Labelled Markov Processes Logical characterization of bisimulation for LMPs

Josée Desharnais¹
Abbas Edalat, Prakash Panangaden
Vineet Gupta, Radha Jagadeesan

¹Laval University Québec, Canada

MFPS, Cornell University, June 2014

- Intro
- Measure theory
- 3 LMPs
- Proof
- Concluding remarks

What are Labelled Markov Processes?

LMPs are

- probabilistic versions of labelled transition systems.
- probabilistic data is internal
- we observe the interactions not the internal states.
- the state space may be a continuum.

- (S, Σ) is an analytic space
- L is a countable set of labels
- $\tau_{\alpha}: S \times \Sigma \rightarrow [0,1]$ is a stochastic kernel,

What is measure theory?

We want to assign a "size" to sets so that we can use it for quantitative purposes, like integration or probability.

Examples (of known measures)

- the size of an interval $[\pi/2, \pi]$, the area of a figure
- the probability of events when rolling a regular die

What is measure theory?

We want to assign a "size" to sets so that we can use it for quantitative purposes, like integration or probability.

Examples (of known measures)

- the size of an interval $[\pi/2, \pi]$, the area of a figure
- the probability of events when rolling a regular die
- Counting points is useless for the continuum.
- What is the "length" of the rational numbers in [0, 1]?

What is measure theory?

We want to assign a "size" to sets so that we can use it for quantitative purposes, like integration or probability.

Examples (of known measures)

- the size of an interval $[\pi/2, \pi]$, the area of a figure
- the probability of events when rolling a regular die
- Counting points is useless for the continuum.
- What is the "length" of the rational numbers in [0, 1]?
- We want to assign sizes to these and (all?) other sets.

Measure theory LMPs Proof Concluding remarks Measurable spaces Measures Functions Example

What are measurable sets anyway?

- Alas! Not all sets can be given a sensible notion of size that generalizes the notion of length of an interval.
- We take a family of sets satisfying "reasonable" axioms and deem them to be "measurable."

A measurable space (X, Σ) is a set X together with a family Σ of subsets of X, called a σ -algebra or σ -field

Definition (σ -algebra)

 $\Sigma \subseteq \mathcal{P}(X)$ is a σ -algebra if

- $\emptyset \in \Sigma$.
- $A \in \Sigma$ implies that $A^c \in \Sigma$, and

Measurable space (X, Σ)

A measurable space (X, Σ) is a set X together with a family Σ of subsets of X, called a σ -algebra or σ -field

Definition (σ -algebra)

 $\Sigma \subseteq \mathcal{P}(X)$ is a σ -algebra if

- $\emptyset \in \Sigma$.
- $A \in \Sigma$ implies that $A^c \in \Sigma$, and
- ③ if $\{A_i \in \Sigma | i \in I\}$ is a countable family then $\bigcup_{i \in I} A_i \in \Sigma$.

Measurable space (X, Σ)

A measurable space (X, Σ) is a set X together with a family Σ of subsets of X, called a σ -algebra or σ -field

Definition (σ -algebra)

 $\Sigma \subseteq \mathcal{P}(X)$ is a σ -algebra if

- $\emptyset \in \Sigma$.
- $A \in \Sigma$ implies that $A^c \in \Sigma$, and
- **3** if $\{A_i \in \Sigma | i \in I\}$ is a countable family then $\bigcup_{i \in I} A_i \in \Sigma$.

If we require only finite union rather than countable union we get a field or algebra.

Measure theory LMPs Proof Concluding remarks Measurable space

The σ -algebras generated by a family of sets

- Any intersection of σ -algebras is a σ -algebra.
- Thus given any family of sets \mathcal{B} there is a least σ -algebra containing \mathcal{B} : the σ -algebra generated by \mathcal{B} , noted $\sigma(\mathcal{B})$.

 σ (intervals in **R**) is called the Borel σ -algebra.

Measure theory LMPs Proof Concluding remarks Measu

The σ -algebras generated by a family of sets

- Any intersection of σ -algebras is a σ -algebra.
- Thus given any family of sets \mathcal{B} there is a least σ -algebra containing \mathcal{B} : the σ -algebra generated by \mathcal{B} , noted $\sigma(\mathcal{B})$.

 σ (intervals in **R**) is called the Borel σ -algebra.

Measure on a measurable space (S, Σ)

Definition

A measure (probability measure) on (S, Σ) is a set function

$$\mu: \Sigma \to [0,\infty]$$
 ([0,1]),

s.t. if $\{A_i\}_{i\in I}$ is a countable family of pairwise disjoint sets then

$$\mu\left(\bigcup_{i\in I}A_{i}\right)=\sum_{i\in I}\mu\left(A_{i}\right).$$

In particular if I is empty we have $\mu(\emptyset) = 0$. and $\mu(A^c) = \mu(S) - \mu(A)$

Measure on a measurable space (S, Σ)

Definition

A measure (probability measure) on (S, Σ) is a set function

$$\mu: \Sigma \to [0,\infty]$$
 ([0,1]),

s.t. if $\{A_i\}_{i\in I}$ is a countable family of pairwise disjoint sets then

$$\mu\left(\bigcup_{i\in I}A_{i}\right)=\sum_{i\in I}\mu\left(A_{i}\right).$$

In particular if *I* is empty we have $\mu(\emptyset) = 0$. and $\mu(A^c) = \mu(S) - \mu(A)$

The structure (S, Σ, μ) is called a **measure space**.

Measurable sets are complicated beasts, we often want to work with families of simpler sets that generate the σ -algebra.

Corollary (to Dynkin's λ - π theorem)

Two measures on (S, Σ) that agree on a π -system $\mathcal{F} \subseteq \Sigma$ (closed under \cap) agree on $\sigma(\mathcal{F})$.

