Markovian Logics: Completeness and Dualities

Radu Mardare

Aalborg University, Denmark

Markov Processes

Markov processes are probabilistic/stochastic versions of LTSs, where the transitions are governed by distributions.

Markov Processes

Markov processes are probabilistic/stochastic versions of LTSs, where the transitions are governed by distributions.

Markov Process

Given an analytic space (M, Σ) , a *Markov process* is a measurable mapping

```
\theta: M \to \Pi(M, \Sigma) — probabilistic case \theta: M \to \Pi^*(M, \Sigma) — subprobabilistic case \theta: M \to \Delta(M, \Sigma) — stochastic case
```

- $\Pi(M, \Sigma)$ probabilistic distributions on (M, Σ)
- $\Pi^*(M,\Sigma)$ subprobabilistic distributions on (M,Σ)
- $\Delta(M, \Sigma)$ general distributions on (M, Σ)

Markov Processes

Markov processes are probabilistic/stochastic versions of LTSs, where the transitions are governed by distributions.

Markov Process

Given an analytic space (M, Σ) , a *Markov process* is a <u>measurable</u> mapping

 $\theta: M \to \Pi(M, \Sigma)$ — probabilistic case

 $\theta: M \to \Pi^*(M, \Sigma)$ - subprobabilistic case

 $\theta: M \to \Delta(M, \Sigma)$ – stochastic case

The measurable space of distributions is generated by sets

$$\{\mu \in \Delta(M, \Sigma) \mid \mu(A) \le r\}$$

defined for arbitrary $A \in \Sigma$ and $r \in \mathbb{Q}$.

Markovian Logics

Syntax:

$$\mathcal{L}(\Pi), \mathcal{L}(\Pi^*): \qquad \phi ::= p \in \mathcal{P} \mid \bot \mid \phi \to \phi \mid L_r \phi, \qquad r \in \mathbb{Q} \cap [0, 1]$$

$$\mathcal{L}(\Delta): \qquad \phi ::= p \in \mathcal{P} \mid \bot \mid \phi \to \phi \mid L_r \phi, \qquad r \in \mathbb{Q}^+$$

Markovian Logics

Syntax:

$$\mathcal{L}(\Pi), \mathcal{L}(\Pi^*): \qquad \phi ::= p \in \mathcal{P} \mid \bot \mid \phi \to \phi \mid L_r \phi, \qquad r \in \mathbb{Q} \cap [0, 1]$$

$$\mathcal{L}(\Delta): \qquad \phi ::= p \in \mathcal{P} \mid \bot \mid \phi \to \phi \mid L_r \phi, \qquad r \in \mathbb{Q}^+$$

Semantics:

$$\mathcal{M} = (M, \Sigma, \theta), m \in M \text{ and } i : M \to 2^{\mathcal{P}},$$

The satisfaction relation:

- $\mathcal{M}, m, i \models p \text{ if } p \in i(m),$
- $\mathcal{M}, m, i \models \bot$ never,
- $\mathcal{M}, m, i \models \phi \rightarrow \psi$ if $\mathcal{M}, m, i \models \psi$ whenever $\mathcal{M}, m, i \models \phi$,
- $\mathcal{M}, m, i \models L_r \phi$ if $\theta(m)(\llbracket \phi \rrbracket) \ge r$, where $\llbracket \phi \rrbracket = \{ m \in M \mid \mathcal{M}, m, i \models \phi \}$.

Axioms - probabilistic case

The axioms of $\mathcal{L}(\Pi)$

```
(A1): \vdash L_0 \phi

(A2): \vdash L_r T

(A3): \vdash L_r \phi \rightarrow \neg L_s \neg \phi, \quad r+s>1

(A4): \vdash L_r (\phi \land \psi) \land L_s (\phi \land \neg \psi) \rightarrow L_{r+s} \phi, \quad r+s \leq 1

(A5): \vdash \neg L_r (\phi \land \psi) \land \neg L_s (\phi \land \neg \psi) \rightarrow \neg L_{r+s} \phi, \quad r+s \leq 1

(R1): \frac{\vdash \phi \rightarrow \psi}{\vdash L_r \phi \rightarrow L_r \psi}

(R2): \{L_r \psi \mid r < s\} \vdash L_s \psi
```

Axioms - probabilistic case

The axioms of $\mathcal{L}(\Pi)$

```
(A1): \vdash L_0 \phi

(A2): \vdash L_r T

(A3): \vdash L_r \phi \rightarrow \neg L_s \neg \phi, \quad r+s>1

(A4): \vdash L_r (\phi \land \psi) \land L_s (\phi \land \neg \psi) \rightarrow L_{r+s} \phi, \quad r+s \leq 1

(A5): \vdash \neg L_r (\phi \land \psi) \land \neg L_s (\phi \land \neg \psi) \rightarrow \neg L_{r+s} \phi, \quad r+s \leq 1

(R1): \frac{\vdash \phi \rightarrow \psi}{\vdash L_r \phi \rightarrow L_r \psi}

(R2): \{L_r \psi \mid r < s\} \vdash L_s \psi
```

