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Markov Processes

Markov processes are probabilistic/stochastic versions of LTSs, where
the transitions are governed by distributions.
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Markov Processes

Markov processes are probabilistic/stochastic versions of LTSs, where
the transitions are governed by distributions.

Markov Process

Given an analytic space (M, ¥), a Markov process is a measurable
mapping

0:M— 1I(M, %) — probabilistic case
0:M— 1I*(M, %) — subprobabilistic case
0:M— AM,X) — stochastic case

@ II(M,¥) — probabilistic distributions on (M, ¥)
@ II*(M,X) — subprobabilistic distributions on (M, X)
@ A(M,X) — general distributions on (M, X)
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Markov Processes

Markov processes are probabilistic/stochastic versions of LTSs, where
the transitions are governed by distributions.

Markov Process
Given an analytic space (M, ¥), a Markov process is a measurable
mapping

0:M— II(M,X) — probabilistic case
0:M—1I*(M, %) — subprobabilistic case
0:M— AM,X) — stochastic case

The measurable space of distributions is generated by sets
{ne AWM. 2) | uA) <r}

defined for arbitrary A € ¥ and r € Q.
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Markovian Logics

Syntax:
L(I1), £(1T*) : ¢ ==peP|L]|d—o|Lo, reQno,1]
L(A): ¢ n=peP|L]¢— 9oL, reQt
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Markovian Logics

Syntax:

£(I1), £(IT*) : 6 = peP|Ll¢—o|Ld  reQnol]
£(A): ¢ = peP|L|¢—o|Lg  reQt

Semantics:

M= M,%,0),mecMandi:M — 27,

The satisfaction relation:
@ M,m,il=pifpei(m),
@ M,m,i[= L never,
e M,m,ilE= ¢ — ¢ if M,m,i =1 whenever M, m,i = ¢,

@ M,m,il=L¢if 0(m)([4]) > r,
where [¢] = {m e M | M,m,i = ¢}.

Mardare (Aalborg University) Markovian Logics: Completeness and Dualitie MFPS 2014



Axioms - probabilistic case

The axioms of £(IT)
(A1): F Log
(A2): F LT
(A3): FL.,¢ — —Li—¢p, r+s>1
(Ad): FL(pAY)ANL(PNY) — Lipsp, r+s5s<1
(AB): F —L.(p AY) AN-Lg(p A1) — —Lyysp, r+s<1
(R1): Fe—9
T RL¢— Ly
(R2): {L|r<s}t Ly
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Axioms - probabilistic case

The axioms of £(IT)
(A1): F Log
(A2): F LT
(A3): FL.,¢ — —Li—¢p, r+s>1
(Ad): FL(pAY)ANL(PNY) — Lipsp, r+s5s<1
(A5): + —L.(¢ AY) A —Ly(d A=) — =Lyysp, r+s<1
(R1): Fé—
R L — L
(R2): {L|r<s}t Ly

Weak Completeness

L(IT) is sound and weak-complete for the probabilistic Markov
processes

= ¢ iff - ¢,
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Axioms - subprobabilistic case

The axioms of L£(IT*)
(A1): F Ly
(A2): FL.L— L
(A3): FL.¢p— —Li—g, r+s>1
(A4) - Lr(¢ A 17[)) A Ls(d) A _‘Q;[)) — Lr+s¢7 r+s<1
(A5): F =L (pANY)A-Lg(pAN—t) — =Lisp, r+s<1
" FLg— L
(R2): {L|r<s}k Ly
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Axioms - subprobabilistic case

The axioms of L£(IT*)

(A1) F Lyo

(A2): FL L — L

(A3): FL.¢p— —Li—g, r+s>1

(Ad): FL(pANY)ANL(PN) — Liysp, r+s<1

(A5): F =L (pANY)A-Lg(pAN—t) — =Lisp, r+s<1
" FLg— L

(R2): {L|r<s}t Ly

Weak Completeness

L(IT*) is sound and weak-complete for the subprobabilistic Markov
processes

= ¢ iff - ¢,
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Axioms - stochastic case

The axioms of L(A)

Al): F Lyo

2): Ll — 1

4’): t Lr(¢ N w) A LS(¢ N _‘7/’) - Lr+s¢

5’): F _‘Lr(¢ A ¢) A _‘Ls(d) A ﬂ,/)) — _‘LrJrsQ5
N _Fo—v

FL¢— L

2): {La|r<s}k Lap

3 {Lap|reQt}rL
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Axioms - stochastic case

