
Elham Kashefi

On the power of classical control

The question

Can program be “quantised” same as data ?

The question

Can program be “quantised” same as data ?

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

D = D ! D

1

Programmable Quantum Circuit

Nielsen and Chuang Phys. Rev. Lett. 97

There exist no universal quantum processor

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

U(| Di)

1

|Gi

1

Programmable Quantum Circuit

Nielsen and Chuang Phys. Rev. Lett. 97

There exist no universal quantum processor

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

U(| Di)

1

|Gi

1

Orthogonal program states hence classical states

Programmable Quantum Circuit

Nielsen and Chuang Phys. Rev. Lett. 97

There exist no universal quantum processor

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

U(| Di)

1

|Gi

1

A new dimension is needed for each unitary operators

Orthogonal program states hence classical states

Programmable Quantum Circuit

Nielsen and Chuang Phys. Rev. Lett. 97

There exist no universal quantum processor

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

U(| Di)

1

|Gi

1

A new dimension is needed for each unitary operators

Orthogonal program states hence classical states

No higher order function

Probabilistic Programmable QC

Vidal, Masanes, Cirac, Phys. Rev. Lett. 2002

Storing quantum dynamics in quantum states

Hillery, Ziman, Buzek, Phys. Rev. A. 2002

Probabilistic Programmable QC

Vidal, Masanes, Cirac, Phys. Rev. Lett. 2002

Storing quantum dynamics in quantum states

an operation EU very similar to the desired U , that is
F (EU , U) ≥ 1 − ε for some transformation fidelity F .

The second main result is a lower bound on the dimen-
sion of the program register of the programmable gate in
terms of its degree of imperfection ε. It implies that the
orthogonality result of [2] is robust. We will discuss its
implications in the context of secure secret computation.

Finally, operations stored in a quantum state can be
teleported. This leads to a new scheme for quantum re-
mote control [5] that only requires unidirectional com-
munication.

II. QUASI-PERFECT PROGRAMMABLE

QUANTUM GATES

We start by showing how to store and reimplement, in
an imperfect but feasible fashion, an arbitrary one-qubit
unitary operation of the form

Uα ≡ exp(iασz), (4)

where α ∈ [0,π). Notice that a general one-qubit
operation U ∈ SU(2) can be obtained by compos-
ing three operations of the form of eq. (4) with
some fixed unitary operations, for instance as U =
Uα3exp(−iπσx/2)Uα2 exp(iπσx/2)Uα1 .

A. Single-qubit program state.

Let us consider the state

|α〉 ≡
1√
2
(eiα|0〉 + e−iα|1〉), (5)

which someone, say Alice, can prepare by applying Uα

on a qubit in the standard state (|0〉 + |1〉)
√

2. Suppose
she also prepares, along with |α〉, another qubit in some
arbitrary state |d〉 = a|0〉 + b|1〉 and provides Bob, who
doesn’t know α nor the complex coefficients a and b, with
the two qubits in state |d〉 ⊗ |α〉. Alice challenges now
Bob to obtain the state Uα|d〉.

What Bob can do in order to implement the unknown
U with some probability of success is to perform a C-
NOT operation taking the data qubit in state |d〉 as the
control and the program qubit in state |α〉 as the tar-
get. This will constitute the basic part of our simplest
programmable quantum gate. Recalling that the C-NOT
gate,

|0〉〈0|⊗ I + |1〉〈1|⊗ σx, (6)

permutes the |0〉 and |1〉 states of the target (second
qubit) only if the control (first qubit) is in state |1〉, it
is easy to check that the two-qubit state is transformed
according to

|d〉 ⊗ |α〉 C-NOT−→
1√
2
(Uα|d〉 ⊗ |0〉 + U †

α|d〉 ⊗ |1〉). (7)

Therefore, a projective measurement in the {|0〉, |1〉} ba-
sis of the program register will make the data qubit col-
lapse either into the desired state Uα|d〉 or into the wrong
state U †

α|d〉, with each outcome having prior probability
1/2. That is, we have already constructed a probabilistic
programmable quantum gate with error rate ε = 1/2 (see
figure (1)). Notice that a single qubit has been sufficient
for Alice to store an arbitrary unitary Uα, i.e., one from
an infinite set, although its recovery only succeeds with
probability 1/2. If Bob obtains U †

α|d〉 instead of Uα|d〉,
then not only he fails at performing the wished opera-
tion, but in addition he does no longer have the initial
data state |d〉.

B. Multi-qubit programs.

How can we construct a more efficient programmable
gate? Notice that in case of failure, a second go of the
previous gate can correct U †

α|d〉 into Uα|d〉. Indeed, Bob
needs only apply the gate of fig. (1) to U †

α|d〉, inserting a
new program state, namely |2α〉, which Alice can prepare
by performing twice the operation Uα on (|0〉+ |1〉)/

√
2.

Therefore, if Alice supplies the state |α〉 ⊗ |2α〉 to Bob,
he can perform the operation Uα with probability 3/4.
Figure (2) displays a more compact version of this second
probabilistic programmable gate, which requires a two-
qubit program register and has a probability of failure
ε = 1/4.

In case of a new failure, the state of the system be-
comes U †3

α |d〉. Bob can insert again this state, together
with state |4α〉, into the elementary gate. If Bob has no
luck and keeps on obtaining failures, he can try to cor-
rect the state as many times as he wishes, provided that
the state |2lα〉 is available for the lth attempt. There-
fore, for any N , the N -qubit state ⊗N

l=1|2lα〉 can be
used to implement the transformation Uα with proba-
bility 1 − (1/2)N .1 The corresponding probabilistic pro-
grammable gate (see figure (3)), consists of the unitary
transformation of |d〉 ⊗ (⊗N

l=1|2lα〉) into

1

2N/2
(
√

2N−1 Uα|d〉 ⊗ |r〉 + U (2N−1)†
α |d〉 ⊗ |w〉) (8)

1 Note that our several-step correcting scheme for imple-
menting Uα resembles that used in [7] to implement a non-
local unitary operation. In the present context all interme-
diate measurements and conditional actions can be substi-
tuted by a single unitary operation, as described in Figures
2 and 3. In this section we have first presented the several-
measurement version for pedagogical reasons.

2

Single-qubit program state

Hillery, Ziman, Buzek, Phys. Rev. A. 2002

Probabilistic Programmable QC

Vidal, Masanes, Cirac, Phys. Rev. Lett. 2002

Storing quantum dynamics in quantum states

an operation EU very similar to the desired U , that is
F (EU , U) ≥ 1 − ε for some transformation fidelity F .

The second main result is a lower bound on the dimen-
sion of the program register of the programmable gate in
terms of its degree of imperfection ε. It implies that the
orthogonality result of [2] is robust. We will discuss its
implications in the context of secure secret computation.

Finally, operations stored in a quantum state can be
teleported. This leads to a new scheme for quantum re-
mote control [5] that only requires unidirectional com-
munication.

II. QUASI-PERFECT PROGRAMMABLE

QUANTUM GATES

We start by showing how to store and reimplement, in
an imperfect but feasible fashion, an arbitrary one-qubit
unitary operation of the form

Uα ≡ exp(iασz), (4)

where α ∈ [0,π). Notice that a general one-qubit
operation U ∈ SU(2) can be obtained by compos-
ing three operations of the form of eq. (4) with
some fixed unitary operations, for instance as U =
Uα3exp(−iπσx/2)Uα2 exp(iπσx/2)Uα1 .

A. Single-qubit program state.

Let us consider the state

|α〉 ≡
1√
2
(eiα|0〉 + e−iα|1〉), (5)

which someone, say Alice, can prepare by applying Uα

on a qubit in the standard state (|0〉 + |1〉)
√

2. Suppose
she also prepares, along with |α〉, another qubit in some
arbitrary state |d〉 = a|0〉 + b|1〉 and provides Bob, who
doesn’t know α nor the complex coefficients a and b, with
the two qubits in state |d〉 ⊗ |α〉. Alice challenges now
Bob to obtain the state Uα|d〉.

What Bob can do in order to implement the unknown
U with some probability of success is to perform a C-
NOT operation taking the data qubit in state |d〉 as the
control and the program qubit in state |α〉 as the tar-
get. This will constitute the basic part of our simplest
programmable quantum gate. Recalling that the C-NOT
gate,

|0〉〈0|⊗ I + |1〉〈1|⊗ σx, (6)

permutes the |0〉 and |1〉 states of the target (second
qubit) only if the control (first qubit) is in state |1〉, it
is easy to check that the two-qubit state is transformed
according to

|d〉 ⊗ |α〉 C-NOT−→
1√
2
(Uα|d〉 ⊗ |0〉 + U †

α|d〉 ⊗ |1〉). (7)

Therefore, a projective measurement in the {|0〉, |1〉} ba-
sis of the program register will make the data qubit col-
lapse either into the desired state Uα|d〉 or into the wrong
state U †

α|d〉, with each outcome having prior probability
1/2. That is, we have already constructed a probabilistic
programmable quantum gate with error rate ε = 1/2 (see
figure (1)). Notice that a single qubit has been sufficient
for Alice to store an arbitrary unitary Uα, i.e., one from
an infinite set, although its recovery only succeeds with
probability 1/2. If Bob obtains U †

α|d〉 instead of Uα|d〉,
then not only he fails at performing the wished opera-
tion, but in addition he does no longer have the initial
data state |d〉.

B. Multi-qubit programs.

How can we construct a more efficient programmable
gate? Notice that in case of failure, a second go of the
previous gate can correct U †

α|d〉 into Uα|d〉. Indeed, Bob
needs only apply the gate of fig. (1) to U †

α|d〉, inserting a
new program state, namely |2α〉, which Alice can prepare
by performing twice the operation Uα on (|0〉+ |1〉)/

√
2.

Therefore, if Alice supplies the state |α〉 ⊗ |2α〉 to Bob,
he can perform the operation Uα with probability 3/4.
Figure (2) displays a more compact version of this second
probabilistic programmable gate, which requires a two-
qubit program register and has a probability of failure
ε = 1/4.

In case of a new failure, the state of the system be-
comes U †3

α |d〉. Bob can insert again this state, together
with state |4α〉, into the elementary gate. If Bob has no
luck and keeps on obtaining failures, he can try to cor-
rect the state as many times as he wishes, provided that
the state |2lα〉 is available for the lth attempt. There-
fore, for any N , the N -qubit state ⊗N

l=1|2lα〉 can be
used to implement the transformation Uα with proba-
bility 1 − (1/2)N .1 The corresponding probabilistic pro-
grammable gate (see figure (3)), consists of the unitary
transformation of |d〉 ⊗ (⊗N

l=1|2lα〉) into

1

2N/2
(
√

2N−1 Uα|d〉 ⊗ |r〉 + U (2N−1)†
α |d〉 ⊗ |w〉) (8)

1 Note that our several-step correcting scheme for imple-
menting Uα resembles that used in [7] to implement a non-
local unitary operation. In the present context all interme-
diate measurements and conditional actions can be substi-
tuted by a single unitary operation, as described in Figures
2 and 3. In this section we have first presented the several-
measurement version for pedagogical reasons.

2

Single-qubit program state

an operation EU very similar to the desired U , that is
F (EU , U) ≥ 1 − ε for some transformation fidelity F .

The second main result is a lower bound on the dimen-
sion of the program register of the programmable gate in
terms of its degree of imperfection ε. It implies that the
orthogonality result of [2] is robust. We will discuss its
implications in the context of secure secret computation.

Finally, operations stored in a quantum state can be
teleported. This leads to a new scheme for quantum re-
mote control [5] that only requires unidirectional com-
munication.

II. QUASI-PERFECT PROGRAMMABLE

QUANTUM GATES

We start by showing how to store and reimplement, in
an imperfect but feasible fashion, an arbitrary one-qubit
unitary operation of the form

Uα ≡ exp(iασz), (4)

where α ∈ [0,π). Notice that a general one-qubit
operation U ∈ SU(2) can be obtained by compos-
ing three operations of the form of eq. (4) with
some fixed unitary operations, for instance as U =
Uα3exp(−iπσx/2)Uα2 exp(iπσx/2)Uα1 .

A. Single-qubit program state.

Let us consider the state

|α〉 ≡
1√
2
(eiα|0〉 + e−iα|1〉), (5)

which someone, say Alice, can prepare by applying Uα

on a qubit in the standard state (|0〉 + |1〉)
√

2. Suppose
she also prepares, along with |α〉, another qubit in some
arbitrary state |d〉 = a|0〉 + b|1〉 and provides Bob, who
doesn’t know α nor the complex coefficients a and b, with
the two qubits in state |d〉 ⊗ |α〉. Alice challenges now
Bob to obtain the state Uα|d〉.

What Bob can do in order to implement the unknown
U with some probability of success is to perform a C-
NOT operation taking the data qubit in state |d〉 as the
control and the program qubit in state |α〉 as the tar-
get. This will constitute the basic part of our simplest
programmable quantum gate. Recalling that the C-NOT
gate,

|0〉〈0|⊗ I + |1〉〈1|⊗ σx, (6)

permutes the |0〉 and |1〉 states of the target (second
qubit) only if the control (first qubit) is in state |1〉, it
is easy to check that the two-qubit state is transformed
according to

|d〉 ⊗ |α〉 C-NOT−→
1√
2
(Uα|d〉 ⊗ |0〉 + U †

α|d〉 ⊗ |1〉). (7)

Therefore, a projective measurement in the {|0〉, |1〉} ba-
sis of the program register will make the data qubit col-
lapse either into the desired state Uα|d〉 or into the wrong
state U †

α|d〉, with each outcome having prior probability
1/2. That is, we have already constructed a probabilistic
programmable quantum gate with error rate ε = 1/2 (see
figure (1)). Notice that a single qubit has been sufficient
for Alice to store an arbitrary unitary Uα, i.e., one from
an infinite set, although its recovery only succeeds with
probability 1/2. If Bob obtains U †

α|d〉 instead of Uα|d〉,
then not only he fails at performing the wished opera-
tion, but in addition he does no longer have the initial
data state |d〉.

B. Multi-qubit programs.

How can we construct a more efficient programmable
gate? Notice that in case of failure, a second go of the
previous gate can correct U †

α|d〉 into Uα|d〉. Indeed, Bob
needs only apply the gate of fig. (1) to U †

α|d〉, inserting a
new program state, namely |2α〉, which Alice can prepare
by performing twice the operation Uα on (|0〉+ |1〉)/

√
2.

Therefore, if Alice supplies the state |α〉 ⊗ |2α〉 to Bob,
he can perform the operation Uα with probability 3/4.
Figure (2) displays a more compact version of this second
probabilistic programmable gate, which requires a two-
qubit program register and has a probability of failure
ε = 1/4.

In case of a new failure, the state of the system be-
comes U †3

α |d〉. Bob can insert again this state, together
with state |4α〉, into the elementary gate. If Bob has no
luck and keeps on obtaining failures, he can try to cor-
rect the state as many times as he wishes, provided that
the state |2lα〉 is available for the lth attempt. There-
fore, for any N , the N -qubit state ⊗N

l=1|2lα〉 can be
used to implement the transformation Uα with proba-
bility 1 − (1/2)N .1 The corresponding probabilistic pro-
grammable gate (see figure (3)), consists of the unitary
transformation of |d〉 ⊗ (⊗N

l=1|2lα〉) into

1

2N/2
(
√

2N−1 Uα|d〉 ⊗ |r〉 + U (2N−1)†
α |d〉 ⊗ |w〉) (8)

1 Note that our several-step correcting scheme for imple-
menting Uα resembles that used in [7] to implement a non-
local unitary operation. In the present context all interme-
diate measurements and conditional actions can be substi-
tuted by a single unitary operation, as described in Figures
2 and 3. In this section we have first presented the several-
measurement version for pedagogical reasons.

2

Hillery, Ziman, Buzek, Phys. Rev. A. 2002

Probabilistic Programmable QC

Vidal, Masanes, Cirac, Phys. Rev. Lett. 2002

Storing quantum dynamics in quantum states

an operation EU very similar to the desired U , that is
F (EU , U) ≥ 1 − ε for some transformation fidelity F .

The second main result is a lower bound on the dimen-
sion of the program register of the programmable gate in
terms of its degree of imperfection ε. It implies that the
orthogonality result of [2] is robust. We will discuss its
implications in the context of secure secret computation.

Finally, operations stored in a quantum state can be
teleported. This leads to a new scheme for quantum re-
mote control [5] that only requires unidirectional com-
munication.

II. QUASI-PERFECT PROGRAMMABLE

QUANTUM GATES

We start by showing how to store and reimplement, in
an imperfect but feasible fashion, an arbitrary one-qubit
unitary operation of the form

Uα ≡ exp(iασz), (4)

where α ∈ [0,π). Notice that a general one-qubit
operation U ∈ SU(2) can be obtained by compos-
ing three operations of the form of eq. (4) with
some fixed unitary operations, for instance as U =
Uα3exp(−iπσx/2)Uα2 exp(iπσx/2)Uα1 .

A. Single-qubit program state.

Let us consider the state

|α〉 ≡
1√
2
(eiα|0〉 + e−iα|1〉), (5)

which someone, say Alice, can prepare by applying Uα

on a qubit in the standard state (|0〉 + |1〉)
√

2. Suppose
she also prepares, along with |α〉, another qubit in some
arbitrary state |d〉 = a|0〉 + b|1〉 and provides Bob, who
doesn’t know α nor the complex coefficients a and b, with
the two qubits in state |d〉 ⊗ |α〉. Alice challenges now
Bob to obtain the state Uα|d〉.