Weak Completeness

 $\mathcal{L}(\Pi)$ is sound and weak-complete for the probabilistic Markov processes

$$\models \phi \text{ iff } \vdash \phi.$$

Axioms - subprobabilistic case

The axioms of $\mathcal{L}(\Pi^*)$

```
(A1): \vdash L_0 \phi

(A2'): \vdash L_r \bot \to \bot

(A3): \vdash L_r \phi \to \neg L_s \neg \phi, \quad r+s>1

(A4): \vdash L_r (\phi \land \psi) \land L_s (\phi \land \neg \psi) \to L_{r+s} \phi, \quad r+s \le 1

(A5): \vdash \neg L_r (\phi \land \psi) \land \neg L_s (\phi \land \neg \psi) \to \neg L_{r+s} \phi, \quad r+s \le 1

(R1): \frac{\vdash \phi \to \psi}{\vdash L_r \phi \to L_r \psi}

(R2): \{L_r \psi \mid r < s\} \vdash L_s \psi
```

Axioms - subprobabilistic case

The axioms of $\mathcal{L}(\Pi^*)$

```
(A1): \vdash L_0 \phi

(A2'): \vdash L_r \bot \to \bot

(A3): \vdash L_r \phi \to \neg L_s \neg \phi, \quad r+s>1

(A4): \vdash L_r (\phi \land \psi) \land L_s (\phi \land \neg \psi) \to L_{r+s} \phi, \quad r+s \le 1

(A5): \vdash \neg L_r (\phi \land \psi) \land \neg L_s (\phi \land \neg \psi) \to \neg L_{r+s} \phi, \quad r+s \le 1

(R1): \frac{\vdash \phi \to \psi}{\vdash L_r \phi \to L_r \psi}

(R2): \{L_r \psi \mid r < s\} \vdash L_s \psi
```

Weak Completeness

 $\mathcal{L}(\Pi^*)$ is sound and weak-complete for the subprobabilistic Markov processes

$$\models \phi \text{ iff } \vdash \phi.$$

Axioms - stochastic case

The axioms of $\mathcal{L}(\Delta)$

(A1):
$$\vdash L_0 \phi$$

(A2'): $\vdash L_r \bot \to \bot$
(A4'): $\vdash L_r (\phi \land \psi) \land L_s (\phi \land \neg \psi) \to L_{r+s} \phi$
(A5'): $\vdash \neg L_r (\phi \land \psi) \land \neg L_s (\phi \land \neg \psi) \to \neg L_{r+s} \phi$
(R1): $\frac{\vdash \phi \to \psi}{\vdash L_r \phi \to L_r \psi}$
(R2): $\{L_r \psi \mid r < s\} \vdash L_s \psi$
(R3): $\{L_r \psi \mid r \in \mathbb{Q}^+\} \vdash \bot$

Axioms - stochastic case

The axioms of $\mathcal{L}(\Delta)$

$$\begin{array}{lll} (\mathsf{A1}) \colon & \vdash L_0 \phi \\ (\mathsf{A2'}) \colon & \vdash L_r \bot \to \bot \\ (\mathsf{A4'}) \colon & \vdash L_r (\phi \land \psi) \land L_s (\phi \land \neg \psi) \to L_{r+s} \phi \\ (\mathsf{A5'}) \colon & \vdash \neg L_r (\phi \land \psi) \land \neg L_s (\phi \land \neg \psi) \to \neg L_{r+s} \phi \\ (\mathsf{R1}) \colon & \frac{\vdash \phi \to \psi}{\vdash L_r \phi \to L_r \psi} \\ (\mathsf{R2}) \colon & \{L_r \psi \mid r < s\} \vdash L_s \psi \\ (\mathsf{R3}) \colon & \{L_r \psi \mid r \in \mathbb{Q}^+\} \vdash \bot \end{array}$$

Weak Completeness

 $\mathcal{L}(\Delta)$ is sound and weak-complete for the stochastic Markov processes

$$\models \phi \text{ iff } \vdash \phi.$$

Compactness of Markovian Logics

$$(R2): \{L_r\psi \mid r < s\} \vdash L_s\psi$$

 $\mathcal{L}(\Pi)$, $\mathcal{L}(\Pi^*)$ and $\mathcal{L}(\Delta)$ are not compact:

Compactness of Markovian Logics

$$(R2): \{L_r\psi \mid r < s\} \vdash L_s\psi$$

 $\mathcal{L}(\Pi)$, $\mathcal{L}(\Pi^*)$ and $\mathcal{L}(\Delta)$ are not compact:

for a consistent formula ϕ , the set

$$\{L_r \phi \mid r < s\} \cup \{\neg L_s \phi\}$$

is inconsistent (due to R2), but all its finite subsets are consistent.