The axioms of L(A)

(A1) F Lo

(A2): L1 — L

(A4): FL(pNY)ANLs(p A1) — Lyysd

(AS): _‘Lr(¢ A ¢) A _‘LS(d’ A _‘7;[)) — Ly
" FL¢— Ly

(R2): {L|r<s}tLg

(R3): {L|reQt}r L

Weak Completeness
L(A) is sound and weak-complete for the stochastic Markov processes

= ¢ iff - ¢.
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Compactness of Markovian Logics

(R2): {L|r<s}t Ly
L(IT), £(IT*) and L(A) are not compact:
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Compactness of Markovian Logics

(R2) : {L|r<s}tk Ly

L(IT), £(IT*) and L(A) are not compact:
for a consistent formula ¢, the set

Lo | r < s}U{~Lo}

is inconsistent (due to R2), but all its finite subsets are consistent.
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Compactness of Markovian Logics

(R2) : {L|r<s}tk Ly

L(IT), £(IT*) and L(A) are not compact:
for a consistent formula ¢, the set

{Lro | r <s}tU{-Leo}
is inconsistent (due to R2), but all its finite subsets are consistent.

Consequently, the logics are not necessarly strongly complete,
i.e., we might need extra axioms to prove that

D= ¢iff d I+ o,
for arbitrary ® C L and ¢ € L.
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Strong Completeness

[Goldblatt, J. Logic Comput. 2010]

@ the logic of T-coalgebras — T measurable polynomial functor on
the category of measurable spaces;
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Strong Completeness

[Goldblatt, J. Logic Comput. 2010]

@ the logic of T-coalgebras — T measurable polynomial functor on
the category of measurable spaces;

@ the semantic consequence relation over T-coalgebras is equal to
the least deducibility relation that satisfies Lindenbaum’s lemma.
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Strong Completeness

[Goldblatt, J. Logic Comput. 2010]

@ the logic of T-coalgebras — T measurable polynomial functor on
the category of measurable spaces;

@ the semantic consequence relation over T-coalgebras is equal to
the least deducibility relation that satisfies Lindenbaum’s lemma.

@ Moreover, strong completeness — requires a strengthened version
of (R1) - the countable additivity rule (CAR):
For ® — closed under conjunction,

0N 0

CAR): J 470

where L,® = {L, | ¢ € ®}.
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Strong Completeness Proofs

[Zhou, J. Logic Lang. and Comput. 2010]

@ Goldblatt’'s (CAR) rule and Lindenbaum’s lemma => strong
completeness of probabilistic logic for Harsanyi type spaces;

@ proves that without Goldblatt’s rule the logic is not complete.
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Strong Completeness Proofs

[Zhou, J. Logic Lang. and Comput. 2010]

@ Goldblatt’'s (CAR) rule and Lindenbaum’s lemma => strong
completeness of probabilistic logic for Harsanyi type spaces;

@ proves that without Goldblatt’s rule the logic is not complete.

[Cardelli, Mardare, Larsen, ICALP2011, CSL2011, LMCS 2012]

@ similar systems => the strong completeness for various logics on
general Markov processes.
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Strong Completeness

For ® — closed under conjunction,

D

CAR): 5170

Observe that (CAR) has uncountably many instances.
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Strong Completeness

For ® — closed under conjunction,

dF o

CAR): 5170

Observe that (CAR) has uncountably many instances.

Consequently, one cannot simply use the Zorn’s lemma to prove that
any consistent set of formulas can be extended to a maximally
consistent set.

Proving Lindenbaum’s property is highly non-trivial!
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The Rasiowa-Sikorski Lemma

Let B be a Boolean algebra and T C B be a set with A T defined. An
ultrafilter U is said to respect T if
TCU= A\TEcU.
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The Rasiowa-Sikorski Lemma

Let B be a Boolean algebra and T C B be a set with A T defined. An
ultrafilter U is said to respect T if

TCU= A\TeU.

The Rasiowa-Sikorski Lemma

Let 7 be a countable family of subsets of 5 each member of which has
ameet in B and let x # 0. There exists an ultrafilter which respects
each member of 7 and which contains x.
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The Rasiowa-Sikorski Lemma

Let B be a Boolean algebra and T C B be a set with A T defined. An
ultrafilter U is said to respect T if
TCU= A\TEcU.

