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Markov Processes

Markov processes are probabilistic/stochastic versions of LTSs, where
the transitions are governed by distributions.

Markov Process
Given an analytic space (M,Σ), a Markov process is a measurable
mapping

θ : M −→ Π(M,Σ) − probabilistic case
θ : M −→ Π∗(M,Σ) − subprobabilistic case
θ : M −→ ∆(M,Σ) − stochastic case

Π(M,Σ) – probabilistic distributions on (M,Σ)

Π∗(M,Σ) – subprobabilistic distributions on (M,Σ)

∆(M,Σ) – general distributions on (M,Σ)
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Markov processes are probabilistic/stochastic versions of LTSs, where
the transitions are governed by distributions.

Markov Process
Given an analytic space (M,Σ), a Markov process is a measurable
mapping

θ : M −→ Π(M,Σ) − probabilistic case
θ : M −→ Π∗(M,Σ) − subprobabilistic case
θ : M −→ ∆(M,Σ) − stochastic case

The measurable space of distributions is generated by sets

{µ ∈ ∆(M,Σ) | µ(A) ≤ r}

defined for arbitrary A ∈ Σ and r ∈ Q.
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Markovian Logics

Syntax:
L(Π),L(Π∗) : φ ::= p ∈ P | ⊥ | φ −→ φ | Lrφ, r ∈ Q ∩ [0, 1]

L(∆) : φ ::= p ∈ P | ⊥ | φ −→ φ | Lrφ, r ∈ Q+

Semantics:
M = (M,Σ, θ), m ∈ M and i : M −→ 2P ,

The satisfaction relation:
M,m, i |= p if p ∈ i(m),
M,m, i |= ⊥ never,
M,m, i |= φ −→ ψ ifM,m, i |= ψ wheneverM,m, i |= φ,

M,m, i |= Lrφ if θ(m)(JφK) ≥ r,
where JφK = {m ∈ M | M,m, i |= φ}.
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Axioms - probabilistic case

The axioms of L(Π)

(A1): ` L0φ
(A2): ` LrT
(A3): ` Lrφ −→ ¬Ls¬φ, r + s > 1
(A4): ` Lr(φ ∧ ψ) ∧ Ls(φ ∧ ¬ψ) −→ Lr+sφ, r + s ≤ 1
(A5): ` ¬Lr(φ ∧ ψ) ∧ ¬Ls(φ ∧ ¬ψ) −→ ¬Lr+sφ, r + s ≤ 1

(R1):
` φ −→ ψ

` Lrφ −→ Lrψ
(R2): {Lrψ | r < s} ` Lsψ

Weak Completeness
L(Π) is sound and weak-complete for the probabilistic Markov
processes

|= φ iff ` φ.
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Axioms - subprobabilistic case

The axioms of L(Π∗)

(A1): ` L0φ
(A2’): ` Lr⊥ −→ ⊥
(A3): ` Lrφ −→ ¬Ls¬φ, r + s > 1
(A4): ` Lr(φ ∧ ψ) ∧ Ls(φ ∧ ¬ψ) −→ Lr+sφ, r + s ≤ 1
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processes
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Axioms - stochastic case

The axioms of L(∆)

(A1): ` L0φ
(A2’): ` Lr⊥ −→ ⊥
(A4’): ` Lr(φ ∧ ψ) ∧ Ls(φ ∧ ¬ψ) −→ Lr+sφ
(A5’): ` ¬Lr(φ ∧ ψ) ∧ ¬Ls(φ ∧ ¬ψ) −→ ¬Lr+sφ

(R1):
` φ −→ ψ

` Lrφ −→ Lrψ
(R2): {Lrψ | r < s} ` Lsψ
(R3): {Lrψ | r ∈ Q+} ` ⊥

Weak Completeness
L(∆) is sound and weak-complete for the stochastic Markov processes

|= φ iff ` φ.
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Compactness of Markovian Logics

(R2) : {Lrψ | r < s} ` Lsψ

L(Π), L(Π∗) and L(∆) are not compact:

for a consistent formula φ, the set

{Lrφ | r < s} ∪ {¬Lsφ}

is inconsistent (due to R2), but all its finite subsets are consistent.