Compactness of Markovian Logics

$$(R2): \{L_r\psi \mid r < s\} \vdash L_s\psi$$

 $\mathcal{L}(\Pi)$, $\mathcal{L}(\Pi^*)$ and $\mathcal{L}(\Delta)$ are not compact: for a consistent formula ϕ , the set

$$\{L_r \phi \mid r < s\} \cup \{\neg L_s \phi\}$$

is inconsistent (due to R2), but all its finite subsets are consistent.

Consequently, the logics are not necessarly strongly complete, i.e., we might need extra axioms to prove that

$$\Phi \models \phi \text{ iff } \Phi \vdash \phi,$$

for arbitrary $\Phi \subseteq \mathcal{L}$ and $\phi \in \mathcal{L}$.

[Goldblatt, J. Logic Comput. 2010]

 the logic of T-coalgebras – T measurable polynomial functor on the category of measurable spaces;

[Goldblatt, J. Logic Comput. 2010]

- the logic of T-coalgebras T measurable polynomial functor on the category of measurable spaces;
- the semantic consequence relation over *T*-coalgebras is equal to the least deducibility relation that satisfies Lindenbaum's lemma.

[Goldblatt, J. Logic Comput. 2010]

- the logic of T-coalgebras T measurable polynomial functor on the category of measurable spaces;
- the semantic consequence relation over *T*-coalgebras is equal to the least deducibility relation that satisfies Lindenbaum's lemma.
- Moreover, strong completeness requires a strengthened version of (R1) - the countable additivity rule (CAR):

For Φ – closed under conjunction,

(CAR):
$$\frac{\Phi \vdash \phi}{L_r \Phi \vdash L_r \phi}$$

where $L_r\Phi = \{L_r\psi \mid \psi \in \Phi\}.$

Strong Completeness Proofs

[Zhou, J. Logic Lang. and Comput. 2010]

- Goldblatt's (CAR) rule and Lindenbaum's lemma => strong completeness of probabilistic logic for Harsanyi type spaces;
- proves that without Goldblatt's rule the logic is not complete.

Strong Completeness Proofs

[Zhou, J. Logic Lang. and Comput. 2010]

- Goldblatt's (CAR) rule and Lindenbaum's lemma => strong completeness of probabilistic logic for Harsanyi type spaces;
- proves that without Goldblatt's rule the logic is not complete.

[Cardelli, Mardare, Larsen, ICALP2011, CSL2011, LMCS 2012]

 similar systems => the strong completeness for various logics on general Markov processes.

For Φ – closed under conjunction,

(CAR):
$$\frac{\Phi \vdash \phi}{L_r \Phi \vdash L_r \phi}$$

Observe that (CAR) has uncountably many instances.

For Φ – closed under conjunction,

(CAR):
$$\frac{\Phi \vdash \phi}{L_r \Phi \vdash L_r \phi}$$

Observe that (CAR) has uncountably many instances.

Consequently, one cannot simply use the Zorn's lemma to prove that any consistent set of formulas can be extended to a maximally consistent set.

Proving Lindenbaum's property is highly non-trivial!

The Rasiowa-Sikorski Lemma

Let $\mathcal B$ be a Boolean algebra and $T\subset \mathcal B$ be a set with $\bigwedge T$ defined. An ultrafilter U is said to *respect* T if

$$T \subseteq U \Rightarrow \bigwedge T \in U$$
.

The Rasiowa-Sikorski Lemma

Let $\mathcal B$ be a Boolean algebra and $T\subset \mathcal B$ be a set with $\bigwedge T$ defined. An ultrafilter U is said to *respect* T if

$$T \subseteq U \Rightarrow \bigwedge T \in U$$
.

The Rasiowa-Sikorski Lemma

Let \mathcal{T} be a countable family of subsets of \mathcal{B} each member of which has a meet in \mathcal{B} and let $x \neq 0$. There exists an ultrafilter which respects each member of \mathcal{T} and which contains x.

The Rasiowa-Sikorski Lemma

Let $\mathcal B$ be a Boolean algebra and $T\subset \mathcal B$ be a set with $\bigwedge T$ defined. An ultrafilter U is said to $respect\ T$ if

$$T\subseteq U\Rightarrow \bigwedge T\in U$$
.

The Rasiowa-Sikorski Lemma

Let \mathcal{T} be a countable family of subsets of \mathcal{B} each member of which has a meet in \mathcal{B} and let $x \neq 0$. There exists an ultrafilter which respects each member of \mathcal{T} and which contains x.

Corollary

Given a Boolean logic with a countable axiomatization. Any consistent set of formulas can be extended to a maximally consistent set that respects all the instances of the axioms and rules.