The Rasiowa-Sikorski Lemma

Let 7 be a countable family of subsets of 5 each member of which has
ameet in B and let x # 0. There exists an ultrafilter which respects
each member of 7 and which contains x.

Corollary

Given a Boolean logic with a countable axiomatization. Any consistent
set of formulas can be extended to a maximally consistent set that
respects all the instances of the axioms and rules.
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Axioms - probabilistic case

The axioms of £(II)

(A1): F Lo

(A2): LT

(A3): FL.p— -Li—p, r+s>1

(Ad): FL(6NY)ANL(PNY) — Ly, r+s<1
(AS): ﬁLr((b A 1/}) A ﬁLS(QZ) A ﬁ'@b) — L5p, r+s<1
R1): o=V

FLg — L

(R2): {L|r<s}t Ly

(R2’) {Lrl"'rnrw | r< S} l_ Lrl"'rnsqzz)

where L,,...;,;¥) = L, Ly,..L,, L.
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Axioms - probabilistic case

The axioms of £(II)

(A1): F Lo

(A2): LT

(A3): FL.p— -Li—p, r+s>1

(Ad): FL(6NY)ANL(PNY) — Ly, r+s<1
(AS): ﬁLr((b A 1/}) A ﬁLS(QZ) A ﬁ'@b) — L5p, r+s<1
R1): o=V

FLg — L

(R2): {L|r<s}t Ly

(R2’) {Lrl"'rnrw | r< S} l_ Lrl"'rnsqzz)

where L,,...;,;¥) = L, Ly,..L,, L.

We prove the strong completeness for £(II)
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Aumann Algebra - the probabilistic case

[Kozen, Larsen, Mardare, Panangaden, LICS2013]

A (probabilistic) Aumann algebra is a structure
A= (A, = LAL}eqrpap E)
@ (A,—,L,C)is aBoolean algebra;
@ L,: A — Ais an unary operator, forr € QN [0, 1].
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Aumann Algebra - the probabilistic case

[Kozen, Larsen, Mardare, Panangaden, LICS2013]

A (probabilistic) Aumann algebra is a structure
A= (A, —, 1L, {Lr}rEQﬁ[O,l]? )
@ (A,—,L,C)is aBoolean algebra;
@ L,: A — Ais an unary operator, for r € QN [0, 1].

Axioms

(AA1) T C Loa

(AA2) TCLT

( ) LraCl —Li—a, r+s>1

(AA4) L.(anb)ANLg(aN—-b)CLrisa, r+s<1
(AA5) —L.(anb)N-Ls(aN—b)C =L, a, r+s<1
( ) aCb=LaCLb
( ) /\r<s Ly..rpa = Ly, .50
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Markovian logic yields an Aumann algebra

Let [¢] denote the equivalence class of ¢ modulo =, and let
L)/=={¢] | ¢ € L}.
Theorem
The structure
(‘C(H)/Ev — [J—]a {Lr}re(@oa S)

is a countable probabilistic Aumann algebra,
where [¢] < [¢] iff - ¢ — 9.
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Markovian logic yields an Aumann algebra

Let [¢] denote the equivalence class of ¢ modulo =, and let
L)/=={¢] | ¢ € L}.
Theorem
The structure
(‘C(H)/Ev — [J—]a {Lr}re(@oa S)

is a countable probabilistic Aumann algebra,
where [¢] < [¢] iff - ¢ — 9.

filters of AA ==> consistent sets of £(II)

ultrafilters of AA ==> maximal consistent sets of £(II)
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Recap of Stone Duality

C Dep

~_

G

Stone Duality

We have a (contravariant) adjunction between categories C and D,
which is an equivalence of categories.

Examples: Finite sets and finite Boolean algebras, Boolean algebras
and Stone spaces, Finite-dimensional vector spaces and itself,
commutative unital C*-algebras and compact Hausdorff spaces, .....
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Reasoning on ultrafilters

Fix an arbitrary countable Aumann algebra

A=(A —, 1, {Lr}reQm[OJ]? ).
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Reasoning on ultrafilters

Fix an arbitrary countable Aumann algebra

A=(A —, 1, {Lr}reQm[OJ]? ).