Consequently, the logics are not necessarly strongly complete,
i.e., we might need extra axioms to prove that

Φ |= φ iff Φ ` φ,

for arbitrary Φ ⊆ L and φ ∈ L.
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Strong Completeness

[Goldblatt, J. Logic Comput. 2010]
the logic of T-coalgebras – T measurable polynomial functor on
the category of measurable spaces;

the semantic consequence relation over T-coalgebras is equal to
the least deducibility relation that satisfies Lindenbaum’s lemma.
Moreover, strong completeness – requires a strengthened version
of (R1) - the countable additivity rule (CAR):

For Φ – closed under conjunction,

(CAR):
Φ ` φ

LrΦ ` Lrφ

where LrΦ = {Lrψ | ψ ∈ Φ}.
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Strong Completeness Proofs

[Zhou, J. Logic Lang. and Comput. 2010]
Goldblatt’s (CAR) rule and Lindenbaum’s lemma => strong
completeness of probabilistic logic for Harsanyi type spaces;
proves that without Goldblatt’s rule the logic is not complete.

[Cardelli, Mardare, Larsen, ICALP2011, CSL2011, LMCS 2012]
similar systems => the strong completeness for various logics on
general Markov processes.
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Strong Completeness

For Φ – closed under conjunction,

(CAR):
Φ ` φ

LrΦ ` Lrφ

Observe that (CAR) has uncountably many instances.

Consequently, one cannot simply use the Zorn’s lemma to prove that
any consistent set of formulas can be extended to a maximally
consistent set.

Proving Lindenbaum’s property is highly non-trivial!
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The Rasiowa-Sikorski Lemma

Let B be a Boolean algebra and T ⊂ B be a set with
∧

T defined. An
ultrafilter U is said to respect T if

T ⊆ U ⇒
∧

T ∈ U.

The Rasiowa-Sikorski Lemma
Let T be a countable family of subsets of B each member of which has
a meet in B and let x 6= 0. There exists an ultrafilter which respects
each member of T and which contains x.

Corollary
Given a Boolean logic with a countable axiomatization. Any consistent
set of formulas can be extended to a maximally consistent set that
respects all the instances of the axioms and rules.
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Axioms - probabilistic case

The axioms of L(Π)

(A1): ` L0φ
(A2): ` LrT
(A3): ` Lrφ −→ ¬Ls¬φ, r + s > 1
(A4): ` Lr(φ ∧ ψ) ∧ Ls(φ ∧ ¬ψ) −→ Lr+sφ, r + s ≤ 1
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(R1):
` φ −→ ψ

` Lrφ −→ Lrψ

(R2): {Lrψ | r < s} ` Lsψ

(R2’): {Lr1···rnrψ | r < s} ` Lr1···rnsψ

where Lr1···rnrψ = Lr1Lr2 ..LrnLrψ.

We prove the strong completeness for L(Π)
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Aumann Algebra - the probabilistic case

[Kozen, Larsen, Mardare, Panangaden, LICS2013]

A (probabilistic) Aumann algebra is a structure
A = (A,−→,⊥, {Lr}r∈Q∩[0,1],v)

(A,−→,⊥,v) is a Boolean algebra;
Lr : A −→ A is an unary operator, for r ∈ Q ∩ [0, 1].

Axioms
(AA1) > v L0a
(AA2) > v Lr>
(AA3) Lra v ¬Ls¬a, r + s > 1
(AA4) Lr(a ∧ b) ∧ Ls(a ∧ ¬b) v Lr+sa, r + s ≤ 1
(AA5) ¬Lr(a ∧ b) ∧ ¬Ls(a ∧ ¬b) v ¬Lr+sa, r + s ≤ 1
(AA6) a v b⇒ Lra v Lrb
(AA7)

∧
r<s Lr1···rnra = Lr1···rnsa
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Markovian logic yields an Aumann algebra

Let [φ] denote the equivalence class of φ modulo ≡, and let
L(Π)/≡ = {[φ] | φ ∈ L}.

