m)(s,t) can be given by an explicit expression.
- F is monotone on \mathcal{M} , and metric-bisimulation is the greatest fixed point of F.

• Let $m \in \mathcal{M}$. $F(m)(s,t) < \epsilon$ if:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- F(m)(s,t) can be given by an explicit expression.
- F is monotone on \mathcal{M} , and metric-bisimulation is the greatest fixed point of F.
- The closure ordinal of F is ω .

A logical metric

 Develop a real-valued "modal logic" based on the analogy due to Kozen:

Program Logic	Probabilistic Logic
State s	Distribution μ
Formula ϕ	Random Variable f
Satisfaction $s \models \phi$	$\int f \mathrm{d}\mu$

A logical metric

 Develop a real-valued "modal logic" based on the analogy due to Kozen:

Program Logic	Probabilistic Logic
State s	Distribution μ
Formula ϕ	Random Variable f
Satisfaction $s \models \phi$	$\int f \mathrm{d}\mu$

• Define a metric based on how closely the random variables agree.

A logical metric

 Develop a real-valued "modal logic" based on the analogy due to Kozen:

Program Logic	Probabilistic Logic
State s	Distribution μ
Formula ϕ	Random Variable f
Satisfaction $s \models \phi$	$\int f \mathrm{d}\mu$

- Define a metric based on how closely the random variables agree.
- We did this before the LP based techniques became available.

•

$$f ::= \mathbf{1} \mid \max(f, f) \mid h \circ f \mid \langle a \rangle f$$

 $f ::= \mathbf{1} \mid \max(f, f) \mid h \circ f \mid \langle a \rangle f$

$$\begin{array}{llll} \mathbf{1}(s) & = & 1 & \text{True} \\ \max(f_1,f_2)(s) & = & \max(f_1(s),f_2(s)) & \text{Conjunction} \\ h\circ f(s) & = & h(f(s)) & \text{Lipschitz} \\ \langle a\rangle f(s) & = & \gamma \int_{s'\in S} f(s') \tau_a(s,\mathrm{d}s') & a\text{-transition} \end{array}$$

where h 1-Lipschitz : $[0,1] \rightarrow [0,1]$ and $\gamma \in (0,1]$.

•

$$f ::= \mathbf{1} \mid \max(f, f) \mid h \circ f \mid \langle a \rangle f$$

 $\begin{array}{llll} \mathbf{1}(s) & = & 1 & \text{True} \\ \max(f_1, f_2)(s) & = & \max(f_1(s), f_2(s)) & \text{Conjunction} \\ h \circ f(s) & = & h(f(s)) & \text{Lipschitz} \\ \langle a \rangle f(s) & = & \gamma \int_{s' \in S} f(s') \tau_a(s, \mathrm{d}s') & a\text{-transition} \end{array}$

where h 1-Lipschitz : $[0,1] \rightarrow [0,1]$ and $\gamma \in (0,1]$.

 $d(s,t) = \sup_{f} |f(s) - f(t)|$

 $f \cdots$

$$f ::= \mathbf{1} \mid \max(f, f) \mid h \circ f \mid \langle a \rangle f$$

 $\begin{array}{llll} \mathbf{1}(s) & = & 1 & \text{True} \\ \max(f_1,f_2)(s) & = & \max(f_1(s),f_2(s)) & \text{Conjunction} \\ h\circ f(s) & = & h(f(s)) & \text{Lipschitz} \\ \langle a\rangle f(s) & = & \gamma \int_{s'\in S} f(s')\tau_a(s,\mathrm{d}s') & a\text{-transition} \end{array}$

where h 1-Lipschitz : $[0,1] \rightarrow [0,1]$ and $\gamma \in (0,1]$.

- $d(s,t) = \sup_{f} |f(s) f(t)|$
- Thm: d coincides with the canonical metric-bisimulation.

ullet γ discounts the value of future steps.

- $\bullet \ \gamma$ discounts the value of future steps.
- $\gamma < 1$ and $\gamma = 1$ yield very different topologies.

- ullet γ discounts the value of future steps.
- $\gamma < 1$ and $\gamma = 1$ yield very different topologies.
- For $\gamma < 1$ there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.

- ullet γ discounts the value of future steps.
- $\gamma < 1$ and $\gamma = 1$ yield very different topologies.
- For $\gamma < 1$ there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.
- \bullet For $\gamma=1$ an algorithm to compute the metric has been discovered by van Breugel et al.

Approximation Results

 Our main result is a systematic approximation scheme for labelled Markov processes. The set of LMPs is a Polish space.