Axioms - probabilistic case

The axioms of $\mathcal{L}(\Pi)$

```
(A1): \vdash L_0 \phi

(A2): \vdash L_r T

(A3): \vdash L_r \phi \to \neg L_s \neg \phi, \quad r+s>1

(A4): \vdash L_r (\phi \land \psi) \land L_s (\phi \land \neg \psi) \to L_{r+s} \phi, \quad r+s \leq 1

(A5): \vdash \neg L_r (\phi \land \psi) \land \neg L_s (\phi \land \neg \psi) \to \neg L_{r+s} \phi, \quad r+s \leq 1

(R1): \frac{\vdash \phi \to \psi}{\vdash L_r \phi \to L_r \psi}
```

where $L_{r_1\cdots r_nr}\psi=L_{r_1}L_{r_2}..L_{r_n}L_r\psi$.

(R2'): $\{L_{r_1 \dots r_n r} \psi \mid r < s\} \vdash L_{r_1 \dots r_n s} \psi$

Axioms - probabilistic case

The axioms of $\mathcal{L}(\Pi)$

```
(A1): \vdash L_0 \phi

(A2): \vdash L_r T

(A3): \vdash L_r \phi \to \neg L_s \neg \phi, \quad r+s>1

(A4): \vdash L_r (\phi \land \psi) \land L_s (\phi \land \neg \psi) \to L_{r+s} \phi, \quad r+s \leq 1

(A5): \vdash \neg L_r (\phi \land \psi) \land \neg L_s (\phi \land \neg \psi) \to \neg L_{r+s} \phi, \quad r+s \leq 1

(R1): \frac{\vdash \phi \to \psi}{\vdash L_r \phi \to L_r \psi}
```

(R2):
$$\{L_r \psi \mid r < s\} \vdash L_s \psi$$

(R2'):
$$\{L_{r_1 \cdots r_n r} \psi \mid r < s\} \vdash L_{r_1 \cdots r_n s} \psi$$

where $L_{r_1\cdots r_nr}\psi=L_{r_1}L_{r_2}..L_{r_n}L_r\psi$.

We prove the strong completeness for $\mathcal{L}(\Pi)$

Aumann Algebra - the probabilistic case

[Kozen, Larsen, Mardare, Panangaden, LICS2013]

A (probabilistic) Aumann algebra is a structure

$$\mathcal{A} = (A, \rightarrow, \bot, \{L_r\}_{r \in \mathbb{O} \cap [0,1]}, \sqsubseteq)$$

- $(A, \rightarrow, \bot, \sqsubseteq)$ is a Boolean algebra;
- $L_r: A \to A$ is an unary operator, for $r \in \mathbb{Q} \cap [0,1]$.

Aumann Algebra - the probabilistic case

[Kozen, Larsen, Mardare, Panangaden, LICS2013]

A (probabilistic) Aumann algebra is a structure

$$\mathcal{A} = (A, \rightarrow, \perp, \{L_r\}_{r \in \mathbb{O} \cap [0,1]}, \sqsubseteq)$$

- $(A, \rightarrow, \bot, \sqsubseteq)$ is a Boolean algebra;
- $L_r: A \to A$ is an unary operator, for $r \in \mathbb{Q} \cap [0,1]$.

Axioms

(AA1)
$$\top \sqsubseteq L_0 a$$

(AA2) $\top \sqsubseteq L_r \top$
(AA3) $L_r a \sqsubseteq \neg L_s \neg a, \quad r+s>1$
(AA4) $L_r (a \wedge b) \wedge L_s (a \wedge \neg b) \sqsubseteq L_{r+s} a, \quad r+s \leq 1$
(AA5) $\neg L_r (a \wedge b) \wedge \neg L_s (a \wedge \neg b) \sqsubseteq \neg L_{r+s} a, \quad r+s \leq 1$
(AA6) $a \sqsubseteq b \Rightarrow L_r a \sqsubseteq L_r b$
(AA7) $\bigwedge_{r \leq s} L_{r_1 \cdots r_r r} a = L_{r_1 \cdots r_r s} a$

Markovian logic yields an Aumann algebra

Let $[\phi]$ denote the equivalence class of ϕ modulo \equiv , and let $\mathcal{L}(\Pi)/\equiv=\{[\phi]\mid \phi\in\mathcal{L}\}.$

Theorem

The structure

$$(\mathcal{L}(\Pi)/\equiv, \longrightarrow, [\perp], \{L_r\}_{r\in\mathbb{Q}_0}, \leq)$$

is a countable probabilistic Aumann algebra, where $[\phi] \leq [\psi]$ iff $\vdash \phi \rightarrow \psi$.

Markovian logic yields an Aumann algebra

Let $[\phi]$ denote the equivalence class of ϕ modulo \equiv , and let $\mathcal{L}(\Pi)/\equiv=\{[\phi]\mid \phi\in\mathcal{L}\}.$

Theorem

The structure

$$(\mathcal{L}(\Pi)/\equiv, \longrightarrow, [\perp], \{L_r\}_{r\in\mathbb{Q}_0}, \leq)$$

is a countable probabilistic Aumann algebra, where $[\phi] \leq [\psi]$ iff $\vdash \phi \rightarrow \psi$.

filters of AA ==> consistent sets of $\mathcal{L}(\Pi)$

ultrafilters of AA ==> maximal consistent sets of $\mathcal{L}(\Pi)$

Recap of Stone Duality

Stone Duality

We have a (contravariant) adjunction between categories $\mathcal C$ and $\mathcal D$, which is an *equivalence* of categories.