Theorem
The structure

(L(Π)/≡,−→, [⊥], {Lr}r∈Q0
,≤)

is a countable probabilistic Aumann algebra,
where [φ] ≤ [ψ] iff ` φ −→ ψ.

filters of AA ==> consistent sets of L(Π)

ultrafilters of AA ==> maximal consistent sets of L(Π)
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Recap of Stone Duality

C

F

""
Dop

G

bb

Stone Duality
We have a (contravariant) adjunction between categories C and D,
which is an equivalence of categories.

Examples: Finite sets and finite Boolean algebras, Boolean algebras
and Stone spaces, Finite-dimensional vector spaces and itself,
commutative unital C∗-algebras and compact Hausdorff spaces, .....
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Reasoning on ultrafilters

Fix an arbitrary countable Aumann algebra

A = (A,−→,⊥, {Lr}r∈Q∩[0,1],v).

Let U * be the set of all Boolean ultrafilters of A.
The Stone duality construction for Boolean algebras with
operators [Jonsson-Tarski, Am. J. of Math. 1951]:
a Boolean algebra of sets isomorphic to A with elements

LaM* = {u ∈ U * | a ∈ u}, a ∈ A
LAM* = {LaM* | a ∈ A}.

The sets LaM* are the clopen sets that generate a Stone topology
τ * on U * <== compact, zero-dimensional, Hausdorff space.
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Ultrafilters: Good and Bad

Recall the axiom

(AA7)
∧

r<s Lr1···rnra = Lr1···rnsa

It is the only infinitary axiom-schema:

some Boolean ultrafilers in U * respect all the instances of this
axiom – the good ultrafilters <== Rasiowa- Sikorski Lemma
some ultrafilters in U * violates one or more instances of (AA7) –
the bad ultrafilters.

Let U be the set of good ultrafilters of A and

LaM = {u ∈ U | a ∈ u}, a ∈ A
LAM = {LaM | a ∈ A}.

Then U * \ U is the set of bad ultrafilters.
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The space of good ultrafilters

We proved the following results:

1 The set U of good ultrafilters is dense in the set U * of all ultrafilters;
the set U * \ U of bad ultrafilters is meager in the Stone topology.

2 Since U * is a Stone space, the subspace U of good ultrafilters with
the subspace topology is a zero-dimensional Hausdorff space.

3 However, U is not compact any more; but it is saturated in the
sense of Model Theory.
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The space of the cannonic model

Consider the subspace topology of the good ulrafilters

(U , τ) ⊂ (U∗, τ∗).

The Borel algebra induced by τ coincides with the σ-algebra
generated by the field of sets LAM.

Hence, (U , LAMσ) is a measurable space.

Moreover, (U , LAMσ) is an analytic space, since τ is Hausdorff,
saturated and zero-dimensional.

U is used as the state space for (the cannonic) Markov process.
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The transition of the cannonic model

1 For any good ultrafilter u ∈ U and any a ∈ A,

sup {r | Lra ∈ u} = inf {r | ¬Lra ∈ u}.

2 Thus, one can define

θ(u)(LaM) = sup {. . .} = inf {. . .}.

3 The set function θ(u) is finitely additive and continuous from above
at ∅ on the field LAM of sets <== Rasiowa-Sikorski Lemma.

4 One can use standard measure extension theorems to define θ as
a measure on the measurable space (U , LAMσ) of good ultrafilters.
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The cannonic model

The Markov process of good ultrafilters
If A is a countable Aumann algebra, then we can construct a
countably-generated Markov process, M(A) = (U , LAMσ, θ), on the
space U of good ultrafilters.
Moreover, LAM is the base of a topology that is

zero-dimensional,
Hausdorff,
saturated.

Truth Lemma
Let Φ ⊆ L be an arbitrary theory and u ⊆ L an arbitrary maximal
consistent set of L – observe that u ∈ U(L).
Then,

Φ ⊆ u iff M(L), u |= Φ.
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Strong Completeness for Markovian logics

Strong Completeness
Let Φ ⊆ L be an arbitrary theory and φ ∈ L. Then,

Φ |= φ iff Φ ` φ.

