On the power of classical control

Elham Kashefi

The question

Can program be "quantised" same as data?

The question

Can program be "quantised" same as data?

$$D = D \rightarrow D$$

There exist no *universal* quantum processor

There exist no *universal* quantum processor

Orthogonal program states hence classical states

There exist no *universal* quantum processor

Orthogonal program states hence classical states

A new dimension is needed for each unitary operators

There exist no *universal* quantum processor

Orthogonal program states hence classical states

A new dimension is needed for each unitary operators

No higher order function

Storing quantum dynamics in quantum states

Storing quantum dynamics in quantum states

$$|\alpha\rangle \equiv \frac{1}{\sqrt{2}}(e^{i\alpha}|0\rangle + e^{-i\alpha}|1\rangle),$$

Storing quantum dynamics in quantum states

$$|\alpha\rangle \equiv \frac{1}{\sqrt{2}}(e^{i\alpha}|0\rangle + e^{-i\alpha}|1\rangle),$$

$$U_{\alpha} \equiv \exp(i\alpha\sigma_z)$$

Storing quantum dynamics in quantum states

$$|\alpha\rangle \equiv \frac{1}{\sqrt{2}}(e^{i\alpha}|0\rangle + e^{-i\alpha}|1\rangle),$$

$$U_{\alpha} \equiv \exp(i\alpha\sigma_z)$$

Storing quantum dynamics in quantum states

$$|\alpha\rangle \equiv \frac{1}{\sqrt{2}} (e^{i\alpha}|0\rangle + e^{-i\alpha}|1\rangle),$$

By providing more information about the program

Several methods to improve performances

By providing more information about the program

Several methods to improve performances

Trade off

hiding program vs performing program

Adding Classical Control

Adding Classical Control

Thinking inside the box

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

Thinking inside the box

$$J(\alpha) := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{pmatrix}$$

gate teleportation

$$|\phi\rangle \longrightarrow X \qquad J(\alpha)(|\phi\rangle)$$

Thinking Inside the box

Thinking Inside the box

$$|\Psi_{D}\rangle \longrightarrow U(|\Psi_{D}\rangle)$$

$$f(|\phi\rangle, U) \longrightarrow U(|\Psi_{D}\rangle)$$

$$|\Phi_{D\to D}\rangle \longrightarrow U(|\Psi_{D}\rangle)$$

Deterministic Perfectly Hiding Programmable QC

Deterministic Perfectly Hiding Programmable QC

Universal Blind QC

Unconditional Perfect Privacy

Server learns nothing about client's input/output/computation

$$\left[1/\sqrt{2}\left(|0\rangle + e^{i\theta}|1\rangle\right)\right]$$

$$\theta = 0, \pi/4, 2\pi/4, \dots, 7\pi/4$$

$$[1/\sqrt{2}(|0\rangle + e^{i\theta}|1\rangle)$$

$$\theta = 0, \pi/4, 2\pi/4, \dots, 7\pi/4$$

$$\left[1/\sqrt{2}\left(\left|0\right\rangle+e^{i\theta}\left|1\right\rangle\right)$$

$$\theta = 0, \pi/4, 2\pi/4, \dots, 7\pi/4$$

$$[1/\sqrt{2}(|0\rangle + e^{i\theta}|1\rangle)$$

$$\theta = 0, \pi/4, 2\pi/4, \dots, 7\pi/4$$

$$\delta_{x,y} = \delta'_{x,y} + \theta_{x,y} + \pi r_{x,y}$$

 $o_{x,y}$

$$\left[1/\sqrt{2}\left(\left|0\right\rangle+e^{i\theta}\left|1\right\rangle\right)$$

$$\theta = 0, \pi/4, 2\pi/4, \dots, 7\pi/4$$

$$\delta_{x,y} = \delta'_{x,y} + \theta_{x,y} + \pi r_{x,y}$$

 $o_{x,y}$

$$\left[1/\sqrt{2}\left(\left|0\right\rangle+e^{i\theta}\left|1\right\rangle\right)\right]$$

$$\theta = 0, \pi/4, 2\pi/4, \dots, 7\pi/4$$

$$\delta_{x,y} = \delta'_{x,y} + \theta_{x,y} + \pi r_{x,y}$$

$$\{\left|+_{\delta_{x,y}}\right\rangle,\left|-_{\delta_{x,y}}\right\rangle\}$$

random single qubit generator

$$\left[1/\sqrt{2}\left(\left|0\right\rangle+e^{i\theta}\left|1\right\rangle\right)$$