What Bob can do in order to implement the unknown
U with some probability of success is to perform a C-
NOT operation taking the data qubit in state |d〉 as the
control and the program qubit in state |α〉 as the tar-
get. This will constitute the basic part of our simplest
programmable quantum gate. Recalling that the C-NOT
gate,

|0〉〈0|⊗ I + |1〉〈1|⊗ σx, (6)

permutes the |0〉 and |1〉 states of the target (second
qubit) only if the control (first qubit) is in state |1〉, it
is easy to check that the two-qubit state is transformed
according to

|d〉 ⊗ |α〉 C-NOT−→
1√
2
(Uα|d〉 ⊗ |0〉 + U †

α|d〉 ⊗ |1〉). (7)

Therefore, a projective measurement in the {|0〉, |1〉} ba-
sis of the program register will make the data qubit col-
lapse either into the desired state Uα|d〉 or into the wrong
state U †

α|d〉, with each outcome having prior probability
1/2. That is, we have already constructed a probabilistic
programmable quantum gate with error rate ε = 1/2 (see
figure (1)). Notice that a single qubit has been sufficient
for Alice to store an arbitrary unitary Uα, i.e., one from
an infinite set, although its recovery only succeeds with
probability 1/2. If Bob obtains U †

α|d〉 instead of Uα|d〉,
then not only he fails at performing the wished opera-
tion, but in addition he does no longer have the initial
data state |d〉.

B. Multi-qubit programs.

How can we construct a more efficient programmable
gate? Notice that in case of failure, a second go of the
previous gate can correct U †

α|d〉 into Uα|d〉. Indeed, Bob
needs only apply the gate of fig. (1) to U †

α|d〉, inserting a
new program state, namely |2α〉, which Alice can prepare
by performing twice the operation Uα on (|0〉+ |1〉)/

√
2.

Therefore, if Alice supplies the state |α〉 ⊗ |2α〉 to Bob,
he can perform the operation Uα with probability 3/4.
Figure (2) displays a more compact version of this second
probabilistic programmable gate, which requires a two-
qubit program register and has a probability of failure
ε = 1/4.

In case of a new failure, the state of the system be-
comes U †3

α |d〉. Bob can insert again this state, together
with state |4α〉, into the elementary gate. If Bob has no
luck and keeps on obtaining failures, he can try to cor-
rect the state as many times as he wishes, provided that
the state |2lα〉 is available for the lth attempt. There-
fore, for any N , the N -qubit state ⊗N

l=1|2lα〉 can be
used to implement the transformation Uα with proba-
bility 1 − (1/2)N .1 The corresponding probabilistic pro-
grammable gate (see figure (3)), consists of the unitary
transformation of |d〉 ⊗ (⊗N

l=1|2lα〉) into

1

2N/2
(
√

2N−1 Uα|d〉 ⊗ |r〉 + U (2N−1)†
α |d〉 ⊗ |w〉) (8)

1 Note that our several-step correcting scheme for imple-
menting Uα resembles that used in [7] to implement a non-
local unitary operation. In the present context all interme-
diate measurements and conditional actions can be substi-
tuted by a single unitary operation, as described in Figures
2 and 3. In this section we have first presented the several-
measurement version for pedagogical reasons.

2

Single-qubit program state

an operation EU very similar to the desired U , that is
F (EU , U) ≥ 1 − ε for some transformation fidelity F .

The second main result is a lower bound on the dimen-
sion of the program register of the programmable gate in
terms of its degree of imperfection ε. It implies that the
orthogonality result of [2] is robust. We will discuss its
implications in the context of secure secret computation.

Finally, operations stored in a quantum state can be
teleported. This leads to a new scheme for quantum re-
mote control [5] that only requires unidirectional com-
munication.

II. QUASI-PERFECT PROGRAMMABLE

QUANTUM GATES

We start by showing how to store and reimplement, in
an imperfect but feasible fashion, an arbitrary one-qubit
unitary operation of the form

Uα ≡ exp(iασz), (4)

where α ∈ [0,π). Notice that a general one-qubit
operation U ∈ SU(2) can be obtained by compos-
ing three operations of the form of eq. (4) with
some fixed unitary operations, for instance as U =
Uα3exp(−iπσx/2)Uα2 exp(iπσx/2)Uα1 .

A. Single-qubit program state.

Let us consider the state

|α〉 ≡
1√
2
(eiα|0〉 + e−iα|1〉), (5)

which someone, say Alice, can prepare by applying Uα

on a qubit in the standard state (|0〉 + |1〉)
√

2. Suppose
she also prepares, along with |α〉, another qubit in some
arbitrary state |d〉 = a|0〉 + b|1〉 and provides Bob, who
doesn’t know α nor the complex coefficients a and b, with
the two qubits in state |d〉 ⊗ |α〉. Alice challenges now
Bob to obtain the state Uα|d〉.

What Bob can do in order to implement the unknown
U with some probability of success is to perform a C-
NOT operation taking the data qubit in state |d〉 as the
control and the program qubit in state |α〉 as the tar-
get. This will constitute the basic part of our simplest
programmable quantum gate. Recalling that the C-NOT
gate,

|0〉〈0|⊗ I + |1〉〈1|⊗ σx, (6)

permutes the |0〉 and |1〉 states of the target (second
qubit) only if the control (first qubit) is in state |1〉, it
is easy to check that the two-qubit state is transformed
according to

|d〉 ⊗ |α〉 C-NOT−→
1√
2
(Uα|d〉 ⊗ |0〉 + U †

α|d〉 ⊗ |1〉). (7)

Therefore, a projective measurement in the {|0〉, |1〉} ba-
sis of the program register will make the data qubit col-
lapse either into the desired state Uα|d〉 or into the wrong
state U †

α|d〉, with each outcome having prior probability
1/2. That is, we have already constructed a probabilistic
programmable quantum gate with error rate ε = 1/2 (see
figure (1)). Notice that a single qubit has been sufficient
for Alice to store an arbitrary unitary Uα, i.e., one from
an infinite set, although its recovery only succeeds with
probability 1/2. If Bob obtains U †

α|d〉 instead of Uα|d〉,
then not only he fails at performing the wished opera-
tion, but in addition he does no longer have the initial
data state |d〉.

B. Multi-qubit programs.

How can we construct a more efficient programmable
gate? Notice that in case of failure, a second go of the
previous gate can correct U †

α|d〉 into Uα|d〉. Indeed, Bob
needs only apply the gate of fig. (1) to U †

α|d〉, inserting a
new program state, namely |2α〉, which Alice can prepare
by performing twice the operation Uα on (|0〉+ |1〉)/

√
2.

Therefore, if Alice supplies the state |α〉 ⊗ |2α〉 to Bob,
he can perform the operation Uα with probability 3/4.
Figure (2) displays a more compact version of this second
probabilistic programmable gate, which requires a two-
qubit program register and has a probability of failure
ε = 1/4.

In case of a new failure, the state of the system be-
comes U †3

α |d〉. Bob can insert again this state, together
with state |4α〉, into the elementary gate. If Bob has no
luck and keeps on obtaining failures, he can try to cor-
rect the state as many times as he wishes, provided that
the state |2lα〉 is available for the lth attempt. There-
fore, for any N , the N -qubit state ⊗N

l=1|2lα〉 can be
used to implement the transformation Uα with proba-
bility 1 − (1/2)N .1 The corresponding probabilistic pro-
grammable gate (see figure (3)), consists of the unitary
transformation of |d〉 ⊗ (⊗N

l=1|2lα〉) into

1

2N/2
(
√

2N−1 Uα|d〉 ⊗ |r〉 + U (2N−1)†
α |d〉 ⊗ |w〉) (8)

1 Note that our several-step correcting scheme for imple-
menting Uα resembles that used in [7] to implement a non-
local unitary operation. In the present context all interme-
diate measurements and conditional actions can be substi-
tuted by a single unitary operation, as described in Figures
2 and 3. In this section we have first presented the several-
measurement version for pedagogical reasons.

2

quantum system can be essentially specified by means of
one-qubit unitary operations.

[2] M.A. Nielsen and I.L. Chuang, Phys. Rev. Lett. 79 321
(1997).

[3] A. Aćın, E. Jané and G. Vidal, “Optimal estimation of
quantum dynamics”, quant-ph/0012015.

[4] C. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres
and W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[5] S.F. Huelga, J.A. Vaccaro, A. Chefles and M.B. Plenio,
“Quantum remote control: Teleportation of unitary oper-
ations”, quant-ph/0005061.

[6] See, for instance, H.-K. Lo, “Classical Communication
Cost in Distributed Quantum Information Processing - A
generalization of Quantum Communication Complexity”,
quant-ph/9912009.

[7] J. I. Cirac, W. Dür, B. Kraus, M. Lewenstein, “Entangling
operations and their implementation using a small amount
of entanglement”, quant-ph/0007057.

[8] W. Dür and J. I. Cirac, in preparation.

d dUα
dUα

p=1/2

p=1/2
α

FIG. 1. This simple quantum circuit implements a prob-
abilistic gate that takes unknown data and program states
|d〉 and |α〉 and produces, depending on the result of a mea-
surement on the program register, either Uα|d〉 or U†

α|d〉, with
equal prior probability 1/2 (i.e. ε = 1/2).

d dUα
Uα

α

p=3/4

p=1/4

α 2

d3

FIG. 2. The gate of figure (1) can be improved by making
a conditional correction of the output after its C-NOT gate.
This is achieved by means of a Toffoli gate, which acts as a
C-NOT between the first and third line of the circuit only
when the second line carries a |1〉, which corresponds to a
failure in the circuit of figure (1). Bob can measure the second
and third lines of the circuit. Only if he obtains 1 for both
outcomes (which happens only one forth of the times, ε = 1/4)
is the transformation unsuccessful.

d

 2 α

 2N-1α

N-2

Uα
dUα

2 1
N

 -

d

p=1-(1/2)

p=(1/2)N

N

α

α 2

FIG. 3. This probabilistic programmable quantum gate
uses a N-qubit program register and succeeds with probabil-
ity p = 1 − (1/2)N , i.e. ε = (1/2)N . If no final measurement
on the program register is made, or its result is ignored, then
this circuit can be regarded as an approximate programmable
quantum gate with performance fidelity F ≥ 1 − (1/2)N .

6

Hillery, Ziman, Buzek, Phys. Rev. A. 2002

Probabilistic Programmable QC

Vidal, Masanes, Cirac, Phys. Rev. Lett. 2002

Storing quantum dynamics in quantum states

an operation EU very similar to the desired U , that is
F (EU , U) ≥ 1 − ε for some transformation fidelity F .

The second main result is a lower bound on the dimen-
sion of the program register of the programmable gate in
terms of its degree of imperfection ε. It implies that the
orthogonality result of [2] is robust. We will discuss its
implications in the context of secure secret computation.

Finally, operations stored in a quantum state can be
teleported. This leads to a new scheme for quantum re-
mote control [5] that only requires unidirectional com-
munication.

II. QUASI-PERFECT PROGRAMMABLE

QUANTUM GATES

We start by showing how to store and reimplement, in
an imperfect but feasible fashion, an arbitrary one-qubit
unitary operation of the form

Uα ≡ exp(iασz), (4)

where α ∈ [0,π). Notice that a general one-qubit
operation U ∈ SU(2) can be obtained by compos-
ing three operations of the form of eq. (4) with
some fixed unitary operations, for instance as U =
Uα3exp(−iπσx/2)Uα2 exp(iπσx/2)Uα1 .

A. Single-qubit program state.

Let us consider the state

|α〉 ≡
1√
2
(eiα|0〉 + e−iα|1〉), (5)

which someone, say Alice, can prepare by applying Uα

on a qubit in the standard state (|0〉 + |1〉)
√

2. Suppose
she also prepares, along with |α〉, another qubit in some
arbitrary state |d〉 = a|0〉 + b|1〉 and provides Bob, who
doesn’t know α nor the complex coefficients a and b, with
the two qubits in state |d〉 ⊗ |α〉. Alice challenges now
Bob to obtain the state Uα|d〉.

What Bob can do in order to implement the unknown
U with some probability of success is to perform a C-
NOT operation taking the data qubit in state |d〉 as the
control and the program qubit in state |α〉 as the tar-
get. This will constitute the basic part of our simplest
programmable quantum gate. Recalling that the C-NOT
gate,

|0〉〈0|⊗ I + |1〉〈1|⊗ σx, (6)

permutes the |0〉 and |1〉 states of the target (second
qubit) only if the control (first qubit) is in state |1〉, it
is easy to check that the two-qubit state is transformed
according to

|d〉 ⊗ |α〉 C-NOT−→
1√
2
(Uα|d〉 ⊗ |0〉 + U †

α|d〉 ⊗ |1〉). (7)

Therefore, a projective measurement in the {|0〉, |1〉} ba-
sis of the program register will make the data qubit col-
lapse either into the desired state Uα|d〉 or into the wrong
state U †

α|d〉, with each outcome having prior probability
1/2. That is, we have already constructed a probabilistic
programmable quantum gate with error rate ε = 1/2 (see
figure (1)). Notice that a single qubit has been sufficient
for Alice to store an arbitrary unitary Uα, i.e., one from
an infinite set, although its recovery only succeeds with
probability 1/2. If Bob obtains U †

α|d〉 instead of Uα|d〉,
then not only he fails at performing the wished opera-
tion, but in addition he does no longer have the initial
data state |d〉.

B. Multi-qubit programs.

How can we construct a more efficient programmable
gate? Notice that in case of failure, a second go of the
previous gate can correct U †

α|d〉 into Uα|d〉. Indeed, Bob
needs only apply the gate of fig. (1) to U †

α|d〉, inserting a
new program state, namely |2α〉, which Alice can prepare
by performing twice the operation Uα on (|0〉+ |1〉)/

√
2.

Therefore, if Alice supplies the state |α〉 ⊗ |2α〉 to Bob,
he can perform the operation Uα with probability 3/4.
Figure (2) displays a more compact version of this second
probabilistic programmable gate, which requires a two-
qubit program register and has a probability of failure
ε = 1/4.

In case of a new failure, the state of the system be-
comes U †3

α |d〉. Bob can insert again this state, together
with state |4α〉, into the elementary gate. If Bob has no
luck and keeps on obtaining failures, he can try to cor-
rect the state as many times as he wishes, provided that
the state |2lα〉 is available for the lth attempt. There-
fore, for any N , the N -qubit state ⊗N

l=1|2lα〉 can be
used to implement the transformation Uα with proba-
bility 1 − (1/2)N .1 The corresponding probabilistic pro-
grammable gate (see figure (3)), consists of the unitary
transformation of |d〉 ⊗ (⊗N

l=1|2lα〉) into

1

2N/2
(
√

2N−1 Uα|d〉 ⊗ |r〉 + U (2N−1)†
α |d〉 ⊗ |w〉) (8)

1 Note that our several-step correcting scheme for imple-
menting Uα resembles that used in [7] to implement a non-
local unitary operation. In the present context all interme-
diate measurements and conditional actions can be substi-
tuted by a single unitary operation, as described in Figures
2 and 3. In this section we have first presented the several-
measurement version for pedagogical reasons.

2

Single-qubit program state

an operation EU very similar to the desired U , that is
F (EU , U) ≥ 1 − ε for some transformation fidelity F .

The second main result is a lower bound on the dimen-
sion of the program register of the programmable gate in
terms of its degree of imperfection ε. It implies that the
orthogonality result of [2] is robust. We will discuss its
implications in the context of secure secret computation.

Finally, operations stored in a quantum state can be
teleported. This leads to a new scheme for quantum re-
mote control [5] that only requires unidirectional com-
munication.

II. QUASI-PERFECT PROGRAMMABLE

QUANTUM GATES

We start by showing how to store and reimplement, in
an imperfect but feasible fashion, an arbitrary one-qubit
unitary operation of the form

Uα ≡ exp(iασz), (4)

where α ∈ [0,π). Notice that a general one-qubit
operation U ∈ SU(2) can be obtained by compos-
ing three operations of the form of eq. (4) with
some fixed unitary operations, for instance as U =
Uα3exp(−iπσx/2)Uα2 exp(iπσx/2)Uα1 .

A. Single-qubit program state.

Let us consider the state

|α〉 ≡
1√
2
(eiα|0〉 + e−iα|1〉), (5)

which someone, say Alice, can prepare by applying Uα

on a qubit in the standard state (|0〉 + |1〉)
√

2. Suppose
she also prepares, along with |α〉, another qubit in some
arbitrary state |d〉 = a|0〉 + b|1〉 and provides Bob, who
doesn’t know α nor the complex coefficients a and b, with
the two qubits in state |d〉 ⊗ |α〉. Alice challenges now
Bob to obtain the state Uα|d〉.

What Bob can do in order to implement the unknown
U with some probability of success is to perform a C-
NOT operation taking the data qubit in state |d〉 as the
control and the program qubit in state |α〉 as the tar-
get. This will constitute the basic part of our simplest
programmable quantum gate. Recalling that the C-NOT
gate,

|0〉〈0|⊗ I + |1〉〈1|⊗ σx, (6)

permutes the |0〉 and |1〉 states of the target (second
qubit) only if the control (first qubit) is in state |1〉, it
is easy to check that the two-qubit state is transformed
according to

|d〉 ⊗ |α〉 C-NOT−→
1√
2
(Uα|d〉 ⊗ |0〉 + U †

α|d〉 ⊗ |1〉). (7)

Therefore, a projective measurement in the {|0〉, |1〉} ba-
sis of the program register will make the data qubit col-
lapse either into the desired state Uα|d〉 or into the wrong
state U †

α|d〉, with each outcome having prior probability
1/2. That is, we have already constructed a probabilistic
programmable quantum gate with error rate ε = 1/2 (see
figure (1)). Notice that a single qubit has been sufficient
for Alice to store an arbitrary unitary Uα, i.e., one from
an infinite set, although its recovery only succeeds with
probability 1/2. If Bob obtains U †

α|d〉 instead of Uα|d〉,
then not only he fails at performing the wished opera-
tion, but in addition he does no longer have the initial
data state |d〉.