@ Let U/ be the set of all Boolean ultrafilters of A.
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Reasoning on ultrafilters

Fix an arbitrary countable Aumann algebra

./4 = (A, —>, J_, {Lr}re@ﬂ[OJ]? E)

@ Let U/ be the set of all Boolean ultrafilters of A.

@ The Stone duality construction for Boolean algebras with
operators [Jonsson-Tarski, Am. J. of Math. 1951]:
a Boolean algebra of sets isomorphic to .4 with elements

(a) ={ucld |acu},ac A
(A)* = {(a)" [ a € A}.
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Reasoning on ultrafilters

Fix an arbitrary countable Aumann algebra

./4 = (A, —>, J_, {Lr}re@ﬂ[OJ]? E)

@ Let U/ be the set of all Boolean ultrafilters of A.

@ The Stone duality construction for Boolean algebras with
operators [Jonsson-Tarski, Am. J. of Math. 1951]:
a Boolean algebra of sets isomorphic to .4 with elements

(a) ={ucld |acu},ac A
(A)* = {(a)" [ a € A}.

@ The sets (a)" are the clopen sets that generate a Stone topology
7" on U* <== compact, zero-dimensional, Hausdorff space.
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Ultrafilters: Good and Bad

Recall the axiom
(AA7) A,sLrrir@ =Ly .50

It is the only infinitary axiom-schema:
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Ultrafilters: Good and Bad

Recall the axiom
(AA7) A,sLrrir@ =Ly .50

It is the only infinitary axiom-schema:

@ some Boolean ultrafilers in U/* respect all the instances of this
axiom — the good ultrafilters <== Rasiowa- Sikorski Lemma

@ some ultrafilters in ¢* violates one or more instances of (AA7) —
the bad ultrafilters.
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Ultrafilters: Good and Bad

Recall the axiom
(AA7) A,sLrrir@ =Ly .50

It is the only infinitary axiom-schema:

@ some Boolean ultrafilers in U/* respect all the instances of this
axiom — the good ultrafilters <== Rasiowa- Sikorski Lemma

@ some ultrafilters in ¢* violates one or more instances of (AA7) —
the bad ultrafilters.

Let U be the set of good ultrafilters of .A and

(o) ={uclU|acu},ac A
(A) ={(a) | a € A}.

Then U™ \ U is the set of bad ultrafilters.
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The space of good ultrafilters

We proved the following results:

@ The set U of good ultrafilters is dense in the set /" of all ultrafilters;
the set U/ \ U of bad ultrafilters is meager in the Stone topology.
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The space of good ultrafilters

We proved the following results:

@ The set U of good ultrafilters is dense in the set /" of all ultrafilters;
the set U/ \ U of bad ultrafilters is meager in the Stone topology.

© Since U is a Stone space, the subspace U/ of good ultrafilters with
the subspace topology is a zero-dimensional Hausdorff space.
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The space of good ultrafilters

We proved the following results:

@ The set U of good ultrafilters is dense in the set /" of all ultrafilters;
the set U/ \ U of bad ultrafilters is meager in the Stone topology.

© Since U is a Stone space, the subspace U/ of good ultrafilters with
the subspace topology is a zero-dimensional Hausdorff space.

© However, U is not compact any more; but it is saturated in the
sense of Model Theory.
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The space of the cannonic model

@ Consider the subspace topology of the good ulrafilters

Uu,r) c U*, ).
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The space of the cannonic model

@ Consider the subspace topology of the good ulrafilters

Uu,r) c U*, ).

@ The Borel algebra induced by 7 coincides with the o-algebra
generated by the field of sets (A).
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The space of the cannonic model

@ Consider the subspace topology of the good ulrafilters
U,r) c U*, 7).
@ The Borel algebra induced by 7 coincides with the o-algebra
generated by the field of sets (A).
@ Hence, (U, (A)7) is a measurable space.

@ Moreover, (U, (A)?) is an analytic space, since 7 is Hausdorff,
saturated and zero-dimensional.
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The space of the cannonic model

@ Consider the subspace topology of the good ulrafilters
U,r) c U*, 7).
@ The Borel algebra induced by 7 coincides with the o-algebra
generated by the field of sets (A).
@ Hence, (U, (A)7) is a measurable space.

@ Moreover, (U, (A)?) is an analytic space, since 7 is Hausdorff,
saturated and zero-dimensional.