Examples: Finite sets and finite Boolean algebras, Boolean algebras and Stone spaces, Finite-dimensional vector spaces and itself, commutative unital C^* -algebras and compact Hausdorff spaces,

Fix an arbitrary countable Aumann algebra

$$\mathcal{A} = (A, \rightarrow, \perp, \{L_r\}_{r \in \mathbb{Q} \cap [0,1]}, \sqsubseteq).$$

Fix an arbitrary countable Aumann algebra

$$\mathcal{A} = (A, \rightarrow, \perp, \{L_r\}_{r \in \mathbb{Q} \cap [0,1]}, \sqsubseteq).$$

• Let \mathcal{U}^* be the set of all Boolean ultrafilters of \mathcal{A} .

Fix an arbitrary countable Aumann algebra

$$\mathcal{A} = (A, \rightarrow, \perp, \{L_r\}_{r \in \mathbb{Q} \cap [0,1]}, \sqsubseteq).$$

- Let \mathcal{U}^* be the set of all Boolean ultrafilters of \mathcal{A} .
- The Stone duality construction for Boolean algebras with operators [Jonsson-Tarski, Am. J. of Math. 1951]: a Boolean algebra of sets isomorphic to A with elements

$$(|a|)^* = \{ u \in \mathcal{U}^* \mid a \in u \}, \ a \in \mathcal{A}$$
$$(|\mathcal{A}|)^* = \{ (|a|)^* \mid a \in A \}.$$

Fix an arbitrary countable Aumann algebra

$$\mathcal{A} = (A, \rightarrow, \perp, \{L_r\}_{r \in \mathbb{Q} \cap [0,1]}, \sqsubseteq).$$

- Let \mathcal{U}^* be the set of all Boolean ultrafilters of \mathcal{A} .
- The Stone duality construction for Boolean algebras with operators [Jonsson-Tarski, Am. J. of Math. 1951]: a Boolean algebra of sets isomorphic to A with elements

$$(|a|)^* = \{ u \in \mathcal{U}^* \mid a \in u \}, \ a \in \mathcal{A}$$

$$(|\mathcal{A}|)^* = \{ (|a|)^* \mid a \in A \}.$$

• The sets $(a)^*$ are the clopen sets that generate a Stone topology τ^* on \mathcal{U}^* <== compact, zero-dimensional, Hausdorff space.

Ultrafilters: Good and Bad

Recall the axiom

(AA7)
$$\bigwedge_{r < s} L_{r_1 \cdots r_n r} a = L_{r_1 \cdots r_n s} a$$

It is the only infinitary axiom-schema:

Ultrafilters: Good and Bad

Recall the axiom

(AA7)
$$\bigwedge_{r < s} L_{r_1 \cdots r_n r} a = L_{r_1 \cdots r_n s} a$$

It is the only infinitary axiom-schema:

- some Boolean ultrafilers in U^{*} respect all the instances of this axiom – the good ultrafilters <== Rasiowa- Sikorski Lemma
- some ultrafilters in U^{*} violates one or more instances of (AA7) the bad ultrafilters.

Ultrafilters: Good and Bad

Recall the axiom

(AA7)
$$\bigwedge_{r < s} L_{r_1 \cdots r_n r} a = L_{r_1 \cdots r_n s} a$$

It is the only infinitary axiom-schema:

- some Boolean ultrafilers in U^{*} respect all the instances of this axiom – the good ultrafilters <== Rasiowa- Sikorski Lemma
- some ultrafilters in U^{*} violates one or more instances of (AA7) the bad ultrafilters.

Let $\mathcal U$ be the set of good ultrafilters of $\mathcal A$ and

$$(|a|) = \{u \in \mathcal{U} \mid a \in u\}, \ a \in \mathcal{A}$$

 $(|\mathcal{A}|) = \{(|a|) \mid a \in A\}.$

Then $\mathcal{U}^* \setminus \mathcal{U}$ is the set of bad ultrafilters.

The space of good ultrafilters

We proved the following results:

① The set \mathcal{U} of good ultrafilters is dense in the set \mathcal{U}^* of all ultrafilters; the set $\mathcal{U}^* \setminus \mathcal{U}$ of bad ultrafilters is meager in the Stone topology.

The space of good ultrafilters

We proved the following results:

- The set \mathcal{U} of good ultrafilters is dense in the set \mathcal{U}^* of all ultrafilters; the set $\mathcal{U}^* \setminus \mathcal{U}$ of bad ultrafilters is meager in the Stone topology.
- ② Since \mathcal{U}^* is a Stone space, the subspace \mathcal{U} of good ultrafilters with the subspace topology is a zero-dimensional Hausdorff space.