B. Multi-qubit programs.

How can we construct a more efficient programmable
gate? Notice that in case of failure, a second go of the
previous gate can correct U †

α|d〉 into Uα|d〉. Indeed, Bob
needs only apply the gate of fig. (1) to U †

α|d〉, inserting a
new program state, namely |2α〉, which Alice can prepare
by performing twice the operation Uα on (|0〉+ |1〉)/

√
2.

Therefore, if Alice supplies the state |α〉 ⊗ |2α〉 to Bob,
he can perform the operation Uα with probability 3/4.
Figure (2) displays a more compact version of this second
probabilistic programmable gate, which requires a two-
qubit program register and has a probability of failure
ε = 1/4.

In case of a new failure, the state of the system be-
comes U †3

α |d〉. Bob can insert again this state, together
with state |4α〉, into the elementary gate. If Bob has no
luck and keeps on obtaining failures, he can try to cor-
rect the state as many times as he wishes, provided that
the state |2lα〉 is available for the lth attempt. There-
fore, for any N , the N -qubit state ⊗N

l=1|2lα〉 can be
used to implement the transformation Uα with proba-
bility 1 − (1/2)N .1 The corresponding probabilistic pro-
grammable gate (see figure (3)), consists of the unitary
transformation of |d〉 ⊗ (⊗N

l=1|2lα〉) into

1

2N/2
(
√

2N−1 Uα|d〉 ⊗ |r〉 + U (2N−1)†
α |d〉 ⊗ |w〉) (8)

1 Note that our several-step correcting scheme for imple-
menting Uα resembles that used in [7] to implement a non-
local unitary operation. In the present context all interme-
diate measurements and conditional actions can be substi-
tuted by a single unitary operation, as described in Figures
2 and 3. In this section we have first presented the several-
measurement version for pedagogical reasons.

2

quantum system can be essentially specified by means of
one-qubit unitary operations.

[2] M.A. Nielsen and I.L. Chuang, Phys. Rev. Lett. 79 321
(1997).

[3] A. Aćın, E. Jané and G. Vidal, “Optimal estimation of
quantum dynamics”, quant-ph/0012015.

[4] C. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres
and W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[5] S.F. Huelga, J.A. Vaccaro, A. Chefles and M.B. Plenio,
“Quantum remote control: Teleportation of unitary oper-
ations”, quant-ph/0005061.

[6] See, for instance, H.-K. Lo, “Classical Communication
Cost in Distributed Quantum Information Processing - A
generalization of Quantum Communication Complexity”,
quant-ph/9912009.

[7] J. I. Cirac, W. Dür, B. Kraus, M. Lewenstein, “Entangling
operations and their implementation using a small amount
of entanglement”, quant-ph/0007057.

[8] W. Dür and J. I. Cirac, in preparation.

d dUα
dUα

p=1/2

p=1/2
α

FIG. 1. This simple quantum circuit implements a prob-
abilistic gate that takes unknown data and program states
|d〉 and |α〉 and produces, depending on the result of a mea-
surement on the program register, either Uα|d〉 or U†

α|d〉, with
equal prior probability 1/2 (i.e. ε = 1/2).

d dUα
Uα

α

p=3/4

p=1/4

α 2

d3

FIG. 2. The gate of figure (1) can be improved by making
a conditional correction of the output after its C-NOT gate.
This is achieved by means of a Toffoli gate, which acts as a
C-NOT between the first and third line of the circuit only
when the second line carries a |1〉, which corresponds to a
failure in the circuit of figure (1). Bob can measure the second
and third lines of the circuit. Only if he obtains 1 for both
outcomes (which happens only one forth of the times, ε = 1/4)
is the transformation unsuccessful.

d

 2 α

 2N-1α

N-2

Uα
dUα

2 1
N

 -

d

p=1-(1/2)

p=(1/2)N

N

α

α 2

FIG. 3. This probabilistic programmable quantum gate
uses a N-qubit program register and succeeds with probabil-
ity p = 1 − (1/2)N , i.e. ε = (1/2)N . If no final measurement
on the program register is made, or its result is ignored, then
this circuit can be regarded as an approximate programmable
quantum gate with performance fidelity F ≥ 1 − (1/2)N .

6

quantum system can be essentially specified by means of
one-qubit unitary operations.

[2] M.A. Nielsen and I.L. Chuang, Phys. Rev. Lett. 79 321
(1997).

[3] A. Aćın, E. Jané and G. Vidal, “Optimal estimation of
quantum dynamics”, quant-ph/0012015.

[4] C. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres
and W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[5] S.F. Huelga, J.A. Vaccaro, A. Chefles and M.B. Plenio,
“Quantum remote control: Teleportation of unitary oper-
ations”, quant-ph/0005061.

[6] See, for instance, H.-K. Lo, “Classical Communication
Cost in Distributed Quantum Information Processing - A
generalization of Quantum Communication Complexity”,
quant-ph/9912009.

[7] J. I. Cirac, W. Dür, B. Kraus, M. Lewenstein, “Entangling
operations and their implementation using a small amount
of entanglement”, quant-ph/0007057.

[8] W. Dür and J. I. Cirac, in preparation.

d dUα
dUα

p=1/2

p=1/2
α

FIG. 1. This simple quantum circuit implements a prob-
abilistic gate that takes unknown data and program states
|d〉 and |α〉 and produces, depending on the result of a mea-
surement on the program register, either Uα|d〉 or U†

α|d〉, with
equal prior probability 1/2 (i.e. ε = 1/2).

d dUα
Uα

α

p=3/4

p=1/4

α 2

d3

FIG. 2. The gate of figure (1) can be improved by making
a conditional correction of the output after its C-NOT gate.
This is achieved by means of a Toffoli gate, which acts as a
C-NOT between the first and third line of the circuit only
when the second line carries a |1〉, which corresponds to a
failure in the circuit of figure (1). Bob can measure the second
and third lines of the circuit. Only if he obtains 1 for both
outcomes (which happens only one forth of the times, ε = 1/4)
is the transformation unsuccessful.

d

 2 α

 2N-1α

N-2

Uα
dUα

2 1
N

 -

d

p=1-(1/2)

p=(1/2)N

N

α

α 2

FIG. 3. This probabilistic programmable quantum gate
uses a N-qubit program register and succeeds with probabil-
ity p = 1 − (1/2)N , i.e. ε = (1/2)N . If no final measurement
on the program register is made, or its result is ignored, then
this circuit can be regarded as an approximate programmable
quantum gate with performance fidelity F ≥ 1 − (1/2)N .

6

Hillery, Ziman, Buzek, Phys. Rev. A. 2002

Probabilistic Programmable QC

Vidal, Masanes, Cirac, Phys. Rev. Lett. 2002

Several methods to improve performances

Hillery, Ziman, Buzek, Phys. Rev. A. 2002

By providing more information about the program

Probabilistic Programmable QC

Vidal, Masanes, Cirac, Phys. Rev. Lett. 2002

Several methods to improve performances

Hillery, Ziman, Buzek, Phys. Rev. A. 2002

By providing more information about the program

hiding program vs performing program

Trade off

Adding Classical Control ✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

U(| Di)

1

Adding Classical Control ✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

f(|�i, U)

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

U(| Di)

1

A universal set for unitaries on C2

J(�) := 1⇥
2

�
1 ei�

1 �ei�

⇥

Some nice equations:

J(�)J(0)J(⇥) = J(� + ⇥)
J(�)J(⇤)J(⇥) = ei�Z J(⇥ � �)
XJ(�) = J(� + ⇤) = J(�)Z
H = J(0)
P (�) = J(0)J(�)

Thinking inside the box

A universal set for unitaries on C2

J(�) := 1⇥
2

�
1 ei�

1 �ei�

⇥

Some nice equations:

J(�)J(0)J(⇥) = J(� + ⇥)
J(�)J(⇤)J(⇥) = ei�Z J(⇥ � �)
XJ(�) = J(� + ⇤) = J(�)Z
H = J(0)
P (�) = J(0)J(�)

Thinking inside the box

α±

X

Latex Template

September 15, 2008

⇥2 = Tr1,2,3,4,6[P(|⇤⌥⌃⇤|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]

J(�) = 1⇤
2

�
1 ei�

1 �ei�

⇥

⇥out = POc EG (⇥in ⇤ |+⌥⌃+|V �I) EG POc

Traux[U ⌅ I ⇤ J(⇥in ⇤ ⇥aux�)I ⇤ J† ⌅ U †]
= Traux[U(⇥in ⇤ ⇥aux�)U †]

P |+��
i = M�

i Zsi
i

P |+��
i Eij = M�

i Xsi
j Eij Xsi

j

m = d⇥ r

|+⌥

1

Latex Template

September 15, 2008

⇥2 = Tr1,2,3,4,6[P(|⌅⌥⌃⌅|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]

J(�) = 1⇤
2

�
1 ei�

1 �ei�

⇥

⇥out = POc EG (⇥in ⇤ |+⌥⌃+|V �I) EG POc

Traux[U ⌅ I ⇤ J(⇥in ⇤ ⇥aux�)I ⇤ J† ⌅ U †]
= Traux[U(⇥in ⇤ ⇥aux�)U †]

P |+��
i = M�

i Zsi
i

P |+��
i Eij = M�

i Xsi
j Eij Xsi

j

m = d⇥ r

|⇤⌥

1

Latex Template

September 15, 2008

⇥2 = Tr1,2,3,4,6[P(|⌅⌥⌃⌅|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]

J(�) = 1⇤
2

�
1 ei�

1 �ei�

⇥

⇥out = POc EG (⇥in ⇤ |+⌥⌃+|V �I) EG POc

Traux[U ⌅ I ⇤ J(⇥in ⇤ ⇥aux�)I ⇤ J† ⌅ U †]
= Traux[U(⇥in ⇤ ⇥aux�)U †]

P |+��
i = M�

i Zsi
i

P |+��
i Eij = M�

i Xsi
j Eij Xsi

j

m = d⇥ r

J(�)(|⇤⌥)

1

P�
i

1⇤
2
(|0�+ ei�|1�)

�1, �2 · · ·

H := ({1, 2}, {1}, {2}, P 0
1 E12N2)

P 0
1�⌅ 1⇤

2
((a + b)|0�+ (a� b)|1�)

|⇥�

 ⌥Z = 1
2

⇤

⌥⌥⇧

1 1 1 �1
1 �1 1 1
1 1 �1 1
1 �1 �1 �1

⌅

��⌃

H = 1⇤
2

�
1 1
1 �1

⇥

X =
�

0 1
1 0

⇥
Z =

�
1 0
0 �1

⇥

Local Cli�ord Group{H,S, I}

[[P1P2]] = [[P2]][[P1]]

[[P1 ⇥ P2]] = [[P2]]⇥ [[P1]]

⌃a ⇧ A, ⌃a⇥ ⇧ Pl(a) : a < a⇥

BQP ⇤ MIP�

|+� = 1⇤
2
(|0�+ |1�)

|⇥�

|±�

X

Z

2

gate teleportation

P�
i

1⇤
2
(|0�+ ei�|1�)

⇥1, ⇥2 · · ·

H := ({1, 2}, {1}, {2}, P 0
1 E12N2)

P 0
1�⌃ 1⇤

2
((a + b)|0�+ (a� b)|1�)

|⇤�

 ↵Z = 1
2

⇤

⌥⌥⇧

1 1 1 �1
1 �1 1 1
1 1 �1 1
1 �1 �1 �1

⌅

��⌃

H = 1⇤
2

�
1 1
1 �1

⇥

X =
�

0 1
1 0

⇥
Z =

�
1 0
0 �1

⇥

Local Cli�ord Group{H,S, I}
[[P1P2]] = [[P2]][[P1]]

[[P1 ⌅ P2]] = [[P2]]⌅ [[P1]]

�a ⌥ A, �a⇥ ⌥ Pl(a) : a < a⇥

BQP ⇧ MIP�

|+� = 1⇤
2
(|0�+ |1�)

|⇤�

|±�

X

Z

H

J(�)(|+�)

2

α±

X

Latex Template

September 15, 2008

⇥2 = Tr1,2,3,4,6[P(|⇤⌥⌃⇤|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]

J(�) = 1⇤
2

�
1 ei�

1 �ei�

⇥

⇥out = POc EG (⇥in ⇤ |+⌥⌃+|V �I) EG POc

Traux[U ⌅ I ⇤ J(⇥in ⇤ ⇥aux�)I ⇤ J† ⌅ U †]
= Traux[U(⇥in ⇤ ⇥aux�)U †]

P |+��
i = M�

i Zsi
i

P |+��
i Eij = M�

i Xsi
j Eij Xsi

j

m = d⇥ r

|+⌥

1

|+� = 1⇥
2
(|0� + |1�)

|⇤�

|±�

X

Z

H

J(�)(|+�)

|+⇥���

Z(⇥)

|±�+⇤�

3

|+⇥ = 1�
2
(|0⇥ + |1⇥)

|⇤⇥

|±⇥

X

Z

H

J(� + ⇥)

|+⇥⇥

tr|±�+⇥⇥

3

P�
i

1⇤
2
(|0�+ ei�|1�)

�1, �2 · · ·

H := ({1, 2}, {1}, {2}, P 0
1 E12N2)

P 0
1�⌅ 1⇤

2
((a + b)|0�+ (a� b)|1�)

|⇥�

 ⌥Z = 1
2

⇤

⌥⌥⇧

1 1 1 �1
1 �1 1 1
1 1 �1 1
1 �1 �1 �1

⌅

��⌃

H = 1⇤
2

�
1 1
1 �1

⇥

X =
�

0 1
1 0

⇥
Z =

�
1 0
0 �1

⇥

Local Cli�ord Group{H,S, I}

[[P1P2]] = [[P2]][[P1]]

[[P1 ⇥ P2]] = [[P2]]⇥ [[P1]]

⌃a ⇧ A, ⌃a⇥ ⇧ Pl(a) : a < a⇥

BQP ⇤ MIP�

|+� = 1⇤
2
(|0�+ |1�)

|⇥�

|±�

X

Z

2

Thinking Inside the box

P�
i

1⇤
2
(|0�+ ei�|1�)

⇥1, ⇥2 · · ·

H := ({1, 2}, {1}, {2}, P 0
1 E12N2)

P 0
1�⌃ 1⇤

2
((a + b)|0�+ (a� b)|1�)

|⇤�

 ↵Z = 1
2

⇤

⌥⌥⇧

1 1 1 �1
1 �1 1 1
1 1 �1 1
1 �1 �1 �1

⌅

��⌃

H = 1⇤
2

�
1 1
1 �1

⇥

X =
�

0 1
1 0

⇥
Z =

�
1 0
0 �1

⇥

Local Cli�ord Group{H,S, I}
[[P1P2]] = [[P2]][[P1]]

[[P1 ⌅ P2]] = [[P2]]⌅ [[P1]]

�a ⌥ A, �a⇥ ⌥ Pl(a) : a < a⇥

BQP ⇧ MIP�

|+� = 1⇤
2
(|0�+ |1�)

|⇤�

|±�

X

Z

H

J(�)(|+�)

2

α±

X

Latex Template

September 15, 2008

⇥2 = Tr1,2,3,4,6[P(|⇤⌥⌃⇤|1 ⇤ ⇥2 ⇤ |+⌥⌃+|3,4,5,6)P†]

J(�) = 1⇤
2

�
1 ei�

1 �ei�

⇥

⇥out = POc EG (⇥in ⇤ |+⌥⌃+|V �I) EG POc

Traux[U ⌅ I ⇤ J(⇥in ⇤ ⇥aux�)I ⇤ J† ⌅ U †]
= Traux[U(⇥in ⇤ ⇥aux�)U †]

P |+��
i = M�

i Zsi
i

P |+��
i Eij = M�

i Xsi
j Eij Xsi

j

m = d⇥ r

|+⌥

1

|+� = 1⇥
2
(|0� + |1�)

|⇤�

|±�

X

Z

H

J(�)(|+�)

|+⇥���

Z(⇥)

|±�+⇤�

3

|+⇥ = 1�
2
(|0⇥ + |1⇥)

|⇤⇥

|±⇥

X

Z

H

J(� + ⇥)

|+⇥⇥

tr|±�+⇥⇥

3

P�
i

1⇤
2
(|0�+ ei�|1�)

�1, �2 · · ·

H := ({1, 2}, {1}, {2}, P 0
1 E12N2)

P 0
1�⌅ 1⇤

2
((a + b)|0�+ (a� b)|1�)

|⇥�

 ⌥Z = 1
2

⇤

⌥⌥⇧

1 1 1 �1
1 �1 1 1
1 1 �1 1
1 �1 �1 �1

⌅

��⌃

H = 1⇤
2

�
1 1
1 �1

⇥

X =
�

0 1
1 0

⇥
Z =

�
1 0
0 �1

⇥

Local Cli�ord Group{H,S, I}

[[P1P2]] = [[P2]][[P1]]

[[P1 ⇥ P2]] = [[P2]]⇥ [[P1]]

⌃a ⇧ A, ⌃a⇥ ⇧ Pl(a) : a < a⇥

BQP ⇤ MIP�

|+� = 1⇤
2
(|0�+ |1�)

|⇥�

|±�

X

Z

2

Thinking Inside the box

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

f(|�i, U)

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

U(| Di)

1

Deterministic Perfectly Hiding Programmable QC

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

U(| Di)