U is used as the state space for (the cannonic) Markov process.
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The transition of the cannonic model

@ For any good ultrafilter u € ¢/ and any a € A,

sup{r | Lra € u} =inf{r | =L,a € u}.
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The transition of the cannonic model

@ For any good ultrafilter u € ¢/ and any a € A,

sup{r | Lra € u} =inf{r | =L,a € u}.

@ Thus, one can define

O(u)((a)) = sup{...} =inf{...}.
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The transition of the cannonic model

@ For any good ultrafilter u € ¢/ and any a € A,

sup{r | Lra € u} =inf{r | =L,a € u}.

@ Thus, one can define

O(u)((a)) = sup{...} =inf{...}.

© The set function 6(u) is finitely additive and continuous from above
at () on the field (.A) of sets <== Rasiowa-Sikorski Lemma.
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The transition of the cannonic model

@ For any good ultrafilter u € ¢/ and any a € A,

sup{r | Lra € u} =inf{r | =L,a € u}.

@ Thus, one can define

O(u)((a)) = sup{...} =inf{...}.

© The set function 6(u) is finitely additive and continuous from above
at () on the field (.A) of sets <== Rasiowa-Sikorski Lemma.

© One can use standard measure extension theorems to define 4 as
a measure on the measurable space (U, (A)?) of good ultrafilters.
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The cannonic model

The Markov process of good ultrafilters

If A is a countable Aumann algebra, then we can construct a

countably-generated Markov process, M(.A) = (U, (A)?,0), on the
space U of good ultrafilters.

Moreover, (A) is the base of a topology that is
@ zero-dimensional,
@ Hausdorff,
@ saturated.

Mardare (Aalborg University)
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The cannonic model

The Markov process of good ultrafilters

If A is a countable Aumann algebra, then we can construct a
countably-generated Markov process, M(.A) = (U, (A)?,0), on the
space U of good ultrafilters.

Moreover, (A) is the base of a topology that is

@ zero-dimensional,
@ Hausdorff,
@ saturated.

Truth Lemma

Let & C £ be an arbitrary theory and « C £ an arbitrary maximal
consistent set of £ — observe that u € U(L).
Then,

O Cu iff M(L),ul= 9.
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Strong Completeness for Markovian logics

Strong Completeness
Let & C £ be an arbitrary theory and ¢ € L. Then,

Do iff BF g

The result applies to £ € {£(IT), L(IT*), £L(A)} with the corresponding
semantics and axiomatization.
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Stone Markov Processes

@ Consider a zero-dimensional Hausdorff topological space M.
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Stone Markov Processes

@ Consider a zero-dimensional Hausdorff topological space M.

@ D - adistinguished countable base of clopens closed under

o the set-theoretic Boolean operations
e the operation L,(D) = {m | 7(m)(D) > r}.
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Stone Markov Processes

@ Consider a zero-dimensional Hausdorff topological space M.
@ D - adistinguished countable base of clopens closed under

o the set-theoretic Boolean operations
e the operation L,(D) = {m | 7(m)(D) > r}.

@ D7 - the Borel algebra of the topology induced by D.
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Stone Markov Processes

@ Consider a zero-dimensional Hausdorff topological space M.
@ D - adistinguished countable base of clopens closed under

o the set-theoretic Boolean operations
e the operation L,(D) = {m | 7(m)(D) > r}.

@ D7 - the Borel algebra of the topology induced by D.

@ An SMP (M, D?,6) is an MP defined on such a structure.
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Stone Markov Processes

@ Consider a zero-dimensional Hausdorff topological space M.
@ D - adistinguished countable base of clopens closed under

o the set-theoretic Boolean operations
e the operation L,(D) = {m | 7(m)(D) > r}.

@ D7 - the Borel algebra of the topology induced by D.
@ An SMP (M, D?,6) is an MP defined on such a structure.
@ Morphisms of SMPs are continuous function f : M — A s.t.

@ for B € DT, Op4(m)(F~'(B)) = O (f(m))(B);
@ for D € DY, f~'(D) € D3,.
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The Aumann algebra of clopens

Let M = (M, B?,0) be a Stone Markov process.

The Aumann algebra of clopens

The structure B with the set-theoretic Boolean operations and the
operations L, for r € QN [0, 1], is a countable Aumann algebra.

We denote this algebra by A(M).
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The duality

We defined two contravariant functors:
A() : SMP — AA®
On arrows f : M — N we define A(f) =f~': AN) — AM). J
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On arrows f : M — N we define A(f) =f~': AN) — AM).