The space of good ultrafilters

We proved the following results:

- **1** The set \mathcal{U} of good ultrafilters is dense in the set \mathcal{U}^* of all ultrafilters; the set $\mathcal{U}^* \setminus \mathcal{U}$ of bad ultrafilters is meager in the Stone topology.
- ② Since \mathcal{U}^* is a Stone space, the subspace \mathcal{U} of good ultrafilters with the subspace topology is a zero-dimensional Hausdorff space.
- $\ \ \, \ \, \ \,$ However, $\mathcal U$ is not compact any more; but it is saturated in the sense of Model Theory.

Consider the subspace topology of the good ulrafilters

$$(\mathcal{U}, \tau) \subset (\mathcal{U}^*, \tau^*).$$

Consider the subspace topology of the good ulrafilters

$$(\mathcal{U}, \tau) \subset (\mathcal{U}^*, \tau^*).$$

• The Borel algebra induced by τ coincides with the σ -algebra generated by the field of sets (A).

Consider the subspace topology of the good ulrafilters

$$(\mathcal{U}, \tau) \subset (\mathcal{U}^*, \tau^*).$$

- The Borel algebra induced by τ coincides with the σ -algebra generated by the field of sets (A).
- Hence, $(\mathcal{U}, (A)^{\sigma})$ is a measurable space.
- Moreover, $(\mathcal{U}, (\![A]\!])^{\sigma}$ is an analytic space, since τ is Hausdorff, saturated and zero-dimensional.

Consider the subspace topology of the good ulrafilters

$$(\mathcal{U}, \tau) \subset (\mathcal{U}^*, \tau^*).$$

- The Borel algebra induced by τ coincides with the σ -algebra generated by the field of sets (|A|).
- Hence, $(\mathcal{U}, (A)^{\sigma})$ is a measurable space.
- Moreover, $(\mathcal{U}, (\![A]\!])^{\sigma}$ is an analytic space, since τ is Hausdorff, saturated and zero-dimensional.

 $\ensuremath{\mathcal{U}}$ is used as the state space for (the cannonic) Markov process.

• For any good ultrafilter $u \in \mathcal{U}$ and any $a \in A$,

$$\sup \{r \mid L_r a \in u\} = \inf \{r \mid \neg L_r a \in u\}.$$

• For any good ultrafilter $u \in \mathcal{U}$ and any $a \in A$,

$$\sup \{r \mid L_r a \in u\} = \inf \{r \mid \neg L_r a \in u\}.$$

2 Thus, one can define

$$\theta(u)(\langle a \rangle) = \sup \{\ldots\} = \inf \{\ldots\}.$$

① For any good ultrafilter $u \in \mathcal{U}$ and any $a \in A$,

$$\sup \{r \mid L_r a \in u\} = \inf \{r \mid \neg L_r a \in u\}.$$

2 Thus, one can define

$$\theta(u)(\langle a \rangle) = \sup \{\ldots\} = \inf \{\ldots\}.$$

The set function $\theta(u)$ is finitely additive and continuous from above at \emptyset on the field (A) of sets <== Rasiowa-Sikorski Lemma.

• For any good ultrafilter $u \in \mathcal{U}$ and any $a \in A$,

$$\sup \{r \mid L_r a \in u\} = \inf \{r \mid \neg L_r a \in u\}.$$

2 Thus, one can define

$$\theta(u)(\langle a \rangle) = \sup \{\ldots\} = \inf \{\ldots\}.$$

- The set function $\theta(u)$ is finitely additive and continuous from above at \emptyset on the field (A) of sets <== Rasiowa-Sikorski Lemma.
- **4** One can use standard measure extension theorems to define θ as a measure on the measurable space $(\mathcal{U}, (A))^{\sigma})$ of good ultrafilters.

The cannonic model

The Markov process of good ultrafilters

If \mathcal{A} is a countable Aumann algebra, then we can construct a countably-generated Markov process, $\mathbb{M}(\mathcal{A}) = (\mathcal{U}, (\mathcal{A})^{\sigma}, \theta)$, on the space \mathcal{U} of good ultrafilters.

Moreover, (A) is the base of a topology that is

- zero-dimensional,
- Hausdorff,
- saturated.

The cannonic model

The Markov process of good ultrafilters

If \mathcal{A} is a countable Aumann algebra, then we can construct a countably-generated Markov process, $\mathbb{M}(\mathcal{A}) = (\mathcal{U}, (\mathcal{A})^{\sigma}, \theta)$, on the space \mathcal{U} of good ultrafilters.

Moreover, (A) is the base of a topology that is

- zero-dimensional,
- Hausdorff,
- saturated.

Truth Lemma

Let $\Phi \subseteq \mathcal{L}$ be an arbitrary theory and $u \subseteq \mathcal{L}$ an arbitrary maximal consistent set of \mathcal{L} – observe that $u \in \mathcal{U}(\mathcal{L})$. Then,

$$\Phi \subseteq u \text{ iff } \mathbb{M}(\mathcal{L}), u \models \Phi.$$

Strong Completeness for Markovian logics

Strong Completeness

Let $\Phi \subseteq \mathcal{L}$ be an arbitrary theory and $\phi \in \mathcal{L}$. Then,

$$\Phi \models \phi \text{ iff } \Phi \vdash \phi.$$

The result applies to $\mathcal{L} \in \{\mathcal{L}(\Pi), \mathcal{L}(\Pi^*), \mathcal{L}(\Delta)\}$ with the corresponding semantics and axiomatization.