1

|Gi

1

Deterministic Perfectly Hiding Programmable QC

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

| Di |�D!Di

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

U(| Di)

1

|Gi

1

Classical Computer
random single qubit generator

Unconditional Perfect Privacy
Server learns nothing about client’s input/output/computation

Classical Communication

Universal Blind QC

Broadbent,Fitzsimons and Kashefi, FOCS. 2010

Universal Blind Quantum Computings

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

Universal Blind Quantum Computings

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

random single qubit generator

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; XsJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

4

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓ + ↵ + r⇡

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; Xs+rJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

✓0

4

Universal Blind Quantum Computings

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

random single qubit generator

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; XsJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

4

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓ + ↵ + r⇡

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; Xs+rJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

✓0

4

Universal Blind Quantum Computings

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

random single qubit generator

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; XsJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

4

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓ + ↵ + r⇡

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; Xs+rJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

✓0

4

Universal Blind Quantum Computings

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

random single qubit generator

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; XsJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

4

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓ + ↵ + r⇡

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; Xs+rJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

✓0

4

Universal Blind Quantum Computings

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

random single qubit generator

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; XsJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

4

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓ + ↵ + r⇡

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; Xs+rJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

✓0

4

Universal Blind Quantum Computings

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

random single qubit generator

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; XsJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

4

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓ + ↵ + r⇡

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; Xs+rJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

✓0

4

Universal Blind Quantum Computings

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

random single qubit generator

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; XsJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

4

P
⌫ p(⌫) Tr (P ⌫

incorrect B(⌫))  ✏

0

BB@

1

1

1

�1

1

CCA ✓ + ↵ + r⇡

1
2

✓
1 ei↵

e�i↵
1

◆
+

1
2

✓
1 �ei↵

�e�i↵
1

◆

s 2 {0, 1} ; Xs+rJ(↵)

✓
1

1

◆

✓
1 (ei↵

1 �ei↵

◆

✓0

4

Universal Blind Quantum Computings

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

sx,y := sx,y + rx,y

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

random single qubit generator

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

Our protocol is described in terms of the measurement-based model for quantum computation
(MBQC) [RB01, RBB03]. While the computational power of this model is the same as in the
quantum circuit model [Deu89] (and our protocol could be completely recast into this model), it
has proven to be conceptually enlightening to reason about the distributed task of blind quantum
computation using this approach. The novelty of our approach is in using the unique feature
of MBQC that separates the classical and quantum parts of a computation, leading to a generic
scheme for blind computation of any circuit without requiring any quantum memory for Alice. This
is fundamentally different from previously known classical or quantum schemes. Our protocol can
be viewed as a distributed version of an MBQC computation (where Alice prepares the individual
qubits, Bob does the entanglement and measurements, and Alice computes the classical feedforward
mechanism), on top of which randomness is added in order to obscure the computation from Bob’s
point of view. The family of graph states called cluster states [RB01] is universal for MBQC (graph
states are initial entangled states required for the computation in MBQC). However, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If we were to
use this principle for blind quantum computing, Alice would have to reveal information about the
structure of the underlying graph state. We introduce a new family of states called the brickwork
states (Figure 1) which are universal for X − Y plane measurements and thus do not require the
initial computational basis measurements. Other universal graph states for that do not require
initial computational basis measurements have appeared in [CLN05].

To the best of our knowledge, this is the first time that a new functionality has been achieved
thanks to MBQC (other theoretical advances due to MBQC appear in [RHG06, MS08]). From
a conceptual point of view, our contribution shows that MBQC has tremendous potential for the
development of new protocols, and maybe even of algorithms.

1.3 Outline of Protocols

The outline of the main protocol is as follows. Alice has in mind a quantum computation given as
a measurement pattern on a brickwork state. There are two stages: preparation and computation.
In the preparation stage, Alice prepares single qubits chosen randomly from {1/

√
2
(

|0〉 + eiθ |1〉
)

|
θ = 0,π/4, 2π/4, . . . , 7π/4} and sends them to Bob. After receiving all the qubits, Bob entangles
them according to the brickwork state. Note that this unavoidably reveals upper bounds on the
dimensions of Alice’s underlying graph state, that correspond to the length of the input and depth
of the computation. However, due to universality of the brickwork state, it does not reveal any
additional information on Alice’s computation. The computation stage involves interaction: for
each layer of the brickwork state, for each qubit, Alice sends a classical message to Bob to tell him
in which basis of the X−Y plane he should measure the qubit. Bob performs the measurement and
communicates the outcome; Alice’s choice of angles in future rounds will depend on these values.
Importantly, Alice’s quantum states and classical messages are astutely chosen so that, no matter
what Bob does, he cannot infer anything about her measurement pattern. If Alice is computing
a classical function, the protocol finishes when all qubits are measured. If she is computing a
quantum function, Bob returns to her the final qubits. A modification of the protocol also allows
Alice’s inputs to be quantum.

We give an authentication technique which enables Alice to detect an interfering Bob with over-
whelming probability (strictly speaking, either Bob’s interference is corrected and he is not detected,
or his interference is detected with overwhelming probability). The authentication requires that
Alice encode her input into an error correction code and choose an appropriate fault-tolerant im-
plementation of her desired computation. She also uses some qubits as traps; they are prepared in
the eigenstates of the Pauli operators X, Y and Z.

The remainder of the paper is structured as follows: the main protocol is given in Section 2,
where correctness and blindness are proven. Section 3 discusses extensions to the case of quantum
inputs or outputs; authentication techniques that are used to detect an interfering Bob and perform
fault-tolerant computations are in Section 4, while Section 5 presents the two-server protocol with
a purely classical Alice. The reader unfamiliar with MBQC is referred to a short introduction in

3

A lifting theorem

Any classical cryptographic protocol could be lifted to a
corresponding quantum protocols via UBQC

A lifting theorem

Any classical cryptographic protocol could be lifted to a
corresponding quantum protocols via UBQC

Classical Protocol

A lifting theorem

Any classical cryptographic protocol could be lifted to a
corresponding quantum protocols via UBQC

Universal Blind QC

Classical Protocol

Classical Crypto

Yao Garbled Circuit

Fully Homomorphic Encryption

One-time program

Secure Multi Party Computation

Secure Cloud Computing

Rivest 78: Processing encrypted data without decrypting it first

Secure Cloud Computing

Limited Client Untrusted Server

Rivest 78: Processing encrypted data without decrypting it first

Secure Cloud Computing

X Y

Limited Client Untrusted Server

Rivest 78: Processing encrypted data without decrypting it first

Secure Cloud Computing

X Y

Y F(Y)

Limited Client Untrusted Server

Rivest 78: Processing encrypted data without decrypting it first

Secure Cloud Computing

X Y

Y F(Y)

Limited Client Untrusted Server

F(X) F(Y)

Rivest 78: Processing encrypted data without decrypting it first

Secure Cloud Computing

X Y

Y F(Y)

Limited Client Untrusted Server

F(X) F(Y)

Rivest 78: Processing encrypted data without decrypting it first

Gentry 09: A Lattice-based cryptosystem that is fully
homomorphic but inefficient and only computationally secure

UBQC as FHE

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌃ = 1⇥
2
(|0⌃+ |1⌃)

|⇧⌃

|±⌃

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌃

|±�+⇥+r⇤⌃

{|+⇥⌃}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

3

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

sx,y := sx,y + rx,y

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

UBQC as FHE

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌃ = 1⇥
2
(|0⌃+ |1⌃)

|⇧⌃

|±⌃

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌃

|±�+⇥+r⇤⌃

{|+⇥⌃}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

3

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

sx,y := sx,y + rx,y

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

In
te

ra
ct

io
n

One-time Memory

�0 �1

1

�0 �1

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

b

1

�0 �b

1

One-time Memory

Founding Cryptography on Tamper-Proof Hardware Tokens

 Goldwasser, Kalai and Rothblum, Crypto, 2008
Goyal, Ishai, Sahai, Venkatesan, Wadai, TCC, 2010

Unconditional non-interactive secure computation

�0 �1

1

�0 �1

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

b

1

�0 �b

1

Non-interactive UBQC using OTM

�0 �1

1

�0 �1

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

b

1

�0 �b

1

Non-interactive UBQC using OTM

Linear many OTM (in the size of input circuit)
is required to make UBQC non-interactive

UBQC on a constant degree graph

Kashefi, In preparation 2014

�0 �1

1

�0 �1

1

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

b

1

�0 �b

1

Somewhat QFHE

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

Secret input

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Encryption

Somewhat QFHE

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

Secret input

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Encryption

Qubits and OTM

Somewhat QFHE

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

Secret input

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Encryption

Qubits and OTM

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

sx,y := sx,y + rx,y

3

Decryption

Quantum FHE

Classical OTM

Quantum FHE

Universal Blind QC

Classical OTM

Quantum FHE

Secure Multi-Party Computing

Yao 86. A set of participants with private inputs x_i want to compute
a function f(x_1, ..., x_i, ... x_n) while keeping their local data secret

Secure Multi-Party Computing

Yao 86. A set of participants with private inputs x_i want to compute
a function f(x_1, ..., x_i, ... x_n) while keeping their local data secret

Security

Active internal or external adversaries cannot find more than output of function

Goldreich, Micali, and Wigderson, STOC, 87

UBQC as Quantum SMPC

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌃ = 1⇥
2
(|0⌃+ |1⌃)

|⇧⌃

|±⌃

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌃

|±�+⇥+r⇤⌃

{|+⇥⌃}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

3

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

sx,y := sx,y + rx,y

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Trusted Alice

UBQC as Quantum SMPC

UBQC as Quantum SMPC

Fulop, Kapourniotis, Kashefi, In preparation 2014

UBQC as Quantum SMPC

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

1
Private Secret of Client

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

2
Private Secret of Client

Fulop, Kapourniotis, Kashefi, In preparation 2014

UBQC as Quantum SMPC

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

1
Private Secret of Client

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

2
Private Secret of Client

Classical Secure
Function Evaluation

Fulop, Kapourniotis, Kashefi, In preparation 2014

UBQC as Quantum SMPC

UBQC as Quantum SMPC

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

UBQC as Quantum SMPC

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

Z

�2 = f(r1, r2, ✓2,�2)

1

Quantum SMPC

Classical SMPC

Quantum SMPC

Universal Blind QC

Classical SMPC

Quantum SMPC

Classical lifting

A hybrid network of classical protocols with quantum gadgets

boosting efficiency and security

of every task achievable against classical attackers against quantum attackers

Classical FHE

Quantum Gadgets

Classical lifting

A hybrid network of classical protocols with quantum gadgets

boosting efficiency and security

of every task achievable against classical attackers against quantum attackers

UBQC as a gadget

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌃ = 1⇥
2
(|0⌃+ |1⌃)

|⇧⌃

|±⌃

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌃

|±�+⇥+r⇤⌃

{|+⇥⌃}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

3

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

sx,y := sx,y + rx,y

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

UBQC as a gadget

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⌅⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

3

|+⇧ = 1�
2
(|0⇧+ |1⇧)

|⇧⇧

|±⇧

X

Z

H

J(� + ⇥ + r⇤)

⇥r

|+⇥⇧

|±�+⇥+r⇤⇧

{|+⇥⇧}

X = (Ũ , {⌅x,y})

3

.

.

.
.
.
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉 + 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which

are joined by an edge.

The proof of the following theorem is relegated to Appendix B due to lack of space.

Theorem 1 (Universality). The brickwork state Gn×m is universal for quantum computation. Fur-
thermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and mea-
surements can be done layer-by-layer.

In this work, we only consider approximate universality. This allows us to restrict the angles
of preparation and measurement to a finite set and hence simplify the description of the protocol.
However one can easily extend our protocol to achieve exact universality as well, provided Alice
can communicate real numbers to Bob.

Correctness refers to the fact that the outcome of the protocol is the same as the outcome
if Alice has run the pattern herself. The fact that Protocol 1 correctly computes U |0〉 follows
from the commutativity of Alice’s rotations and Bob’s measurements in the rotated bases. This is
formalized below.

Theorem 2 (Correctness). Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the underlying
graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the Z-
rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉 , |−φ〉 basis on a state |ψ〉 is
the same as a measurement in the |+φ+θ〉 , |−φ+θ〉 basis on Z(θ) |ψ〉 (see Appendix A), and since
δ = φ′ + θ + πr, if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if
r = 1, all Alice needs to do is flip the outcome.

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 2. Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

5

|+⌃ = 1⇥
2
(|0⌃+ |1⌃)

|⇧⌃

|±⌃

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌃

|±�+⇥+r⇤⌃

{|+⇥⌃}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

3

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

|+⌥ = 1⇥
2
(|0⌥+ |1⌥)

|⇧⌥

|±⌥

X

Z

H

J(� + ⇥ + r⇤)

⇤r

|+⇥⌥

|±�+⇥+r⇤⌥

{|+⇥⌥}

X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌅R {0, 1}

sx,y := sx,y + rx,y

3

Appendix A. Appendix B contains a universality proof of the brickwork states that is lengthy
due to its figures, while Appendix C contains modified versions of the main protocol to deal with
quantum inputs or outputs.

2 Main Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 1) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x− 1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′

x,y
is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,

sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′

x,y =

(−1)s
X
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation
1. Alice’s preparation

For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣

∣+θx,y

〉

= 1√
2
(|0〉+ eiθx,y |1〉) | θx,y = 0,π/4, . . . , 7π/4} and sends

the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m (see
Definition 1).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′
x,y where sX

0,y = sZ
0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′
x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣

∣+δx,y

〉

,
∣

∣−δx,y

〉

}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.
3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state (defined below)
for measurement-based quantum computing.

Definition 1. A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 1):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column (i ∈ [n])
and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m − 1.
3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).
4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits (i, j)

and (i + 1, j) and also on qubits (i, j + 2) and (i + 1, j + 2).

4

Q Memory

Q Memory

UBQC for secure evaluation of classical function

ar
X

iv
:0

8
0

5
.1

0
0

2
v

1

[q
u

an
t-

p
h

]
 7

 M
ay

 2
0

0
8

Measurement-based classical computation

Janet Anders∗1 and Dan E. Browne†1

1Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, United Kingdom.

(Dated: May 8, 2008)

We study the intrinsic computational power of entangled states exploited in measurement-based
quantum computation. By focussing on the power of the classical computer that controls the mea-
surements, we develop a classification of computational resource power, leading naturally to a notion
of resource states for measurement-based classical computation. Surprisingly, the Greenberger-
Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge naturally as optimal examples.
Our work exposes an intriguing relationship between the violation of local realistic models and the
computational power of entangled resource states.

PACS numbers: 03.67.Lx, 03.65.Ud

Introduction.– Measurement-based quantum computa-
tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational

∗janet@qipc.org
†d.browne@ucl.ac.uk

resource state

control computer

measurement

sites

FIG. 1: The control computer provides one bit of classical
information (downward arrows) to each site (circles in the re-
source state) determining the choice of measurement basis.
After the measurement, one bit of classical information (up-
ward arrow), such as the outcome of the binary measurement,
is sent back to the control computer.

power what are resource states that enable determinis-
tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
munication between control computer and sites - during
the computation each measurement site receives a single
bit from the control computer and sends back a single
bit in return. It is emphasized that we place no restric-

control computer

resource state

measurement site

Anders and Browne, PRL, 2009

Q Memory

UBQC for secure evaluation of classical function

ar
X

iv
:0

8
0

5
.1

0
0

2
v

1

[q
u

an
t-

p
h

]
 7

 M
ay

 2
0

0
8

Measurement-based classical computation

Janet Anders∗1 and Dan E. Browne†1

1Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, United Kingdom.

(Dated: May 8, 2008)

We study the intrinsic computational power of entangled states exploited in measurement-based
quantum computation. By focussing on the power of the classical computer that controls the mea-
surements, we develop a classification of computational resource power, leading naturally to a notion
of resource states for measurement-based classical computation. Surprisingly, the Greenberger-
Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge naturally as optimal examples.
Our work exposes an intriguing relationship between the violation of local realistic models and the
computational power of entangled resource states.

PACS numbers: 03.67.Lx, 03.65.Ud

Introduction.– Measurement-based quantum computa-
tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational

∗janet@qipc.org
†d.browne@ucl.ac.uk

resource state

control computer

measurement

sites

FIG. 1: The control computer provides one bit of classical
information (downward arrows) to each site (circles in the re-
source state) determining the choice of measurement basis.
After the measurement, one bit of classical information (up-
ward arrow), such as the outcome of the binary measurement,
is sent back to the control computer.

power what are resource states that enable determinis-
tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
munication between control computer and sites - during
the computation each measurement site receives a single
bit from the control computer and sends back a single
bit in return. It is emphasized that we place no restric-

control computer

resource state

measurement site

XOR gates only

3 qubits GHZ state

Anders and Browne, PRL, 2009

Q Memory

UBQC for secure evaluation of classical function

ar
X

iv
:0

8
0

5
.1

0
0

2
v

1

[q
u

an
t-

p
h

]
 7

 M
ay

 2
0

0
8

Measurement-based classical computation

Janet Anders∗1 and Dan E. Browne†1

1Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, United Kingdom.

(Dated: May 8, 2008)

We study the intrinsic computational power of entangled states exploited in measurement-based
quantum computation. By focussing on the power of the classical computer that controls the mea-
surements, we develop a classification of computational resource power, leading naturally to a notion
of resource states for measurement-based classical computation. Surprisingly, the Greenberger-
Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge naturally as optimal examples.
Our work exposes an intriguing relationship between the violation of local realistic models and the
computational power of entangled resource states.