$$\theta = 0, \pi/4, 2\pi/4, \dots, 7\pi/4$$

$$\delta_{x,y} = \delta'_{x,y} + \theta_{x,y} + \pi r_{x,y}$$

$$s_{x,y} \in \{0,1\}$$

 $o_{x,y}$

$$\{\left|+_{\delta_{x,y}}\right\rangle,\left|-_{\delta_{x,y}}\right\rangle\}$$

random single qubit generator

$$\left[1/\sqrt{2}\left(\left|0\right\rangle+e^{i\theta}\left|1\right\rangle\right)$$

$$\theta = 0, \pi/4, 2\pi/4, \dots, 7\pi/4$$

$$\delta_{x,y} = \delta'_{x,y} + \theta_{x,y} + \pi r_{x,y}$$

$$s_{x,y} \in \{0,1\}$$

 $o_{x,y}$

$$\{\left|+_{\delta_{x,y}}\right\rangle,\left|-_{\delta_{x,y}}\right\rangle\}$$

$$s_{x,y} := s_{x,y} + r_{x,y}$$

A lifting theorem

Any classical cryptographic protocol could be lifted to a corresponding quantum protocols via UBQC

A lifting theorem

Any classical cryptographic protocol could be lifted to a corresponding quantum protocols via UBQC

A lifting theorem

Any classical cryptographic protocol could be lifted to a corresponding quantum protocols via UBQC

Classical Crypto

Yao Garbled Circuit

Fully Homomorphic Encryption

One-time program

Secure Multi Party Computation

Secure Cloud Computing

Rivest 78: Processing encrypted data without decrypting it first

Rivest 78: Processing encrypted data without decrypting it first

Limited Client

Untrusted Server

Rivest 78: Processing encrypted data without decrypting it first

Rivest 78: Processing encrypted data without decrypting it first

Rivest 78: Processing encrypted data without decrypting it first

Rivest 78: Processing encrypted data without decrypting it first

Gentry 09: A Lattice-based cryptosystem that is fully homomorphic but inefficient and only computationally secure

UBQC as FHE

UBQC as FHE

One-time Memory

One-time Memory

Founding Cryptography on Tamper-Proof Hardware Tokens

Unconditional non-interactive secure computation

Non-interactive UBQC using OTM

Non-interactive UBQC using OTM

UBQC on a constant degree graph

Linear many OTM (in the size of input circuit) is required to make UBQC non-interactive

Somewhat QFHE

$$|\psi_{x,y}\rangle \in_{R} \{|+_{\theta}\rangle\}$$

$$r_{x,y} \in_{R} \{0,1\}$$

$$\delta_{x,y} = \phi'_{x,y} + \theta_{x,y} + \pi r_{x,y}$$

Encryption

Somewhat QFHE

$$|\psi_{x,y}\rangle \in_{R} \{|+_{\theta}\rangle\}$$

$$r_{x,y} \in_{R} \{0,1\}$$

$$\delta_{x,y} = \phi'_{x,y} + \theta_{x,y} + \pi r_{x,y}$$

Encryption

Qubits and OTM

Somewhat QFHE

$$|\psi_{x,y}\rangle \in_{R} \{|+_{\theta}\rangle\}$$

$$r_{x,y} \in_{R} \{0,1\}$$

$$\delta_{x,y} = \phi'_{x,y} + \theta_{x,y} + \pi r_{x,y}$$

Encryption

Qubits and OTM

$$s_{x,y} := s_{x,y} + r_{x,y}$$

Quantum FHE

Quantum FHE

Quantum FHE

Secure Multi-Party Computing

Yao 86. A set of participants with private inputs x_i want to compute a function $f(x_1, ..., x_i, ... x_n)$ while keeping their local data secret

Secure Multi-Party Computing

Yao 86. A set of participants with private inputs x_i want to compute a function $f(x_1, ..., x_i, ..., x_n)$ while keeping their local data secret

Security

Active internal or external adversaries cannot find more than output of function

Quantum SMPC

Quantum SMPC

Quantum SMPC

Classical lifting

A hybrid network of classical protocols with quantum gadgets

boosting efficiency and security

of every task achievable against classical attackers against quantum attackers

Classical lifting

A hybrid network of classical protocols with quantum gadgets

boosting efficiency and security

of every task achievable against classical attackers against quantum attackers

UBQC as a gadget

UBQC as a gadget

$$s_{x,y} := s_{x,y} + r_{x,y}$$

$$s_{x,y} \in \{0,1\}$$

$$\left\{ \left\{ \left|+_{\delta_{x,y}}\right\rangle ,\left|-_{\delta_{x,y}}\right\rangle \right\} \right\}$$

Q Memory

UBQC for secure evaluation of classical function

Q Memory

UBQC for secure evaluation of classical function

Q Memory

UBQC for secure evaluation of classical function

No classical protocol, with XOR client can securely delegate deterministic computation of NAND to a server.