• Consider a zero-dimensional Hausdorff topological space *M*.

- Consider a zero-dimensional Hausdorff topological space M.
- ullet ${\mathcal D}$ a distinguished countable base of clopens closed under
 - the set-theoretic Boolean operations
 - the operation $L_r(D) = \{m \mid \tau(m)(D) \geq r\}.$

- Consider a zero-dimensional Hausdorff topological space M.
- ullet ${\mathcal D}$ a distinguished countable base of clopens closed under
 - the set-theoretic Boolean operations
 - the operation $L_r(D) = \{m \mid \tau(m)(D) \geq r\}.$
- \mathcal{D}^{σ} the Borel algebra of the topology induced by \mathcal{D} .

- Consider a zero-dimensional Hausdorff topological space M.
- ullet ${\mathcal D}$ a distinguished countable base of clopens closed under
 - the set-theoretic Boolean operations
 - the operation $L_r(D) = \{m \mid \tau(m)(D) \geq r\}.$
- \mathcal{D}^{σ} the Borel algebra of the topology induced by \mathcal{D} .
- An SMP $(M, \mathcal{D}^{\sigma}, \theta)$ is an MP defined on such a structure.

- Consider a zero-dimensional Hausdorff topological space M.
- ullet ${\mathcal D}$ a distinguished countable base of clopens closed under
 - the set-theoretic Boolean operations
 - the operation $L_r(D) = \{m \mid \tau(m)(D) \geq r\}.$
- \mathcal{D}^{σ} the Borel algebra of the topology induced by \mathcal{D} .
- An SMP $(M, \mathcal{D}^{\sigma}, \theta)$ is an MP defined on such a structure.
- Morphisms of SMPs are *continuous* function $f: \mathcal{M} \to \mathcal{N}$ s.t.

The Aumann algebra of clopens

Let $\mathcal{M} = (M, \mathcal{B}^{\sigma}, \theta)$ be a Stone Markov process.

The Aumann algebra of clopens

The structure \mathcal{B} with the set-theoretic Boolean operations and the operations L_r for $r \in \mathbb{Q} \cap [0,1]$, is a countable Aumann algebra.

We denote this algebra by $\mathbb{A}(\mathcal{M})$.

The duality

We defined two contravariant functors:

$$\mathbb{A}(\cdot): SMP \longrightarrow AA^{op}$$

On arrows $f: \mathcal{M} \to \mathcal{N}$ we define $\mathbb{A}(f) = f^{-1} : \mathbb{A}(\mathcal{N}) \to \mathbb{A}(\mathcal{M})$.

The duality

We defined two contravariant functors:

$$\mathbb{A}(\cdot): SMP \longrightarrow AA^{op}$$

On arrows $f: \mathcal{M} \to \mathcal{N}$ we define $\mathbb{A}(f) = f^{-1} : \mathbb{A}(\mathcal{N}) \to \mathbb{A}(\mathcal{M})$.

$\mathbb{M}(\cdot): \mathbf{AA} \to \mathbf{SMP}^{\mathrm{op}}$

On morphisms $h: \mathcal{A} \to \mathcal{B}$, $\mathbb{M}(h) = h^{-1}: \mathbb{M}(\mathcal{B}) \to \mathbb{M}(\mathcal{A})$, explicitly

$$\mathbb{M}(h)(u) = h^{-1}(u) = \{ A \in \mathcal{A}_{\mathcal{N}} \mid h(A) \in u \}.$$

The duality

We defined two contravariant functors:

$$\mathbb{A}(\cdot): \mathbf{SMP} \longrightarrow \mathbf{AA}^{\mathrm{op}}$$

On arrows $f: \mathcal{M} \to \mathcal{N}$ we define $\mathbb{A}(f) = f^{-1} : \mathbb{A}(\mathcal{N}) \to \mathbb{A}(\mathcal{M})$.

$\mathbb{M}(\cdot): \mathbf{AA} \to \mathbf{SMP}^{\mathrm{op}}$

On morphisms $h: \mathcal{A} \to \mathcal{B}$, $\mathbb{M}(h) = h^{-1}: \mathbb{M}(\mathcal{B}) \to \mathbb{M}(\mathcal{A})$, explicitly

$$\mathbb{M}(h)(u) = h^{-1}(u) = \{ A \in \mathcal{A}_{\mathcal{N}} \mid h(A) \in u \}.$$

The functors \mathbb{M} and \mathbb{A} define a dual equivalence of categories.