PACS numbers: 03.67.Lx, 03.65.Ud

Introduction.– Measurement-based quantum computa-
tion is an approach to computation radically different to
conventional circuit models. In a circuit model, infor-
mation is manipulated by a network of logical gates. In
measurement-based quantum computation (also known
as “one-way” quantum computation) information is pro-
cessed by a sequence of adaptive single-qubit mea-
surements on a pre-prepared multi-qubit resource state
[1, 2, 3]. A classical computer controls all measurements
(see Fig. 1) by keeping track of the outcomes of previous
measurements and determining the bases for the mea-
surements to come. The separation of entangling and
single-qubit operations leads to significant experimental
advantages in a number of different systems [4]. Notably,
the classical control computer is the only part of the
model where active computation takes place. A strik-
ing implication of the measurement-based model is that
entangled resource states can possess an innate computa-
tional power. Merely by exchanging single bits with each
of the measurement sites of the resource state (see Fig.
1), the control computer is enabled to compute problems
beyond its own power. For example, by controlling mea-
surements on the cluster states the control computer is
promoted to full quantum universality.

Impressive characterization of the necessary properties
of resource states that enable a computational “boost”
to universal quantum computation has already been
achieved [5, 6], however, little is known about the re-
quirements for a resource state to increase the power of
the classical control computer at all. In this paper, we de-
velop a framework which allows us to classify the compu-
tational power of resource states for a control computer
of given power. By doing so, a natural classical ana-
logue of measurement-based computation emerges: con-
sidering a control computer of restricted computational

∗janet@qipc.org
†d.browne@ucl.ac.uk

resource state

control computer

measurement

sites

FIG. 1: The control computer provides one bit of classical
information (downward arrows) to each site (circles in the re-
source state) determining the choice of measurement basis.
After the measurement, one bit of classical information (up-
ward arrow), such as the outcome of the binary measurement,
is sent back to the control computer.

power what are resource states that enable determinis-
tic universal classical computation? Here we show that
such resource states exist and that an unlimited supply
of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
implements this task in an optimal way. Moreover, our
model provides a unifying picture drawing together some
of the most important results in the study of quantum
non-locality. Specifically, we show that the GHZ prob-
lem [7] and the Clauser-Horne-Shimony-Holt (CHSH)
construction [8] emerge as closely related to tasks in
measurement-based classical computation (MBCC), as
does the Popescu-Rohrlich non-local box [9].

Framework for measurement-based computation.– First
we need to cast measurement-based quantum computa-
tion in a framework which assumes as little as possible
about the physical properties of the computational re-
source. The model consists of the following components
(see Fig. 1): 1) a control computer, with a specified com-
putational power; 2) n measurement-sites, which may
share pre-existing entanglement, or correlation, but may
not communicate during the computation 3) limited com-
munication between control computer and sites - during
the computation each measurement site receives a single
bit from the control computer and sends back a single
bit in return. It is emphasized that we place no restric-

control computer

resource state

measurement site

XOR gates only

3 qubits GHZ state

Universal Classical ComputingAnders and Browne, PRL, 2009

Restricted XOR Client

No classical protocol, with XOR client can securely delegate deterministic
computation of NAND to a server.

Dunjko, Kapourniotis, Kashefi, arXiv:1405.4558, 2014

http://arxiv.org/abs/1405.4558
http://arxiv.org/abs/1405.4558

Restricted XOR Client

No classical protocol, with XOR client can securely delegate deterministic
computation of NAND to a server.

Dunjko, Kapourniotis, Kashefi, arXiv:1405.4558, 2014

Client’s encoding:

5 Impossibility Results

The main result of this section is to prove the optimality of our protocol. We first prove that it is
impossible to achieve the similar task of secure delegated computing of our protocols by removing
the quantum requirement. Next we show that in the quantum case, the quantum states must depend
on the input of the client as it is done in our protocols. This result also indicates that a quantum
o↵-line protocol could not be achieved.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can
delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no initial shared
randomness. Any such protocol will have the following three stages: client’s encoding, server’s
computation, and client’s decoding.

Client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
�!x), where

a, b are the input bits, �!x is a random bit string (of any length) and C1 is a computation which can
be implemented using only XOR gates. However, the state C1(a, b,

�!x) must be independent from
a and b to maintain blindness when averaged over all �!x .

Server’s computation. The only thing the server can do is to apply some computable function S on
C1(a, b,

�!x), thus returning S(C1(a, b,
�!x)).

Client’s decoding. The only thing the client can do is to run some function C2, on all the data he
has, which is implementable using XOR gates only:

C2(a, b,
�!x , S(C1(a, b,

�!x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a0, b0,
�!
x0) be some constant the client may send to the server. Then, because of blindness

it must hold that for all a, b there must exist �!x (a, b), which depends on a, b such that

C1(a, b,
�!x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a00 and b00, then upon
receiving c the server learns something about the input, namely that it is not a00, b00, which violates
blindness. Note also that since all the computations the client can perform use only XOR gates
(and without the loss of generality, reversible), the client can compute �!x (a, b) given a, b. But then,
by the correctness of the protocol we have that

C2(a, b,
�!x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute the
NAND of any input using just XOR gates, which is not possible.

This argument is easily generalised to a setting with shared randomness and many rounds of com-
munication. It is easy to see that the randomness cannot help as the protocol must be deterministic
(hence work for any sampling of the joint random variable), whereas using multiple rounds (all of
which must be independent of the input) just yields a longer constant string (analogous to S(c))
using which the client can compute the NAND on her own, which is again impossible. ⇤

13

http://arxiv.org/abs/1405.4558
http://arxiv.org/abs/1405.4558

Restricted XOR Client

No classical protocol, with XOR client can securely delegate deterministic
computation of NAND to a server.

Dunjko, Kapourniotis, Kashefi, arXiv:1405.4558, 2014

Client’s encoding:

5 Impossibility Results

The main result of this section is to prove the optimality of our protocol. We first prove that it is
impossible to achieve the similar task of secure delegated computing of our protocols by removing
the quantum requirement. Next we show that in the quantum case, the quantum states must depend
on the input of the client as it is done in our protocols. This result also indicates that a quantum
o↵-line protocol could not be achieved.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can
delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no initial shared
randomness. Any such protocol will have the following three stages: client’s encoding, server’s
computation, and client’s decoding.

Client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
�!x), where

a, b are the input bits, �!x is a random bit string (of any length) and C1 is a computation which can
be implemented using only XOR gates. However, the state C1(a, b,

�!x) must be independent from
a and b to maintain blindness when averaged over all �!x .

Server’s computation. The only thing the server can do is to apply some computable function S on
C1(a, b,

�!x), thus returning S(C1(a, b,
�!x)).

Client’s decoding. The only thing the client can do is to run some function C2, on all the data he
has, which is implementable using XOR gates only:

C2(a, b,
�!x , S(C1(a, b,

�!x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a0, b0,
�!
x0) be some constant the client may send to the server. Then, because of blindness

it must hold that for all a, b there must exist �!x (a, b), which depends on a, b such that

C1(a, b,
�!x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a00 and b00, then upon
receiving c the server learns something about the input, namely that it is not a00, b00, which violates
blindness. Note also that since all the computations the client can perform use only XOR gates
(and without the loss of generality, reversible), the client can compute �!x (a, b) given a, b. But then,
by the correctness of the protocol we have that

C2(a, b,
�!x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute the
NAND of any input using just XOR gates, which is not possible.

This argument is easily generalised to a setting with shared randomness and many rounds of com-
munication. It is easy to see that the randomness cannot help as the protocol must be deterministic
(hence work for any sampling of the joint random variable), whereas using multiple rounds (all of
which must be independent of the input) just yields a longer constant string (analogous to S(c))
using which the client can compute the NAND on her own, which is again impossible. ⇤

13

input

random
XOR computable function independent of the input

http://arxiv.org/abs/1405.4558
http://arxiv.org/abs/1405.4558

Restricted XOR Client

No classical protocol, with XOR client can securely delegate deterministic
computation of NAND to a server.

Dunjko, Kapourniotis, Kashefi, arXiv:1405.4558, 2014

Client’s encoding:

5 Impossibility Results

The main result of this section is to prove the optimality of our protocol. We first prove that it is
impossible to achieve the similar task of secure delegated computing of our protocols by removing
the quantum requirement. Next we show that in the quantum case, the quantum states must depend
on the input of the client as it is done in our protocols. This result also indicates that a quantum
o↵-line protocol could not be achieved.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can
delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no initial shared
randomness. Any such protocol will have the following three stages: client’s encoding, server’s
computation, and client’s decoding.

Client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
�!x), where

a, b are the input bits, �!x is a random bit string (of any length) and C1 is a computation which can
be implemented using only XOR gates. However, the state C1(a, b,

�!x) must be independent from
a and b to maintain blindness when averaged over all �!x .

Server’s computation. The only thing the server can do is to apply some computable function S on
C1(a, b,

�!x), thus returning S(C1(a, b,
�!x)).

Client’s decoding. The only thing the client can do is to run some function C2, on all the data he
has, which is implementable using XOR gates only:

C2(a, b,
�!x , S(C1(a, b,

�!x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a0, b0,
�!
x0) be some constant the client may send to the server. Then, because of blindness

it must hold that for all a, b there must exist �!x (a, b), which depends on a, b such that

C1(a, b,
�!x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a00 and b00, then upon
receiving c the server learns something about the input, namely that it is not a00, b00, which violates
blindness. Note also that since all the computations the client can perform use only XOR gates
(and without the loss of generality, reversible), the client can compute �!x (a, b) given a, b. But then,
by the correctness of the protocol we have that

C2(a, b,
�!x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute the
NAND of any input using just XOR gates, which is not possible.

This argument is easily generalised to a setting with shared randomness and many rounds of com-
munication. It is easy to see that the randomness cannot help as the protocol must be deterministic
(hence work for any sampling of the joint random variable), whereas using multiple rounds (all of
which must be independent of the input) just yields a longer constant string (analogous to S(c))
using which the client can compute the NAND on her own, which is again impossible. ⇤

13

input

random
XOR computable function independent of the input

Server’s computation:

5 Impossibility Results

The main result of this section is to prove the optimality of our protocol. We first prove that it is
impossible to achieve the similar task of secure delegated computing of our protocols by removing
the quantum requirement. Next we show that in the quantum case, the quantum states must depend
on the input of the client as it is done in our protocols. This result also indicates that a quantum
o↵-line protocol could not be achieved.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can
delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no initial shared
randomness. Any such protocol will have the following three stages: client’s encoding, server’s
computation, and client’s decoding.

Client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
�!x), where

a, b are the input bits, �!x is a random bit string (of any length) and C1 is a computation which can
be implemented using only XOR gates. However, the state C1(a, b,

�!x) must be independent from
a and b to maintain blindness when averaged over all �!x .

Server’s computation. The only thing the server can do is to apply some computable function S on
C1(a, b,

�!x), thus returning S(C1(a, b,
�!x)).

Client’s decoding. The only thing the client can do is to run some function C2, on all the data he
has, which is implementable using XOR gates only:

C2(a, b,
�!x , S(C1(a, b,

�!x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a0, b0,
�!
x0) be some constant the client may send to the server. Then, because of blindness

it must hold that for all a, b there must exist �!x (a, b), which depends on a, b such that

C1(a, b,
�!x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a00 and b00, then upon
receiving c the server learns something about the input, namely that it is not a00, b00, which violates
blindness. Note also that since all the computations the client can perform use only XOR gates
(and without the loss of generality, reversible), the client can compute �!x (a, b) given a, b. But then,
by the correctness of the protocol we have that

C2(a, b,
�!x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute the
NAND of any input using just XOR gates, which is not possible.

This argument is easily generalised to a setting with shared randomness and many rounds of com-
munication. It is easy to see that the randomness cannot help as the protocol must be deterministic
(hence work for any sampling of the joint random variable), whereas using multiple rounds (all of
which must be independent of the input) just yields a longer constant string (analogous to S(c))
using which the client can compute the NAND on her own, which is again impossible. ⇤

13

http://arxiv.org/abs/1405.4558
http://arxiv.org/abs/1405.4558

Restricted XOR Client

No classical protocol, with XOR client can securely delegate deterministic
computation of NAND to a server.

Dunjko, Kapourniotis, Kashefi, arXiv:1405.4558, 2014

Client’s encoding:

5 Impossibility Results

The main result of this section is to prove the optimality of our protocol. We first prove that it is
impossible to achieve the similar task of secure delegated computing of our protocols by removing
the quantum requirement. Next we show that in the quantum case, the quantum states must depend
on the input of the client as it is done in our protocols. This result also indicates that a quantum
o↵-line protocol could not be achieved.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can
delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no initial shared
randomness. Any such protocol will have the following three stages: client’s encoding, server’s
computation, and client’s decoding.

Client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
�!x), where

a, b are the input bits, �!x is a random bit string (of any length) and C1 is a computation which can
be implemented using only XOR gates. However, the state C1(a, b,

�!x) must be independent from
a and b to maintain blindness when averaged over all �!x .

Server’s computation. The only thing the server can do is to apply some computable function S on
C1(a, b,

�!x), thus returning S(C1(a, b,
�!x)).

Client’s decoding. The only thing the client can do is to run some function C2, on all the data he
has, which is implementable using XOR gates only:

C2(a, b,
�!x , S(C1(a, b,

�!x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a0, b0,
�!
x0) be some constant the client may send to the server. Then, because of blindness

it must hold that for all a, b there must exist �!x (a, b), which depends on a, b such that

C1(a, b,
�!x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a00 and b00, then upon
receiving c the server learns something about the input, namely that it is not a00, b00, which violates
blindness. Note also that since all the computations the client can perform use only XOR gates
(and without the loss of generality, reversible), the client can compute �!x (a, b) given a, b. But then,
by the correctness of the protocol we have that

C2(a, b,
�!x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute the
NAND of any input using just XOR gates, which is not possible.

This argument is easily generalised to a setting with shared randomness and many rounds of com-
munication. It is easy to see that the randomness cannot help as the protocol must be deterministic
(hence work for any sampling of the joint random variable), whereas using multiple rounds (all of
which must be independent of the input) just yields a longer constant string (analogous to S(c))
using which the client can compute the NAND on her own, which is again impossible. ⇤

13

input

random
XOR computable function independent of the input

Server’s computation:

5 Impossibility Results

The main result of this section is to prove the optimality of our protocol. We first prove that it is
impossible to achieve the similar task of secure delegated computing of our protocols by removing
the quantum requirement. Next we show that in the quantum case, the quantum states must depend
on the input of the client as it is done in our protocols. This result also indicates that a quantum
o↵-line protocol could not be achieved.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can
delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no initial shared
randomness. Any such protocol will have the following three stages: client’s encoding, server’s
computation, and client’s decoding.

Client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
�!x), where

a, b are the input bits, �!x is a random bit string (of any length) and C1 is a computation which can
be implemented using only XOR gates. However, the state C1(a, b,

�!x) must be independent from
a and b to maintain blindness when averaged over all �!x .

Server’s computation. The only thing the server can do is to apply some computable function S on
C1(a, b,

�!x), thus returning S(C1(a, b,
�!x)).

Client’s decoding. The only thing the client can do is to run some function C2, on all the data he
has, which is implementable using XOR gates only:

C2(a, b,
�!x , S(C1(a, b,

�!x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a0, b0,
�!
x0) be some constant the client may send to the server. Then, because of blindness

it must hold that for all a, b there must exist �!x (a, b), which depends on a, b such that

C1(a, b,
�!x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a00 and b00, then upon
receiving c the server learns something about the input, namely that it is not a00, b00, which violates
blindness. Note also that since all the computations the client can perform use only XOR gates
(and without the loss of generality, reversible), the client can compute �!x (a, b) given a, b. But then,
by the correctness of the protocol we have that

C2(a, b,
�!x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute the
NAND of any input using just XOR gates, which is not possible.

This argument is easily generalised to a setting with shared randomness and many rounds of com-
munication. It is easy to see that the randomness cannot help as the protocol must be deterministic
(hence work for any sampling of the joint random variable), whereas using multiple rounds (all of
which must be independent of the input) just yields a longer constant string (analogous to S(c))
using which the client can compute the NAND on her own, which is again impossible. ⇤

13

Client’s decoding:

5 Impossibility Results

The main result of this section is to prove the optimality of our protocol. We first prove that it is
impossible to achieve the similar task of secure delegated computing of our protocols by removing
the quantum requirement. Next we show that in the quantum case, the quantum states must depend
on the input of the client as it is done in our protocols. This result also indicates that a quantum
o↵-line protocol could not be achieved.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can
delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no initial shared
randomness. Any such protocol will have the following three stages: client’s encoding, server’s
computation, and client’s decoding.

Client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
�!x), where

a, b are the input bits, �!x is a random bit string (of any length) and C1 is a computation which can
be implemented using only XOR gates. However, the state C1(a, b,

�!x) must be independent from
a and b to maintain blindness when averaged over all �!x .

Server’s computation. The only thing the server can do is to apply some computable function S on
C1(a, b,

�!x), thus returning S(C1(a, b,
�!x)).

Client’s decoding. The only thing the client can do is to run some function C2, on all the data he
has, which is implementable using XOR gates only:

C2(a, b,
�!x , S(C1(a, b,

�!x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a0, b0,
�!
x0) be some constant the client may send to the server. Then, because of blindness

it must hold that for all a, b there must exist �!x (a, b), which depends on a, b such that

C1(a, b,
�!x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a00 and b00, then upon
receiving c the server learns something about the input, namely that it is not a00, b00, which violates
blindness. Note also that since all the computations the client can perform use only XOR gates
(and without the loss of generality, reversible), the client can compute �!x (a, b) given a, b. But then,
by the correctness of the protocol we have that

C2(a, b,
�!x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute the
NAND of any input using just XOR gates, which is not possible.