No classical protocol, with XOR client can securely delegate deterministic computation of NAND to a server.

Client's encoding: $C_1(a,b,\overrightarrow{x})$

No classical protocol, with XOR client can securely delegate deterministic computation of NAND to a server.

Client's encoding: $C_1(a,b,\overrightarrow{x})$ XOR computable function independent of the input

No classical protocol, with XOR client can securely delegate deterministic computation of NAND to a server.

Client's encoding:
$$C_1(a,b,\overrightarrow{x})$$
 XOR computable function independent of the input input

Server's computation: $S(C_1(a, b, \overrightarrow{x}))$

No classical protocol, with XOR client can securely delegate deterministic computation of NAND to a server.

Client's encoding: $C_1(a,b,\overrightarrow{x})$ XOR computable function independent of the input input

Server's computation: $S(C_1(a,b,\overrightarrow{x}))$

Client's decoding: $C_2(a,b,\overrightarrow{x},S(C_1(a,b,\overrightarrow{x})))=NAND(a,b)$ XOR computable function

No classical protocol, with XOR client can securely delegate deterministic computation of NAND to a server.

Client's encoding: $C_1(a,b,\overrightarrow{x})$ XOR computable function independent of the input input

Server's computation: $S(C_1(a,b,\overrightarrow{x}))$

Client's decoding: $C_2(a,b,\overrightarrow{x},S(C_1(a,b,\overrightarrow{x})))=NAND(a,b)$ XOR computable function Constant

$$Z^r S^a S^b \left(S^\dagger \right)^{a \oplus b} |+\rangle = Z^r Z^{a \wedge b} |+\rangle$$

$$Z^r S^a S^b (S^{\dagger})^{a \oplus b} |+\rangle = Z^r Z^{a \wedge b} |+\rangle$$

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{ib\pi/2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{ia\pi/2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{-i(a\oplus b)\pi/2} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-i(a\wedge b)\pi} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

How to become millionaire

How to become millionaire

A hybrid network of **LWE-based FHE** with **UBQC gadgets**

boosting efficiency and security

of classical delegated computing against quantum attackers

$$\{\mathbf{a}_i, \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i\}_{i=1}^{\text{poly}(n)} \stackrel{c}{\approx} \{\mathbf{a}_i, u_i\}_{i=1}^{\text{poly}(n)}$$

$$\left\{ \mathbf{a}_i, \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i \right\}_{i=1}^{\operatorname{poly}(n)} \overset{c}{\approx} \quad \left\{ \mathbf{a}_i, u_i \right\}_{i=1}^{\operatorname{poly}(n)}$$
 secret $\in \mathbb{Z}_q^n$ noise $\in \mathbb{Z}_q$ uniformly random

$$\begin{aligned} \left\{\mathbf{a}_i, \left\langle \mathbf{a}_i, \mathbf{s} \right\rangle + e_i \right\}_{i=1}^{\operatorname{poly}(n)} &\overset{c}{\approx} & \left\{\mathbf{a}_i, u_i \right\}_{i=1}^{\operatorname{poly}(n)} \\ \text{secret} \in \mathbb{Z}_q^n & \text{noise} \in \mathbb{Z}_q \end{aligned} \quad \in \mathbb{Z}_q \text{ uniformly random}$$

Encryption Scheme based on (LWE)

$$c = (\mathbf{a}, b = \langle \mathbf{a}, \mathbf{s} \rangle + 2e + m) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$$

Rewinding and Higher Order Function

We say: first suppose you have a cheating verifier V. When V talks to an honest prover, it outputs (a distribution of) some transcript t. We have to show how t sample the same (or very close) distribution of t, without talking to any honest prover. It's not likely that we can analyze the code of V to "figure out what it's doing." Instead, we have to treat V as a kind of black-box. Recall that V is designed to operate in an interactive fashion, so we have to feed protocol message into V, pretending to be the honest prover. We might feed into V a simulated "message 1" from the prover, and then later a simulated "message 2" -- that's rewinding. We can rewind invoke V many different times, as long as we are careful to spend only polynomial time overall (assuming V itself is polynomial-time).

ME SYAING: Rewinding is some kind of if then else procedure to be used for creating ultimately the desired simulated transcript. Isn't the same problem in t quantum programming issue of defining if than else compactly leads to the same issue regarding rewinding?