M(-) : AA — SMP
On morphisms 4 : A — B, M(h) = h=' : M(B) — M(.A), explicitly

M(h) () = h~'(u) = {A € Ay | h(A) € u}.
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The duality

We defined two contravariant functors:
A() : SMP — AA®
On arrows f : M — N we define A(f) =f~': AN) — AM).

M(-) : AA — SMP
On morphisms 4 : A — B, M(h) = h=' : M(B) — M(.A), explicitly

M(h) () = h~'(u) = {A € Ay | h(A) € u}.

The functors M and A define a dual equivalence of categories.

SMP AA®P
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Representation

The representation theorem

@ Any countable Aumann algebra A = (A, —, L, {L,},cq+,C) is
isomorphic to A(M(.A)) via the map 5 : A — A(M(A)) defined by

p(a) = {u € supp(M(A)) | a € u} = (a).
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Representation

The representation theorem

@ Any countable Aumann algebra A = (A, —, L, {L,},cq+,C) is
isomorphic to A(M(.A)) via the map 5 : A — A(M(A)) defined by

p(a) = {u € supp(M(A)) | a € u} = (a).

@ Any saturated Markov process M = (M, A, §) is homeomorphic to
M(A(M)) via the map a : M — M(A(M)) defined by

am)={Aec A|meA}.
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What did we get?

@ The Stone duality for MPs explains the intrinsic relationship
between the category of (Stone) Markov processes and the
category of (countable) Aumann algebras.
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@ The logical characterization of bisimilarity reflects the fact that the
separability relation induced by the support topology of an SMP
coincides to the bisimilarity relation.

@ Because this topology has a base formed from positive formulas,
we can characterize the bisimilarity considering only the
negation-free formulas.
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What did we get?

@ The Stone duality for MPs explains the intrinsic relationship
between the category of (Stone) Markov processes and the
category of (countable) Aumann algebras.

@ The logical characterization of bisimilarity reflects the fact that the
separability relation induced by the support topology of an SMP
coincides to the bisimilarity relation.

@ Because this topology has a base formed from positive formulas,
we can characterize the bisimilarity considering only the

negation-free formulas.

@ Similarly, we could characterize bisimilarity using any other base.
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What’s next?

@ Bisimilarity is too restrictive ==> bisimilarity distances that
measure how similar two non-bisimilar MPs are.
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@ The relation between bisimilarity and the support topology of
an SMP allowed us to understand a subtle relation that exists
between the topology of an SMP and the open-ball topology
induced by a "well-behaved" bisimilarity distance.
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an SMP allowed us to understand a subtle relation that exists
between the topology of an SMP and the open-ball topology
induced by a "well-behaved" bisimilarity distance.

@ We have discovered that a metric version of the Stone duality
actually exists when we move from the bisimulation-based
semantics for MPs to the distance-based one.
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What’s next?

@ Bisimilarity is too restrictive ==> bisimilarity distances that
measure how similar two non-bisimilar MPs are.

@ The relation between bisimilarity and the support topology of
an SMP allowed us to understand a subtle relation that exists
between the topology of an SMP and the open-ball topology
induced by a "well-behaved" bisimilarity distance.

@ We have discovered that a metric version of the Stone duality

actually exists when we move from the bisimulation-based
semantics for MPs to the distance-based one.

More details in our presentation today from 17:20:

A Metric Analog of Stone Duality for Markov Processes
Kozen, Mardare, Panangaden
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Notice in the previous definition that
the space is not required to be compact.

@ We aim to compensate this by introducing a concept of
“saturation” similar to the one used in Model Theory;

@ Intuitively, one adds points to the structure without changing the
represented algebra. An MP is saturated if it is maximal with
respect to this operation.
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Our contribution to the Strong Completeness Proof

Goldblatt’s rule can be replaced with an infinitary rule having a
countable set of instances.

Our infinitary rule allows us to apply the Rasiowa-Sikorski Lemma to
prove Lindenbaum’s Lemma and strong completeness.

This result can be generalized to a Stone duality theorem

[Kozen, Larsen, Mardare, Panangaden, LICS2013.]

The proof technique can be applied to logics for measurable
polynomial functors on the category of measurable spaces as well as
in other contexts of non-compact modal logics with normal modal
operators.

Our results rely on some subtle topological issues that are the
cornerstone of this work.
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