This argument is easily generalised to a setting with shared randomness and many rounds of com-
munication. It is easy to see that the randomness cannot help as the protocol must be deterministic
(hence work for any sampling of the joint random variable), whereas using multiple rounds (all of
which must be independent of the input) just yields a longer constant string (analogous to S(c))
using which the client can compute the NAND on her own, which is again impossible. ⇤

13

XOR computable function

http://arxiv.org/abs/1405.4558
http://arxiv.org/abs/1405.4558

Restricted XOR Client

No classical protocol, with XOR client can securely delegate deterministic
computation of NAND to a server.

Dunjko, Kapourniotis, Kashefi, arXiv:1405.4558, 2014

Client’s encoding:

5 Impossibility Results

The main result of this section is to prove the optimality of our protocol. We first prove that it is
impossible to achieve the similar task of secure delegated computing of our protocols by removing
the quantum requirement. Next we show that in the quantum case, the quantum states must depend
on the input of the client as it is done in our protocols. This result also indicates that a quantum
o↵-line protocol could not be achieved.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can
delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no initial shared
randomness. Any such protocol will have the following three stages: client’s encoding, server’s
computation, and client’s decoding.

Client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
�!x), where

a, b are the input bits, �!x is a random bit string (of any length) and C1 is a computation which can
be implemented using only XOR gates. However, the state C1(a, b,

�!x) must be independent from
a and b to maintain blindness when averaged over all �!x .

Server’s computation. The only thing the server can do is to apply some computable function S on
C1(a, b,

�!x), thus returning S(C1(a, b,
�!x)).

Client’s decoding. The only thing the client can do is to run some function C2, on all the data he
has, which is implementable using XOR gates only:

C2(a, b,
�!x , S(C1(a, b,

�!x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a0, b0,
�!
x0) be some constant the client may send to the server. Then, because of blindness

it must hold that for all a, b there must exist �!x (a, b), which depends on a, b such that

C1(a, b,
�!x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a00 and b00, then upon
receiving c the server learns something about the input, namely that it is not a00, b00, which violates
blindness. Note also that since all the computations the client can perform use only XOR gates
(and without the loss of generality, reversible), the client can compute �!x (a, b) given a, b. But then,
by the correctness of the protocol we have that

C2(a, b,
�!x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute the
NAND of any input using just XOR gates, which is not possible.

This argument is easily generalised to a setting with shared randomness and many rounds of com-
munication. It is easy to see that the randomness cannot help as the protocol must be deterministic
(hence work for any sampling of the joint random variable), whereas using multiple rounds (all of
which must be independent of the input) just yields a longer constant string (analogous to S(c))
using which the client can compute the NAND on her own, which is again impossible. ⇤

13

input

random
XOR computable function independent of the input

Server’s computation:

5 Impossibility Results

The main result of this section is to prove the optimality of our protocol. We first prove that it is
impossible to achieve the similar task of secure delegated computing of our protocols by removing
the quantum requirement. Next we show that in the quantum case, the quantum states must depend
on the input of the client as it is done in our protocols. This result also indicates that a quantum
o↵-line protocol could not be achieved.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can
delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no initial shared
randomness. Any such protocol will have the following three stages: client’s encoding, server’s
computation, and client’s decoding.

Client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
�!x), where

a, b are the input bits, �!x is a random bit string (of any length) and C1 is a computation which can
be implemented using only XOR gates. However, the state C1(a, b,

�!x) must be independent from
a and b to maintain blindness when averaged over all �!x .

Server’s computation. The only thing the server can do is to apply some computable function S on
C1(a, b,

�!x), thus returning S(C1(a, b,
�!x)).

Client’s decoding. The only thing the client can do is to run some function C2, on all the data he
has, which is implementable using XOR gates only:

C2(a, b,
�!x , S(C1(a, b,

�!x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a0, b0,
�!
x0) be some constant the client may send to the server. Then, because of blindness

it must hold that for all a, b there must exist �!x (a, b), which depends on a, b such that

C1(a, b,
�!x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a00 and b00, then upon
receiving c the server learns something about the input, namely that it is not a00, b00, which violates
blindness. Note also that since all the computations the client can perform use only XOR gates
(and without the loss of generality, reversible), the client can compute �!x (a, b) given a, b. But then,
by the correctness of the protocol we have that

C2(a, b,
�!x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute the
NAND of any input using just XOR gates, which is not possible.

This argument is easily generalised to a setting with shared randomness and many rounds of com-
munication. It is easy to see that the randomness cannot help as the protocol must be deterministic
(hence work for any sampling of the joint random variable), whereas using multiple rounds (all of
which must be independent of the input) just yields a longer constant string (analogous to S(c))
using which the client can compute the NAND on her own, which is again impossible. ⇤

13

Client’s decoding:

5 Impossibility Results

The main result of this section is to prove the optimality of our protocol. We first prove that it is
impossible to achieve the similar task of secure delegated computing of our protocols by removing
the quantum requirement. Next we show that in the quantum case, the quantum states must depend
on the input of the client as it is done in our protocols. This result also indicates that a quantum
o↵-line protocol could not be achieved.

Theorem 1. No classical protocol, in which the client is restricted to XOR computations can
delegate deterministically computation of NAND to a server while keeping the blindness.

Proof. We prove this result first for the case of two rounds of communication, and no initial shared
randomness. Any such protocol will have the following three stages: client’s encoding, server’s
computation, and client’s decoding.

Client’s encoding. In this stage, the only thing the client can do is to compute C1(a, b,
�!x), where

a, b are the input bits, �!x is a random bit string (of any length) and C1 is a computation which can
be implemented using only XOR gates. However, the state C1(a, b,

�!x) must be independent from
a and b to maintain blindness when averaged over all �!x .

Server’s computation. The only thing the server can do is to apply some computable function S on
C1(a, b,

�!x), thus returning S(C1(a, b,
�!x)).

Client’s decoding. The only thing the client can do is to run some function C2, on all the data he
has, which is implementable using XOR gates only:

C2(a, b,
�!x , S(C1(a, b,

�!x))) = NAND(a, b) (correctness)

and the output must (deterministically) be the NAND of the inputs.

Let c = C1(a0, b0,
�!
x0) be some constant the client may send to the server. Then, because of blindness

it must hold that for all a, b there must exist �!x (a, b), which depends on a, b such that

C1(a, b,
�!x (a, b)) = c.

To see this, note that if the client could send c, but not for some inputs a00 and b00, then upon
receiving c the server learns something about the input, namely that it is not a00, b00, which violates
blindness. Note also that since all the computations the client can perform use only XOR gates
(and without the loss of generality, reversible), the client can compute �!x (a, b) given a, b. But then,
by the correctness of the protocol we have that

C2(a, b,
�!x (a, b), S(c)) = NAND(a, b) (correctness).

But S(c) is constant as well. This implies that given a fixed string S(c) the client can compute the
NAND of any input using just XOR gates, which is not possible.

This argument is easily generalised to a setting with shared randomness and many rounds of com-
munication. It is easy to see that the randomness cannot help as the protocol must be deterministic
(hence work for any sampling of the joint random variable), whereas using multiple rounds (all of
which must be independent of the input) just yields a longer constant string (analogous to S(c))
using which the client can compute the NAND on her own, which is again impossible. ⇤

13

XOR computable function
Constant

http://arxiv.org/abs/1405.4558
http://arxiv.org/abs/1405.4558

Quantum Communication

Protocol 4 Single Qubit Bounce SecureNAND

• Input (to Client): two bits a, b
• Output (from Client): ¬(a ^ b)
• The Protocol:

– Server’s round
1. The Server prepares the state |+i and sends it to the Client

– Client’s round
1. Client receives the state |+i from the server.
2. Client generates r 2R {0, 1}
3. Client modifies the state |+i to | i as follows

| i = ZrSaSb

�
S†�a�b|+i

and sends it to the Server.
– Server’s round

1. The server measures the qubit with respect to the X basis, obtaining the outcome s
2. Server sends s to Client

– Client’s round
1. Client computes

out = s� r � 1 (7)

2. Client outputs out.

For completeness we only analyse the Single Qubit Bounce SecureNAND protocol (Protocol 4).
Server generates a single qubit state and sends it via an untrusted quantum channel to the client.
Client applies a series of rotation quantum operators depending on the values of the inputs a, b,
a � b, and a classical random bit. Client sends the rotated qubit to sever via untrusted quantum
channel. Sever applies a Pauli-X measurement on the qubit and sends the classical result to the
client via an untrusted classical channel. Client produces the final output by applying classical
XOR gates between the received classical bit, a classical bit in state 1 and the random bit (Figure
6 in Appendix A). To see the correctness note that if the server was honest, it is a straightforward
calculation to see the state of the qubit the server receives is

ZrZa^b|+i

Then the result of the measurement performed by the server is s = r � a ^ b, and the decoding
produces out = 1� a ^ b as required.

To see the security, note that the most general strategy of the server is to prepare a bipartite
state ⇡1,2 and send the first subsystem to the client. Then the state of the server system (up to a
normalization factor 1/2), once the client performed her round is:

P
r

�
ZrZa^b ⌦ 2

�
⇡1,2

�
ZrZa^b ⌦ 2

�
=

P
r

0

⇣
Zr

0 ⌦ 2

⌘
⇡1,2

⇣
Zr

0 ⌦ 2

⌘

where r0 = r � a ^ b. Since r is distributed uniformly at random, so is r0 so the state above does
not depend on a or b.

12

Protocol 4 Single Qubit Bounce SecureNAND

• Input (to Client): two bits a, b
• Output (from Client): ¬(a ^ b)
• The Protocol:

– Server’s round
1. The Server prepares the state |+i and sends it to the Client

– Client’s round
1. Client receives the state |+i from the server.
2. Client generates r 2R {0, 1}
3. Client modifies the state |+i to | i as follows

| i = ZrSaSb

�
S†�a�b|+i

and sends it to the Server.
– Server’s round

1. The server measures the qubit with respect to the X basis, obtaining the outcome s
2. Server sends s to Client

– Client’s round
1. Client computes

out = s� r � 1 (7)

2. Client outputs out.

For completeness we only analyse the Single Qubit Bounce SecureNAND protocol (Protocol 4).
Server generates a single qubit state and sends it via an untrusted quantum channel to the client.
Client applies a series of rotation quantum operators depending on the values of the inputs a, b,
a � b, and a classical random bit. Client sends the rotated qubit to sever via untrusted quantum
channel. Sever applies a Pauli-X measurement on the qubit and sends the classical result to the
client via an untrusted classical channel. Client produces the final output by applying classical
XOR gates between the received classical bit, a classical bit in state 1 and the random bit (Figure
6 in Appendix A). To see the correctness note that if the server was honest, it is a straightforward
calculation to see the state of the qubit the server receives is

ZrZa^b|+i

Then the result of the measurement performed by the server is s = r � a ^ b, and the decoding
produces out = 1� a ^ b as required.

To see the security, note that the most general strategy of the server is to prepare a bipartite
state ⇡1,2 and send the first subsystem to the client. Then the state of the server system (up to a
normalization factor 1/2), once the client performed her round is:

P
r

�
ZrZa^b ⌦ 2

�
⇡1,2

�
ZrZa^b ⌦ 2

�
=

P
r

0

⇣
Zr

0 ⌦ 2

⌘
⇡1,2

⇣
Zr

0 ⌦ 2

⌘

where r0 = r � a ^ b. Since r is distributed uniformly at random, so is r0 so the state above does
not depend on a or b.

12

=

Quantum Communication

Protocol 4 Single Qubit Bounce SecureNAND

• Input (to Client): two bits a, b
• Output (from Client): ¬(a ^ b)
• The Protocol:

– Server’s round
1. The Server prepares the state |+i and sends it to the Client

– Client’s round
1. Client receives the state |+i from the server.
2. Client generates r 2R {0, 1}
3. Client modifies the state |+i to | i as follows

| i = ZrSaSb

�
S†�a�b|+i

and sends it to the Server.
– Server’s round

1. The server measures the qubit with respect to the X basis, obtaining the outcome s
2. Server sends s to Client

– Client’s round
1. Client computes

out = s� r � 1 (7)

2. Client outputs out.

For completeness we only analyse the Single Qubit Bounce SecureNAND protocol (Protocol 4).
Server generates a single qubit state and sends it via an untrusted quantum channel to the client.
Client applies a series of rotation quantum operators depending on the values of the inputs a, b,
a � b, and a classical random bit. Client sends the rotated qubit to sever via untrusted quantum
channel. Sever applies a Pauli-X measurement on the qubit and sends the classical result to the
client via an untrusted classical channel. Client produces the final output by applying classical
XOR gates between the received classical bit, a classical bit in state 1 and the random bit (Figure
6 in Appendix A). To see the correctness note that if the server was honest, it is a straightforward
calculation to see the state of the qubit the server receives is

ZrZa^b|+i

Then the result of the measurement performed by the server is s = r � a ^ b, and the decoding
produces out = 1� a ^ b as required.

To see the security, note that the most general strategy of the server is to prepare a bipartite
state ⇡1,2 and send the first subsystem to the client. Then the state of the server system (up to a
normalization factor 1/2), once the client performed her round is:

P
r

�
ZrZa^b ⌦ 2

�
⇡1,2

�
ZrZa^b ⌦ 2

�
=

P
r

0

⇣
Zr

0 ⌦ 2

⌘
⇡1,2

⇣
Zr

0 ⌦ 2

⌘

where r0 = r � a ^ b. Since r is distributed uniformly at random, so is r0 so the state above does
not depend on a or b.

12

Protocol 4 Single Qubit Bounce SecureNAND

• Input (to Client): two bits a, b
• Output (from Client): ¬(a ^ b)
• The Protocol:

– Server’s round
1. The Server prepares the state |+i and sends it to the Client

– Client’s round
1. Client receives the state |+i from the server.
2. Client generates r 2R {0, 1}
3. Client modifies the state |+i to | i as follows

| i = ZrSaSb

�
S†�a�b|+i

and sends it to the Server.
– Server’s round

1. The server measures the qubit with respect to the X basis, obtaining the outcome s
2. Server sends s to Client

– Client’s round
1. Client computes

out = s� r � 1 (7)

2. Client outputs out.

For completeness we only analyse the Single Qubit Bounce SecureNAND protocol (Protocol 4).
Server generates a single qubit state and sends it via an untrusted quantum channel to the client.
Client applies a series of rotation quantum operators depending on the values of the inputs a, b,
a � b, and a classical random bit. Client sends the rotated qubit to sever via untrusted quantum
channel. Sever applies a Pauli-X measurement on the qubit and sends the classical result to the
client via an untrusted classical channel. Client produces the final output by applying classical
XOR gates between the received classical bit, a classical bit in state 1 and the random bit (Figure
6 in Appendix A). To see the correctness note that if the server was honest, it is a straightforward
calculation to see the state of the qubit the server receives is

ZrZa^b|+i

Then the result of the measurement performed by the server is s = r � a ^ b, and the decoding
produces out = 1� a ^ b as required.

To see the security, note that the most general strategy of the server is to prepare a bipartite
state ⇡1,2 and send the first subsystem to the client. Then the state of the server system (up to a
normalization factor 1/2), once the client performed her round is:

P
r

�
ZrZa^b ⌦ 2

�
⇡1,2

�
ZrZa^b ⌦ 2

�
=

P
r

0

⇣
Zr

0 ⌦ 2

⌘
⇡1,2

⇣
Zr

0 ⌦ 2

⌘

where r0 = r � a ^ b. Since r is distributed uniformly at random, so is r0 so the state above does
not depend on a or b.

12

=

✓
1 0
0 eib⇡/2

◆✓
1 0
0 eia⇡/2

◆✓
1 0
0 e�i(a�b)⇡/2

◆✓
1
�1

◆
=

✓
1 0
0 e�i(a^b)⇡

◆✓
1
�1

◆

1

Quantum Communication

Quantum Communication

a

b

(ab)

S.Q.G.

XOR R.G

S† M

Client Server

6. Single-Qubit Bounce SecureNAND

S S† Z

XOR

XOR
1

Rx Txq.c.

RxTx q.c.

Rx Txc.c.

OpIn Out

Control

Figure 6: Server generates a single qubit state and sends it via an untrusted
quantum channel to the client. Client applies a series of rotation quantum
operators depending on the values of the inputs a, b, their classical XOR and a
classical random bit. Client sends the rotated qubit to sever via untrusted
quantum channel. Sever applies a Pauli-X measurement on the qubit and
sends the classical result to the client via an untrusted classical channel. Client
produces the final output by applying classical XOR gates between the
received classical bit, a classical bit in state 1 and the random bit.

Key:
S.Q.G.: Single Qubit Generator

S, S
†
, Z: (π/2, -π/2, π) – phase rotation quantum Operators or Identity quantum

operator depending on classical Control

R.G: Classical bits Random Generator
Tx: Transmiter
Rx: Receiver
q.c: quantum channel
c.c: classical channel
M: Quantum Measurement on Pauli-X
XOR: eXlusive OR classical gate

How to become millionaire

How to become millionaire

A hybrid network of LWE-based FHE with UBQC gadgets

boosting efficiency and security

of classical delegated computing against quantum attackers

LWE problem

LWE problem

2. We present a dimension-modulus reduction technique, that turns our somewhat homomorphic
scheme into a fully homomorphic one, without the need for the artificial squashing step and
the sparse subset-sum assumption.

We provide a detailed overview of these new techniques in Sections 1.1, 1.2 below.
Interestingly, the ciphertexts of the resulting fully homomorphic scheme are very short. This is

a desirable property which we use, in conjunction with other techniques, to achieve very e�cient
private information retrieval protocols. See also Section 1.3 below.