The result applies to L ∈ {L(Π),L(Π∗),L(∆)} with the corresponding
semantics and axiomatization.
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Stone Markov Processes

Consider a zero-dimensional Hausdorff topological space M.

D - a distinguished countable base of clopens closed under
the set-theoretic Boolean operations
the operation Lr(D) = {m | τ(m)(D) ≥ r}.

Dσ - the Borel algebra of the topology induced by D.

An SMP (M,Dσ, θ) is an MP defined on such a structure.

Morphisms of SMPs are continuous function f :M−→ N s.t.
1 for B ∈ Dσ

N , θM(m)(f−1(B)) = θN (f (m))(B);
2 for D ∈ Dσ

N , f−1(D) ∈ Dσ
M.
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The Aumann algebra of clopens

LetM = (M,Bσ, θ) be a Stone Markov process.

The Aumann algebra of clopens
The structure B with the set-theoretic Boolean operations and the
operations Lr for r ∈ Q ∩ [0, 1], is a countable Aumann algebra.

We denote this algebra by A(M).

Mardare (Aalborg University) Markovian Logics: Completeness and Dualities MFPS 2014 25 / 31



The duality

We defined two contravariant functors:

A(·) : SMP −→ AAop

On arrows f :M−→ N we define A(f ) = f−1 : A(N ) −→ A(M).

M(·) : AA −→ SMPop

On morphisms h : A → B, M(h) = h−1 : M(B)→M(A), explicitly

M(h)(u) = h−1(u) = {A ∈ AN | h(A) ∈ u}.

The functors M and A define a dual equivalence of categories.

SMP AAop

A

M
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Representation

The representation theorem
1 Any countable Aumann algebra A = (A,−→,⊥, {Lr}r∈Q+ ,v) is

isomorphic to A(M(A)) via the map β : A → A(M(A)) defined by

β(a) = {u ∈ supp(M(A)) | a ∈ u} = LaM.

2 Any saturated Markov processM = (M,A, θ) is homeomorphic to
M(A(M)) via the map α :M→M(A(M)) defined by

α(m) = {A ∈ A | m ∈ A}.
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What did we get?

The Stone duality for MPs explains the intrinsic relationship
between the category of (Stone) Markov processes and the
category of (countable) Aumann algebras.

The logical characterization of bisimilarity reflects the fact that the
separability relation induced by the support topology of an SMP
coincides to the bisimilarity relation.

Because this topology has a base formed from positive formulas,
we can characterize the bisimilarity considering only the
negation-free formulas.

Similarly, we could characterize bisimilarity using any other base.
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What’s next?

Bisimilarity is too restrictive ==> bisimilarity distances that
measure how similar two non-bisimilar MPs are.

The relation between bisimilarity and the support topology of
an SMP allowed us to understand a subtle relation that exists
between the topology of an SMP and the open-ball topology
induced by a "well-behaved" bisimilarity distance.

We have discovered that a metric version of the Stone duality
actually exists when we move from the bisimulation-based
semantics for MPs to the distance-based one.

More details in our presentation today from 17:20:

A Metric Analog of Stone Duality for Markov Processes
Kozen, Mardare, Panangaden
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Saturation

Notice in the previous definition that

the space is not required to be compact.

We aim to compensate this by introducing a concept of
“saturation” similar to the one used in Model Theory;

Intuitively, one adds points to the structure without changing the
represented algebra. An MP is saturated if it is maximal with
respect to this operation.
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Our contribution to the Strong Completeness Proof

Goldblatt’s rule can be replaced with an infinitary rule having a
countable set of instances.

Our infinitary rule allows us to apply the Rasiowa-Sikorski Lemma to
prove Lindenbaum’s Lemma and strong completeness.

This result can be generalized to a Stone duality theorem

[Kozen, Larsen, Mardare, Panangaden, LICS2013.]

The proof technique can be applied to logics for measurable
polynomial functors on the category of measurable spaces as well as
in other contexts of non-compact modal logics with normal modal
operators.

Our results rely on some subtle topological issues that are the
cornerstone of this work.
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