Approximation Results

- Our main result is a systematic approximation scheme for labelled Markov processes. The set of LMPs is a Polish space.
- For any LMP, we explicitly provide a (countable) sequence of approximants to it such that:
 - For every logical property satisfied by a process, there is an element of the chain that also satisfies the property.
 - 2 The sequence of approximants converges, in the metric defined before, to the process that is being approximated.

Approximation Results

- Our main result is a systematic approximation scheme for labelled Markov processes. The set of LMPs is a Polish space.
- For any LMP, we explicitly provide a (countable) sequence of approximants to it such that:
 - For every logical property satisfied by a process, there is an element of the chain that also satisfies the property.
 - The sequence of approximants converges, in the metric defined before, to the process that is being approximated.
- The essential idea: approximate bisimulation.

Domain-theoretic approximation of LMPs

• we establish the following equivalence of categories:

$$LMP \simeq Proc$$

where **LMP** is the category with objects **LMP**s and with morphisms simulations; and *Proc* is the solution to the recursive domain equation

$$\mathit{Proc} \simeq \prod_{\texttt{Tabels}} \mathcal{P}_{\texttt{Prob}}(\mathit{Proc}).$$

Domain-theoretic approximation of LMPs

• we establish the following equivalence of categories:

LMP
$$\simeq$$
 Proc

where \mathbf{LMP} is the category with objects \mathbf{LMP} s and with morphisms simulations; and Proc is the solution to the recursive domain equation

$$\mathit{Proc} \simeq \prod_{\texttt{Tabels}} \mathcal{P}_{\texttt{Prob}}(\mathit{Proc}).$$

- We show that there is a perfect match between:
 - bisimulation and equality in Proc,
 - simulation and the partial order of *Proc*,
 - strict simulation and way below in Proc.

Domain-theoretic approximation of LMPs

we establish the following equivalence of categories:

LMP
$$\simeq$$
 Proc

where \mathbf{LMP} is the category with objects \mathbf{LMP} s and with morphisms simulations; and Proc is the solution to the recursive domain equation

$$Proc \simeq \prod_{\text{Labels}} \mathcal{P}_{\text{Prob}}(Proc).$$

- We show that there is a perfect match between:
 - bisimulation and equality in Proc,
 - simulation and the partial order of *Proc*,
 - strict simulation and way below in Proc.
- The sequence of approximants is a directed set in the simulation ordering and the process being approximated is the sup of this directed set.

• The latest idea is to view LMPs as function transformers.

- The latest idea is to view LMPs as function transformers.
- Functorial view of expectation values.

- The latest idea is to view LMPs as function transformers.
- Functorial view of expectation values.
- Then bisimulation is naturally dualized and gives event bisimulation.

- The latest idea is to view LMPs as function transformers.
- Functorial view of expectation values.
- Then bisimulation is naturally dualized and gives event bisimulation.
- Approximation is formalized by "coarsening the σ -algebra" rather than by clustering points.

- The latest idea is to view LMPs as function transformers.
- Functorial view of expectation values.
- Then bisimulation is naturally dualized and gives event bisimulation.
- Approximation is formalized by "coarsening the σ -algebra" rather than by clustering points.
- The approximations form a profinite family that gives the bisimulation-minimal version of the original LMP as a projective limit.

A very fast overview of some of the work on LMPs.

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C^* -algebra duality for LMPs and also on testing equivalences.

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d'Argenio, Varacca, Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d'Argenio, Varacca,
 Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d'Argenio, Varacca,
 Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
- Radu: Completeness theorems and duality.

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d'Argenio, Varacca,
 Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
- Radu: Completeness theorems and duality.
- Doina: Machine learning.

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d'Argenio, Varacca,
 Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
- Radu: Completeness theorems and duality.
- Doina: Machine learning.
- Probabilistic reasoning, modelling and programming is in its heyday.

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d'Argenio, Varacca,
 Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
- Radu: Completeness theorems and duality.
- Doina: Machine learning.
- Probabilistic reasoning, modelling and programming is in its heyday.
- A major theme of this MFPS: Invited talk and special session plus contributed talks.

- A very fast overview of some of the work on LMPs.
- I have skipped the work by Mislove et al. on C*-algebra duality for LMPs and also on testing equivalences.
- Also many results by Doberkat, d'Argenio, Varacca,
 Goubault-Larrecq, Segala, Mio, Simpson, Jacobs, Ying,.....
- Josée: Logical characterization of bisimulation.
- Radu: Completeness theorems and duality.
- Doina: Machine learning.
- Probabilistic reasoning, modelling and programming is in its heyday.
- A major theme of this MFPS: Invited talk and special session plus contributed talks.

The End

Thanks for listening!

The End

Thanks for listening!

Buy the book: Labelled Markov Processes Imperial College Press, 2009.

The End

Thanks for listening!

Buy the book: Labelled Markov Processes Imperial College Press, 2009.

Available for free on various pirate websites.