1.1 Re-Linearization: Somewhat Homomorphic Encryption without Ideals

The starting point of Gentry’s construction is a “somewhat” homomorphic encryption scheme. For
a class of circuits C, a C-homomorphic scheme is one that allows evaluation of any circuit in the
class C. The simple, yet striking, observation in Gentry’s work is that if a (slightly augmented)
decryption circuit for a C-homomorphic scheme resides in C, then the scheme can be converted (or
“bootstrapped”) into a fully homomorphic encryption scheme.

It turns out that encryption schemes that can evaluate a non-trivial number of addition and
multiplication operations3 are already quite hard to come by (even without requiring that they are
bootstrappable).4 Gentry’s solution to this was based on the algebraic notion of ideals in rings.
In a very high level, the message is considered to be a ring element, and the ciphertext is the
message masked with some “noise”. The novelty of this idea is that the noise itself belonged to
an ideal I. Thus, the ciphertext is of the form m + xI (for some x in the ring). Observe right
o↵ the bat that the scheme is born additively homomorphic; in fact, that will be the case with
all the schemes we consider in this paper. The ideal I has two main properties: first, a random
element in the ideal is assumed to “mask” the message; and second, it is possible to generate a
secret trapdoor that “annihilates” the ideal, i.e., implementing the transformation m + xI ! m.
The first property guarantees security, while the second enables multiplying ciphertexts. Letting
c
1

and c
2

be encryptions of m
1

and m
2

respectively,

c
1

c
2

= (m
1

+ xI)(m
2

+ yI) = m
1

m
2

+ (m
1

y +m
2

x+ xyI)I = m
1

m
2

+ zI

When decrypting, the ideal is annihilated and the product m
1

m
2

survives. Thus, c
1

c
2

is indeed an
encryption of m

1

m
2

, as required. This nifty solution required, as per the first property, a hardness
assumption on ideals in certain rings. Gentry’s original work relied on hardness assumptions on
ideal lattices, while van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10] presented a di↵erent
instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the hardness of the “learning with errors”
(LWE) problem, first presented by Regev [Reg05]. The LWE assumption states that if s 2 Zn

q is an
n dimensional “secret” vector, any polynomial number of “noisy” random linear combinations of
the coe�cients of s are computationally indistinguishable from uniformly random elements in Zq.
Mathematically,

�

ai, hai, si+ ei

poly(n)
i=1

c⇡
�

ai, ui

poly(n)
i=1

,

3All known scheme, including ours, treat evaluated functions as arithmetic circuits. Hence we use the terminology
of “addition and multiplication” gates. The conversion to the boolean model (AND, OR, NOT gates) is immediate.

4We must mention here that we are interested only in compact fully homomorphic encryption schemes, namely
ones where the ciphertexts do not grow in size with each homomorphic operation. If we do allow such growth in size,
a number of solutions are possible. See, e.g., [SYY99, GHV10a, MGH10].

2

LWE problem

2. We present a dimension-modulus reduction technique, that turns our somewhat homomorphic
scheme into a fully homomorphic one, without the need for the artificial squashing step and
the sparse subset-sum assumption.

We provide a detailed overview of these new techniques in Sections 1.1, 1.2 below.
Interestingly, the ciphertexts of the resulting fully homomorphic scheme are very short. This is

a desirable property which we use, in conjunction with other techniques, to achieve very e�cient
private information retrieval protocols. See also Section 1.3 below.

1.1 Re-Linearization: Somewhat Homomorphic Encryption without Ideals

The starting point of Gentry’s construction is a “somewhat” homomorphic encryption scheme. For
a class of circuits C, a C-homomorphic scheme is one that allows evaluation of any circuit in the
class C. The simple, yet striking, observation in Gentry’s work is that if a (slightly augmented)
decryption circuit for a C-homomorphic scheme resides in C, then the scheme can be converted (or
“bootstrapped”) into a fully homomorphic encryption scheme.

It turns out that encryption schemes that can evaluate a non-trivial number of addition and
multiplication operations3 are already quite hard to come by (even without requiring that they are
bootstrappable).4 Gentry’s solution to this was based on the algebraic notion of ideals in rings.
In a very high level, the message is considered to be a ring element, and the ciphertext is the
message masked with some “noise”. The novelty of this idea is that the noise itself belonged to
an ideal I. Thus, the ciphertext is of the form m + xI (for some x in the ring). Observe right
o↵ the bat that the scheme is born additively homomorphic; in fact, that will be the case with
all the schemes we consider in this paper. The ideal I has two main properties: first, a random
element in the ideal is assumed to “mask” the message; and second, it is possible to generate a
secret trapdoor that “annihilates” the ideal, i.e., implementing the transformation m + xI ! m.
The first property guarantees security, while the second enables multiplying ciphertexts. Letting
c
1

and c
2

be encryptions of m
1

and m
2

respectively,

c
1

c
2

= (m
1

+ xI)(m
2

+ yI) = m
1

m
2

+ (m
1

y +m
2

x+ xyI)I = m
1

m
2

+ zI

When decrypting, the ideal is annihilated and the product m
1

m
2

survives. Thus, c
1

c
2

is indeed an
encryption of m

1

m
2

, as required. This nifty solution required, as per the first property, a hardness
assumption on ideals in certain rings. Gentry’s original work relied on hardness assumptions on
ideal lattices, while van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10] presented a di↵erent
instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the hardness of the “learning with errors”
(LWE) problem, first presented by Regev [Reg05]. The LWE assumption states that if s 2 Zn

q is an
n dimensional “secret” vector, any polynomial number of “noisy” random linear combinations of
the coe�cients of s are computationally indistinguishable from uniformly random elements in Zq.
Mathematically,

�

ai, hai, si+ ei

poly(n)
i=1

c⇡
�

ai, ui

poly(n)
i=1

,

3All known scheme, including ours, treat evaluated functions as arithmetic circuits. Hence we use the terminology
of “addition and multiplication” gates. The conversion to the boolean model (AND, OR, NOT gates) is immediate.

4We must mention here that we are interested only in compact fully homomorphic encryption schemes, namely
ones where the ciphertexts do not grow in size with each homomorphic operation. If we do allow such growth in size,
a number of solutions are possible. See, e.g., [SYY99, GHV10a, MGH10].

2

2. We present a dimension-modulus reduction technique, that turns our somewhat homomorphic
scheme into a fully homomorphic one, without the need for the artificial squashing step and
the sparse subset-sum assumption.

We provide a detailed overview of these new techniques in Sections 1.1, 1.2 below.
Interestingly, the ciphertexts of the resulting fully homomorphic scheme are very short. This is

a desirable property which we use, in conjunction with other techniques, to achieve very e�cient
private information retrieval protocols. See also Section 1.3 below.

1.1 Re-Linearization: Somewhat Homomorphic Encryption without Ideals

The starting point of Gentry’s construction is a “somewhat” homomorphic encryption scheme. For
a class of circuits C, a C-homomorphic scheme is one that allows evaluation of any circuit in the
class C. The simple, yet striking, observation in Gentry’s work is that if a (slightly augmented)
decryption circuit for a C-homomorphic scheme resides in C, then the scheme can be converted (or
“bootstrapped”) into a fully homomorphic encryption scheme.

It turns out that encryption schemes that can evaluate a non-trivial number of addition and
multiplication operations3 are already quite hard to come by (even without requiring that they are
bootstrappable).4 Gentry’s solution to this was based on the algebraic notion of ideals in rings.
In a very high level, the message is considered to be a ring element, and the ciphertext is the
message masked with some “noise”. The novelty of this idea is that the noise itself belonged to
an ideal I. Thus, the ciphertext is of the form m + xI (for some x in the ring). Observe right
o↵ the bat that the scheme is born additively homomorphic; in fact, that will be the case with
all the schemes we consider in this paper. The ideal I has two main properties: first, a random
element in the ideal is assumed to “mask” the message; and second, it is possible to generate a
secret trapdoor that “annihilates” the ideal, i.e., implementing the transformation m + xI ! m.
The first property guarantees security, while the second enables multiplying ciphertexts. Letting
c
1

and c
2

be encryptions of m
1

and m
2

respectively,

c
1

c
2

= (m
1

+ xI)(m
2

+ yI) = m
1

m
2

+ (m
1

y +m
2

x+ xyI)I = m
1

m
2

+ zI

When decrypting, the ideal is annihilated and the product m
1

m
2

survives. Thus, c
1

c
2

is indeed an
encryption of m

1

m
2

, as required. This nifty solution required, as per the first property, a hardness
assumption on ideals in certain rings. Gentry’s original work relied on hardness assumptions on
ideal lattices, while van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10] presented a di↵erent
instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the hardness of the “learning with errors”
(LWE) problem, first presented by Regev [Reg05]. The LWE assumption states that if s 2 Zn

q is an
n dimensional “secret” vector, any polynomial number of “noisy” random linear combinations of
the coe�cients of s are computationally indistinguishable from uniformly random elements in Zq.
Mathematically,

�

ai, hai, si+ ei

poly(n)
i=1

c⇡
�

ai, ui

poly(n)
i=1

,

3All known scheme, including ours, treat evaluated functions as arithmetic circuits. Hence we use the terminology
of “addition and multiplication” gates. The conversion to the boolean model (AND, OR, NOT gates) is immediate.

4We must mention here that we are interested only in compact fully homomorphic encryption schemes, namely
ones where the ciphertexts do not grow in size with each homomorphic operation. If we do allow such growth in size,
a number of solutions are possible. See, e.g., [SYY99, GHV10a, MGH10].

2

secret noisewhere ai 2 Zn
q and ui 2 Zq are uniformly random, and the “noise” ei is sampled from a noise distri-

bution that outputs numbers much smaller than q (an example is a discrete Gaussian distribution
over Zq with small standard deviation).

The LWE assumption does not refer to ideals, and indeed, the LWE problem is at least as hard
as finding short vectors in any lattice, as follows from the worst-case to average-case reductions of
Regev [Reg05] and Peikert [Pei09]. As mentioned earlier, we have a much better understanding of
the complexity of lattice problems (thanks to [LLL82, Ajt98, Mic00] and many others), compared
to the corresponding problems on ideal lattices. In particular, despite considerable e↵ort, the best
known algorithms to solve the LWE problem run in time nearly exponential in the dimension n.5 The
LWE assumption also turns out to be particularly amenable to the construction of simple, e�cient
and highly expressive cryptographic schemes (e.g., [Reg05, GPV08, AGV09, ACPS09, CHKP10,
ABB10] and many others). Our construction of a fully homomorphic encryption scheme from LWE
is perhaps a very strong testament to its power and elegance.

Constructing a (secret-key) encryption scheme whose security is based on the LWE assumption
is rather straightforward. To encrypt a bit m 2 {0, 1} using secret key s 2 Zn

q , we choose a random
vector a 2 Zn

q and a “noise” e and output the ciphertext

c = (a, b = ha, si+ 2e+m) 2 Zn
q ⇥ Zq

The key observation in decryption is that the two “masks” – namely, the secret mask ha, si and
the “even mask” 2e – do not interfere with each other.6 That is, one can decrypt this ciphertext
by annihilating the two masks, one after the other: The decryption algorithm first re-computes
the mask ha, si and subtracts it from b, resulting in 2e + m (mod q). Since e ⌧ q, then 2e + m
(mod q) = 2e+m. Removing the even mask is now easy – simply compute 2e+m modulo 2.7

As we will see below, the scheme is naturally additive homomorphic, yet multiplication presents
a thorny problem. In fact, a recent work of Gentry, Halevi and Vaikuntanathan [GHV10b] showed
that (a slight variant of) this scheme supports just a single homomorphic multiplication, but at the
expense of a huge blowup to the ciphertext which made further advance impossible.

To better understand the homomorphic properties of this scheme, let us shift our focus away
from the encryption algorithm, on to the decryption algorithm. Given a ciphertext (a, b), consider
the symbolic linear function fa,b : Zn

q ! Zq defined as:

fa,b(x) = b� ha,xi (mod q) = b�
n
X

i=1

a[i] · x[i] 2 Zq

where x = (x[1], . . . ,x[n]) denotes the variables, and (a, b) forms the public coe�cients of the linear
equation. Clearly, decryption of the ciphertext (a, b) is nothing but evaluating this function on the
secret key s (and then taking the result modulo 2).8

5The nearly exponential time is for a large enough error (i.e., one that is a 1/poly(n) fraction of the modulus q).
For smaller errors, as we will encounter in our scheme, there are better – but not significantly better – algorithms.

In particular, if the error is a 1/2n
✏
fraction of the modulus q, the best known algorithm runs in time approx. 2n

1�✏
.

6We remark that using 2e instead of e as in the original formulation of LWE does not adversely impact security,
so long as q is odd (since in that case 2 is a unit in Zq).

7Although the simplified presentation of Gentry’s scheme above seems to deal with just one mask (the “secret
mask”), in reality, the additional “even mask” existed in the schemes of [Gen09b, DGHV10] as well. Roughly speaking,
they needed this to ensure semantic security, as we do.

8The observation that an LWE-based ciphertext can be interpreted as a linear equation of the secret was also used
in [BV11].

3

where ai 2 Zn
q and ui 2 Zq are uniformly random, and the “noise” ei is sampled from a noise distri-

bution that outputs numbers much smaller than q (an example is a discrete Gaussian distribution
over Zq with small standard deviation).

The LWE assumption does not refer to ideals, and indeed, the LWE problem is at least as hard
as finding short vectors in any lattice, as follows from the worst-case to average-case reductions of
Regev [Reg05] and Peikert [Pei09]. As mentioned earlier, we have a much better understanding of
the complexity of lattice problems (thanks to [LLL82, Ajt98, Mic00] and many others), compared
to the corresponding problems on ideal lattices. In particular, despite considerable e↵ort, the best
known algorithms to solve the LWE problem run in time nearly exponential in the dimension n.5 The
LWE assumption also turns out to be particularly amenable to the construction of simple, e�cient
and highly expressive cryptographic schemes (e.g., [Reg05, GPV08, AGV09, ACPS09, CHKP10,
ABB10] and many others). Our construction of a fully homomorphic encryption scheme from LWE
is perhaps a very strong testament to its power and elegance.

Constructing a (secret-key) encryption scheme whose security is based on the LWE assumption
is rather straightforward. To encrypt a bit m 2 {0, 1} using secret key s 2 Zn

q , we choose a random
vector a 2 Zn

q and a “noise” e and output the ciphertext

c = (a, b = ha, si+ 2e+m) 2 Zn
q ⇥ Zq

The key observation in decryption is that the two “masks” – namely, the secret mask ha, si and
the “even mask” 2e – do not interfere with each other.6 That is, one can decrypt this ciphertext
by annihilating the two masks, one after the other: The decryption algorithm first re-computes
the mask ha, si and subtracts it from b, resulting in 2e + m (mod q). Since e ⌧ q, then 2e + m
(mod q) = 2e+m. Removing the even mask is now easy – simply compute 2e+m modulo 2.7

As we will see below, the scheme is naturally additive homomorphic, yet multiplication presents
a thorny problem. In fact, a recent work of Gentry, Halevi and Vaikuntanathan [GHV10b] showed
that (a slight variant of) this scheme supports just a single homomorphic multiplication, but at the
expense of a huge blowup to the ciphertext which made further advance impossible.

To better understand the homomorphic properties of this scheme, let us shift our focus away
from the encryption algorithm, on to the decryption algorithm. Given a ciphertext (a, b), consider
the symbolic linear function fa,b : Zn

q ! Zq defined as:

fa,b(x) = b� ha,xi (mod q) = b�
n
X

i=1

a[i] · x[i] 2 Zq

where x = (x[1], . . . ,x[n]) denotes the variables, and (a, b) forms the public coe�cients of the linear
equation. Clearly, decryption of the ciphertext (a, b) is nothing but evaluating this function on the
secret key s (and then taking the result modulo 2).8

5The nearly exponential time is for a large enough error (i.e., one that is a 1/poly(n) fraction of the modulus q).
For smaller errors, as we will encounter in our scheme, there are better – but not significantly better – algorithms.

In particular, if the error is a 1/2n
✏
fraction of the modulus q, the best known algorithm runs in time approx. 2n

1�✏
.

6We remark that using 2e instead of e as in the original formulation of LWE does not adversely impact security,
so long as q is odd (since in that case 2 is a unit in Zq).

7Although the simplified presentation of Gentry’s scheme above seems to deal with just one mask (the “secret
mask”), in reality, the additional “even mask” existed in the schemes of [Gen09b, DGHV10] as well. Roughly speaking,
they needed this to ensure semantic security, as we do.

8The observation that an LWE-based ciphertext can be interpreted as a linear equation of the secret was also used
in [BV11].

3

uniformly random

LWE problem

2. We present a dimension-modulus reduction technique, that turns our somewhat homomorphic
scheme into a fully homomorphic one, without the need for the artificial squashing step and
the sparse subset-sum assumption.

We provide a detailed overview of these new techniques in Sections 1.1, 1.2 below.
Interestingly, the ciphertexts of the resulting fully homomorphic scheme are very short. This is

a desirable property which we use, in conjunction with other techniques, to achieve very e�cient
private information retrieval protocols. See also Section 1.3 below.

1.1 Re-Linearization: Somewhat Homomorphic Encryption without Ideals

The starting point of Gentry’s construction is a “somewhat” homomorphic encryption scheme. For
a class of circuits C, a C-homomorphic scheme is one that allows evaluation of any circuit in the
class C. The simple, yet striking, observation in Gentry’s work is that if a (slightly augmented)
decryption circuit for a C-homomorphic scheme resides in C, then the scheme can be converted (or
“bootstrapped”) into a fully homomorphic encryption scheme.