Representation

The representation theorem

• Any countable Aumann algebra $\mathcal{A}=(A, \to, \bot, \{L_r\}_{r\in\mathbb{Q}^+}, \sqsubseteq)$ is isomorphic to $\mathbb{A}(\mathbb{M}(\mathcal{A}))$ via the map $\beta: \mathcal{A} \to \mathbb{A}(\mathbb{M}(\mathcal{A}))$ defined by

$$\beta(a) = \{ u \in \operatorname{supp}(\mathbb{M}(\mathcal{A})) \mid a \in u \} = \{ a \}.$$

Representation

The representation theorem

• Any countable Aumann algebra $\mathcal{A}=(A, \to, \bot, \{L_r\}_{r\in\mathbb{Q}^+}, \sqsubseteq)$ is isomorphic to $\mathbb{A}(\mathbb{M}(\mathcal{A}))$ via the map $\beta: \mathcal{A} \to \mathbb{A}(\mathbb{M}(\mathcal{A}))$ defined by

$$\beta(a) = \{ u \in \operatorname{supp}(\mathbb{M}(\mathcal{A})) \mid a \in u \} = \{ a \}.$$

② Any saturated Markov process $\mathcal{M}=(M,\mathcal{A},\theta)$ is homeomorphic to $\mathbb{M}(\mathbb{A}(\mathcal{M}))$ via the map $\alpha:\mathcal{M}\to\mathbb{M}(\mathbb{A}(\mathcal{M}))$ defined by

$$\alpha(m) = \{ A \in \mathcal{A} \mid m \in A \}.$$

 The Stone duality for MPs explains the intrinsic relationship between the category of (Stone) Markov processes and the category of (countable) Aumann algebras.

- The Stone duality for MPs explains the intrinsic relationship between the category of (Stone) Markov processes and the category of (countable) Aumann algebras.
- The logical characterization of bisimilarity reflects the fact that the separability relation induced by the support topology of an SMP coincides to the bisimilarity relation.

- The Stone duality for MPs explains the intrinsic relationship between the category of (Stone) Markov processes and the category of (countable) Aumann algebras.
- The logical characterization of bisimilarity reflects the fact that the separability relation induced by the support topology of an SMP coincides to the bisimilarity relation.
- Because this topology has a base formed from positive formulas, we can characterize the bisimilarity considering only the negation-free formulas.

- The Stone duality for MPs explains the intrinsic relationship between the category of (Stone) Markov processes and the category of (countable) Aumann algebras.
- The logical characterization of bisimilarity reflects the fact that the separability relation induced by the support topology of an SMP coincides to the bisimilarity relation.
- Because this topology has a base formed from positive formulas, we can characterize the bisimilarity considering only the negation-free formulas.
- Similarly, we could characterize bisimilarity using any other base.

 Bisimilarity is too restrictive ==> bisimilarity distances that measure how similar two non-bisimilar MPs are.

- Bisimilarity is too restrictive ==> bisimilarity distances that measure how similar two non-bisimilar MPs are.
- The relation between bisimilarity and the support topology of an SMP allowed us to understand a subtle relation that exists between the topology of an SMP and the open-ball topology induced by a "well-behaved" bisimilarity distance.

- Bisimilarity is too restrictive ==> bisimilarity distances that measure how similar two non-bisimilar MPs are.
- The relation between bisimilarity and the support topology of an SMP allowed us to understand a subtle relation that exists between the topology of an SMP and the open-ball topology induced by a "well-behaved" bisimilarity distance.
- We have discovered that a metric version of the Stone duality actually exists when we move from the bisimulation-based semantics for MPs to the distance-based one.

- Bisimilarity is too restrictive ==> bisimilarity distances that measure how similar two non-bisimilar MPs are.
- The relation between bisimilarity and the support topology of an SMP allowed us to understand a subtle relation that exists between the topology of an SMP and the open-ball topology induced by a "well-behaved" bisimilarity distance.
- We have discovered that a metric version of the Stone duality actually exists when we move from the bisimulation-based semantics for MPs to the distance-based one.

More details in our presentation today from 17:20:

A Metric Analog of Stone Duality for Markov Processes
Kozen, Mardare, Panangaden

Saturation

Notice in the previous definition that

the space is not required to be compact.

- We aim to compensate this by introducing a concept of "saturation" similar to the one used in Model Theory;
- Intuitively, one adds points to the structure without changing the represented algebra. An MP is saturated if it is maximal with respect to this operation.

Our contribution to the Strong Completeness Proof

Goldblatt's rule can be replaced with an infinitary rule having a countable set of instances.

Our infinitary rule allows us to apply the Rasiowa-Sikorski Lemma to prove Lindenbaum's Lemma and strong completeness.

This result can be generalized to a Stone duality theorem

[Kozen, Larsen, Mardare, Panangaden, LICS2013.]

The proof technique can be applied to logics for measurable polynomial functors on the category of measurable spaces as well as in other contexts of non-compact modal logics with normal modal operators.

Our results rely on some subtle topological issues that are the cornerstone of this work.