It turns out that encryption schemes that can evaluate a non-trivial number of addition and
multiplication operations3 are already quite hard to come by (even without requiring that they are
bootstrappable).4 Gentry’s solution to this was based on the algebraic notion of ideals in rings.
In a very high level, the message is considered to be a ring element, and the ciphertext is the
message masked with some “noise”. The novelty of this idea is that the noise itself belonged to
an ideal I. Thus, the ciphertext is of the form m + xI (for some x in the ring). Observe right
o↵ the bat that the scheme is born additively homomorphic; in fact, that will be the case with
all the schemes we consider in this paper. The ideal I has two main properties: first, a random
element in the ideal is assumed to “mask” the message; and second, it is possible to generate a
secret trapdoor that “annihilates” the ideal, i.e., implementing the transformation m + xI ! m.
The first property guarantees security, while the second enables multiplying ciphertexts. Letting
c
1

and c
2

be encryptions of m
1

and m
2

respectively,

c
1

c
2

= (m
1

+ xI)(m
2

+ yI) = m
1

m
2

+ (m
1

y +m
2

x+ xyI)I = m
1

m
2

+ zI

When decrypting, the ideal is annihilated and the product m
1

m
2

survives. Thus, c
1

c
2

is indeed an
encryption of m

1

m
2

, as required. This nifty solution required, as per the first property, a hardness
assumption on ideals in certain rings. Gentry’s original work relied on hardness assumptions on
ideal lattices, while van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10] presented a di↵erent
instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the hardness of the “learning with errors”
(LWE) problem, first presented by Regev [Reg05]. The LWE assumption states that if s 2 Zn

q is an
n dimensional “secret” vector, any polynomial number of “noisy” random linear combinations of
the coe�cients of s are computationally indistinguishable from uniformly random elements in Zq.
Mathematically,

�

ai, hai, si+ ei

poly(n)
i=1

c⇡
�

ai, ui

poly(n)
i=1

,

3All known scheme, including ours, treat evaluated functions as arithmetic circuits. Hence we use the terminology
of “addition and multiplication” gates. The conversion to the boolean model (AND, OR, NOT gates) is immediate.

4We must mention here that we are interested only in compact fully homomorphic encryption schemes, namely
ones where the ciphertexts do not grow in size with each homomorphic operation. If we do allow such growth in size,
a number of solutions are possible. See, e.g., [SYY99, GHV10a, MGH10].

2

2. We present a dimension-modulus reduction technique, that turns our somewhat homomorphic
scheme into a fully homomorphic one, without the need for the artificial squashing step and
the sparse subset-sum assumption.

We provide a detailed overview of these new techniques in Sections 1.1, 1.2 below.
Interestingly, the ciphertexts of the resulting fully homomorphic scheme are very short. This is

a desirable property which we use, in conjunction with other techniques, to achieve very e�cient
private information retrieval protocols. See also Section 1.3 below.

1.1 Re-Linearization: Somewhat Homomorphic Encryption without Ideals

The starting point of Gentry’s construction is a “somewhat” homomorphic encryption scheme. For
a class of circuits C, a C-homomorphic scheme is one that allows evaluation of any circuit in the
class C. The simple, yet striking, observation in Gentry’s work is that if a (slightly augmented)
decryption circuit for a C-homomorphic scheme resides in C, then the scheme can be converted (or
“bootstrapped”) into a fully homomorphic encryption scheme.

It turns out that encryption schemes that can evaluate a non-trivial number of addition and
multiplication operations3 are already quite hard to come by (even without requiring that they are
bootstrappable).4 Gentry’s solution to this was based on the algebraic notion of ideals in rings.
In a very high level, the message is considered to be a ring element, and the ciphertext is the
message masked with some “noise”. The novelty of this idea is that the noise itself belonged to
an ideal I. Thus, the ciphertext is of the form m + xI (for some x in the ring). Observe right
o↵ the bat that the scheme is born additively homomorphic; in fact, that will be the case with
all the schemes we consider in this paper. The ideal I has two main properties: first, a random
element in the ideal is assumed to “mask” the message; and second, it is possible to generate a
secret trapdoor that “annihilates” the ideal, i.e., implementing the transformation m + xI ! m.
The first property guarantees security, while the second enables multiplying ciphertexts. Letting
c
1

and c
2

be encryptions of m
1

and m
2

respectively,

c
1

c
2

= (m
1

+ xI)(m
2

+ yI) = m
1

m
2

+ (m
1

y +m
2

x+ xyI)I = m
1

m
2

+ zI

When decrypting, the ideal is annihilated and the product m
1

m
2

survives. Thus, c
1

c
2

is indeed an
encryption of m

1

m
2

, as required. This nifty solution required, as per the first property, a hardness
assumption on ideals in certain rings. Gentry’s original work relied on hardness assumptions on
ideal lattices, while van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10] presented a di↵erent
instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the hardness of the “learning with errors”
(LWE) problem, first presented by Regev [Reg05]. The LWE assumption states that if s 2 Zn

q is an
n dimensional “secret” vector, any polynomial number of “noisy” random linear combinations of
the coe�cients of s are computationally indistinguishable from uniformly random elements in Zq.
Mathematically,

�

ai, hai, si+ ei

poly(n)
i=1

c⇡
�

ai, ui

poly(n)
i=1

,

3All known scheme, including ours, treat evaluated functions as arithmetic circuits. Hence we use the terminology
of “addition and multiplication” gates. The conversion to the boolean model (AND, OR, NOT gates) is immediate.

4We must mention here that we are interested only in compact fully homomorphic encryption schemes, namely
ones where the ciphertexts do not grow in size with each homomorphic operation. If we do allow such growth in size,
a number of solutions are possible. See, e.g., [SYY99, GHV10a, MGH10].

2

secret noisewhere ai 2 Zn
q and ui 2 Zq are uniformly random, and the “noise” ei is sampled from a noise distri-

bution that outputs numbers much smaller than q (an example is a discrete Gaussian distribution
over Zq with small standard deviation).

The LWE assumption does not refer to ideals, and indeed, the LWE problem is at least as hard
as finding short vectors in any lattice, as follows from the worst-case to average-case reductions of
Regev [Reg05] and Peikert [Pei09]. As mentioned earlier, we have a much better understanding of
the complexity of lattice problems (thanks to [LLL82, Ajt98, Mic00] and many others), compared
to the corresponding problems on ideal lattices. In particular, despite considerable e↵ort, the best
known algorithms to solve the LWE problem run in time nearly exponential in the dimension n.5 The
LWE assumption also turns out to be particularly amenable to the construction of simple, e�cient
and highly expressive cryptographic schemes (e.g., [Reg05, GPV08, AGV09, ACPS09, CHKP10,
ABB10] and many others). Our construction of a fully homomorphic encryption scheme from LWE
is perhaps a very strong testament to its power and elegance.

Constructing a (secret-key) encryption scheme whose security is based on the LWE assumption
is rather straightforward. To encrypt a bit m 2 {0, 1} using secret key s 2 Zn

q , we choose a random
vector a 2 Zn

q and a “noise” e and output the ciphertext

c = (a, b = ha, si+ 2e+m) 2 Zn
q ⇥ Zq

The key observation in decryption is that the two “masks” – namely, the secret mask ha, si and
the “even mask” 2e – do not interfere with each other.6 That is, one can decrypt this ciphertext
by annihilating the two masks, one after the other: The decryption algorithm first re-computes
the mask ha, si and subtracts it from b, resulting in 2e + m (mod q). Since e ⌧ q, then 2e + m
(mod q) = 2e+m. Removing the even mask is now easy – simply compute 2e+m modulo 2.7

As we will see below, the scheme is naturally additive homomorphic, yet multiplication presents
a thorny problem. In fact, a recent work of Gentry, Halevi and Vaikuntanathan [GHV10b] showed
that (a slight variant of) this scheme supports just a single homomorphic multiplication, but at the
expense of a huge blowup to the ciphertext which made further advance impossible.

To better understand the homomorphic properties of this scheme, let us shift our focus away
from the encryption algorithm, on to the decryption algorithm. Given a ciphertext (a, b), consider
the symbolic linear function fa,b : Zn

q ! Zq defined as:

fa,b(x) = b� ha,xi (mod q) = b�
n
X

i=1

a[i] · x[i] 2 Zq

where x = (x[1], . . . ,x[n]) denotes the variables, and (a, b) forms the public coe�cients of the linear
equation. Clearly, decryption of the ciphertext (a, b) is nothing but evaluating this function on the
secret key s (and then taking the result modulo 2).8

5The nearly exponential time is for a large enough error (i.e., one that is a 1/poly(n) fraction of the modulus q).
For smaller errors, as we will encounter in our scheme, there are better – but not significantly better – algorithms.

In particular, if the error is a 1/2n
✏
fraction of the modulus q, the best known algorithm runs in time approx. 2n

1�✏
.

6We remark that using 2e instead of e as in the original formulation of LWE does not adversely impact security,
so long as q is odd (since in that case 2 is a unit in Zq).

7Although the simplified presentation of Gentry’s scheme above seems to deal with just one mask (the “secret
mask”), in reality, the additional “even mask” existed in the schemes of [Gen09b, DGHV10] as well. Roughly speaking,
they needed this to ensure semantic security, as we do.

8The observation that an LWE-based ciphertext can be interpreted as a linear equation of the secret was also used
in [BV11].

3

where ai 2 Zn
q and ui 2 Zq are uniformly random, and the “noise” ei is sampled from a noise distri-

bution that outputs numbers much smaller than q (an example is a discrete Gaussian distribution
over Zq with small standard deviation).

The LWE assumption does not refer to ideals, and indeed, the LWE problem is at least as hard
as finding short vectors in any lattice, as follows from the worst-case to average-case reductions of
Regev [Reg05] and Peikert [Pei09]. As mentioned earlier, we have a much better understanding of
the complexity of lattice problems (thanks to [LLL82, Ajt98, Mic00] and many others), compared
to the corresponding problems on ideal lattices. In particular, despite considerable e↵ort, the best
known algorithms to solve the LWE problem run in time nearly exponential in the dimension n.5 The
LWE assumption also turns out to be particularly amenable to the construction of simple, e�cient
and highly expressive cryptographic schemes (e.g., [Reg05, GPV08, AGV09, ACPS09, CHKP10,
ABB10] and many others). Our construction of a fully homomorphic encryption scheme from LWE
is perhaps a very strong testament to its power and elegance.

Constructing a (secret-key) encryption scheme whose security is based on the LWE assumption
is rather straightforward. To encrypt a bit m 2 {0, 1} using secret key s 2 Zn

q , we choose a random
vector a 2 Zn

q and a “noise” e and output the ciphertext

c = (a, b = ha, si+ 2e+m) 2 Zn
q ⇥ Zq

The key observation in decryption is that the two “masks” – namely, the secret mask ha, si and
the “even mask” 2e – do not interfere with each other.6 That is, one can decrypt this ciphertext
by annihilating the two masks, one after the other: The decryption algorithm first re-computes
the mask ha, si and subtracts it from b, resulting in 2e + m (mod q). Since e ⌧ q, then 2e + m
(mod q) = 2e+m. Removing the even mask is now easy – simply compute 2e+m modulo 2.7

As we will see below, the scheme is naturally additive homomorphic, yet multiplication presents
a thorny problem. In fact, a recent work of Gentry, Halevi and Vaikuntanathan [GHV10b] showed
that (a slight variant of) this scheme supports just a single homomorphic multiplication, but at the
expense of a huge blowup to the ciphertext which made further advance impossible.

To better understand the homomorphic properties of this scheme, let us shift our focus away
from the encryption algorithm, on to the decryption algorithm. Given a ciphertext (a, b), consider
the symbolic linear function fa,b : Zn

q ! Zq defined as:

fa,b(x) = b� ha,xi (mod q) = b�
n
X

i=1

a[i] · x[i] 2 Zq

where x = (x[1], . . . ,x[n]) denotes the variables, and (a, b) forms the public coe�cients of the linear
equation. Clearly, decryption of the ciphertext (a, b) is nothing but evaluating this function on the
secret key s (and then taking the result modulo 2).8

5The nearly exponential time is for a large enough error (i.e., one that is a 1/poly(n) fraction of the modulus q).
For smaller errors, as we will encounter in our scheme, there are better – but not significantly better – algorithms.

In particular, if the error is a 1/2n
✏
fraction of the modulus q, the best known algorithm runs in time approx. 2n

1�✏
.

6We remark that using 2e instead of e as in the original formulation of LWE does not adversely impact security,
so long as q is odd (since in that case 2 is a unit in Zq).

7Although the simplified presentation of Gentry’s scheme above seems to deal with just one mask (the “secret
mask”), in reality, the additional “even mask” existed in the schemes of [Gen09b, DGHV10] as well. Roughly speaking,
they needed this to ensure semantic security, as we do.

8The observation that an LWE-based ciphertext can be interpreted as a linear equation of the secret was also used
in [BV11].

3

uniformly random

Encryption Scheme based on (LWE)

where ai 2 Zn
q and ui 2 Zq are uniformly random, and the “noise” ei is sampled from a noise distri-

bution that outputs numbers much smaller than q (an example is a discrete Gaussian distribution
over Zq with small standard deviation).

The LWE assumption does not refer to ideals, and indeed, the LWE problem is at least as hard
as finding short vectors in any lattice, as follows from the worst-case to average-case reductions of
Regev [Reg05] and Peikert [Pei09]. As mentioned earlier, we have a much better understanding of
the complexity of lattice problems (thanks to [LLL82, Ajt98, Mic00] and many others), compared
to the corresponding problems on ideal lattices. In particular, despite considerable e↵ort, the best
known algorithms to solve the LWE problem run in time nearly exponential in the dimension n.5 The
LWE assumption also turns out to be particularly amenable to the construction of simple, e�cient
and highly expressive cryptographic schemes (e.g., [Reg05, GPV08, AGV09, ACPS09, CHKP10,
ABB10] and many others). Our construction of a fully homomorphic encryption scheme from LWE
is perhaps a very strong testament to its power and elegance.

Constructing a (secret-key) encryption scheme whose security is based on the LWE assumption
is rather straightforward. To encrypt a bit m 2 {0, 1} using secret key s 2 Zn

q , we choose a random
vector a 2 Zn

q and a “noise” e and output the ciphertext

c = (a, b = ha, si+ 2e+m) 2 Zn
q ⇥ Zq

The key observation in decryption is that the two “masks” – namely, the secret mask ha, si and
the “even mask” 2e – do not interfere with each other.6 That is, one can decrypt this ciphertext
by annihilating the two masks, one after the other: The decryption algorithm first re-computes
the mask ha, si and subtracts it from b, resulting in 2e + m (mod q). Since e ⌧ q, then 2e + m
(mod q) = 2e+m. Removing the even mask is now easy – simply compute 2e+m modulo 2.7

As we will see below, the scheme is naturally additive homomorphic, yet multiplication presents
a thorny problem. In fact, a recent work of Gentry, Halevi and Vaikuntanathan [GHV10b] showed
that (a slight variant of) this scheme supports just a single homomorphic multiplication, but at the
expense of a huge blowup to the ciphertext which made further advance impossible.

To better understand the homomorphic properties of this scheme, let us shift our focus away
from the encryption algorithm, on to the decryption algorithm. Given a ciphertext (a, b), consider
the symbolic linear function fa,b : Zn

q ! Zq defined as:

fa,b(x) = b� ha,xi (mod q) = b�
n
X

i=1

a[i] · x[i] 2 Zq

where x = (x[1], . . . ,x[n]) denotes the variables, and (a, b) forms the public coe�cients of the linear
equation. Clearly, decryption of the ciphertext (a, b) is nothing but evaluating this function on the
secret key s (and then taking the result modulo 2).8

5The nearly exponential time is for a large enough error (i.e., one that is a 1/poly(n) fraction of the modulus q).
For smaller errors, as we will encounter in our scheme, there are better – but not significantly better – algorithms.

In particular, if the error is a 1/2n
✏
fraction of the modulus q, the best known algorithm runs in time approx. 2n

1�✏
.

6We remark that using 2e instead of e as in the original formulation of LWE does not adversely impact security,
so long as q is odd (since in that case 2 is a unit in Zq).

7Although the simplified presentation of Gentry’s scheme above seems to deal with just one mask (the “secret
mask”), in reality, the additional “even mask” existed in the schemes of [Gen09b, DGHV10] as well. Roughly speaking,
they needed this to ensure semantic security, as we do.

8The observation that an LWE-based ciphertext can be interpreted as a linear equation of the secret was also used
in [BV11].

3

Rewinding and Higher Order Function

We say: first suppose you have a cheating verifier V. When V talks to an honest prover, it outputs (a distribution of) some transcript t. We have to show how to
sample the same (or very close) distribution of t, without talking to any honest prover. It's not likely that we can analyze the code of V to "figure out what it's
doing." Instead, we have to treat V as a kind of black-box. Recall that V is designed to operate in an interactive fashion, so we have to feed protocol messages
into V, pretending to be the honest prover. We might feed into V a simulated "message 1" from the prover, and then later a simulated "message 2". Then, after
seeing how V responded, we might go back to a previous internal state of V and feed in a different simulated "message 2" -- that's rewinding. We can rewind and
invoke V many different times, as long as we are careful to spend only polynomial time overall (assuming V itself is polynomial-time).

ME SYAING: Rewinding is some kind of if then else procedure to be used for creating ultimately the desired simulated transcript. Isn't the same problem in the
quantum programming issue of defining if than else compactly leads to the same issue regarding rewinding ?