Measurable sets are complicated beasts, we often want to work with families of simpler sets that generate the σ -algebra.

Corollary (to Dynkin's λ - π theorem)

Two measures on (S, Σ) that agree on a π -system $\mathcal{F} \subseteq \Sigma$ (closed under \cap) agree on $\sigma(\mathcal{F})$.

Let

$$\mathit{cl}_{\Sigma}(\mathcal{F}) := \{A \in \Sigma \mid \text{ if } s \in A \text{ and } s \equiv_{\mathcal{F}} s' \text{ then } s' \in A\}$$

 $\supseteq \sigma(\mathcal{F})$

Measurable sets are complicated beasts, we often want to work with families of simpler sets that generate the σ -algebra.

Corollary (to Dynkin's λ - π theorem)

Two measures on (S, Σ) that agree on a π -system $\mathcal{F} \subseteq \Sigma$ (closed under \cap) agree on $\sigma(\mathcal{F})$.

Let

$$\mathit{cl}_{\Sigma}(\mathcal{F}) := \{ A \in \Sigma \mid \text{ if } s \in A \text{ and } s \equiv_{\mathcal{F}} s' \text{ then } s' \in A \}$$

$$\supseteq \sigma(\mathcal{F})$$

Theorem (1) (DP: JLAP03)

Let (S, Σ) be an analytic space, and \mathcal{F} with $S \in \mathcal{F}$, countable and closed under intersection.

If two measures on (S, Σ) agree on $\mathcal{F} \subseteq \Sigma$, then they agree on $cl_{\Sigma}(\mathcal{F}).$

Functions

What are the "right" functions between measurable spaces?

$$f:(X,\Sigma_X)\to (Y,\Sigma_Y)$$

• inverse image preserve \emptyset , complement and unions

Functions

What are the "right" functions between measurable spaces?

$$f:(X,\Sigma_X)\to (Y,\Sigma_Y)$$

- inverse image preserve ∅, complement and unions
- thus σ -algebras behave well under inverse image.

$$\{f^{-1}(A)|A \in \Sigma_Y\}$$
 form a σ -algebra on X .

Functions

What are the "right" functions between measurable spaces?

$$f:(X,\Sigma_X)\to (Y,\Sigma_Y)$$

- inverse image preserve ∅, complement and unions
- thus σ -algebras behave well under inverse image.

$$\{f^{-1}(A)|A \in \Sigma_Y\}$$
 form a σ -algebra on X .

Definition

A function f from a measurable space (X, Σ_X) to a measurable space (Y, Σ_Y) is said to be measurable if

$$f^{-1}(A) \in \Sigma_X$$
 whenever $A \in \Sigma_Y$.

An example on $(X, \mathcal{P}(X))$

Fix a set X and a point x of X. We define a measure, in fact a probability measure, on the σ -algebra of all subsets of X as follows. We use the slightly peculiar notation $\delta(x,A)$ to emphasize that x is a parameter in the definition.

$$\delta(x,A) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

This measure is called the Dirac delta measure. Note that we can fix the set A and view this as the definition of a (measurable) function on X. What we get is the characteristic function of the set A, χ_A .

Measure theory LMPs Proof Concluding remarks

Lebesgue measure on R

- For any subset of R we define outer measure as the infimum of the total length of the intervals of any covering family of intervals.
- The rationals have outer measure zero.
- This is not additive so it does not give a measure defined on all sets.
- It does however give a measure on the Borel sets.

Formal Definition of LMPs

- (S, Σ) is an **analytic space**
- L is a countable set of labels
- $\tau_{\alpha}: S \times \Sigma \longrightarrow [0, 1]$ is a stochastic kernel, that is,
 - $\forall s \in S, \ \tau_{\alpha}(s, \cdot) : \Sigma \to [0, 1]$ is a subprobability measure

Formal Definition of LMPs

- (S, Σ) is an analytic space
- L is a countable set of labels
- $\tau_{\alpha}: S \times \Sigma \rightarrow [0, 1]$ is a stochastic kernel, that is,
 - $-\forall s \in S, \ \tau_{\alpha}(s, \cdot) : \Sigma \to [0, 1] \text{ is a subprobability measure}$
 - $\forall A \in \Sigma$, $\tau_{\alpha}(\cdot, A) : S \rightarrow [0, 1]$ is a measurable function.

In particular, for
$$q \in \mathbb{Q}$$
: A ([q, 1])

Formal Definition of LMPs

- (S, Σ) is an analytic space
- L is a countable set of labels
- $\tau_{\alpha}: S \times \Sigma \rightarrow [0, 1]$ is a stochastic kernel, that is,
 - $-\forall s \in S, \ \tau_{\alpha}(s, \cdot) : \Sigma \to [0, 1] \text{ is a subprobability measure}$
 - $\forall A \in \Sigma$, $\tau_{\alpha}(\cdot, A) : S \rightarrow [0, 1]$ is a measurable function.

In particular, for
$$q \in \mathbb{Q}$$
: $\tau_{\alpha}(\cdot, A)^{-1}([q, 1]) \in \Sigma$

Larsen-Skou Bisimulation - Example

Bisimulation

Let
$$S = (S, i, \Sigma, \tau)$$
 a LMP and $R \subseteq S \times S$

A set is R-closed if whenever $s \in A$ and sRs' then $s' \in A$.

Bisimulation

Let
$$S = (S, i, \Sigma, \tau)$$
 a LMP and $R \subseteq S \times S$

A set is R-closed if whenever $s \in A$ and sRs' then $s' \in A$.

Definition

An equivalence relation R is a bisimulation if

if
$$sRs'$$
, and if A is an R -closed set in Σ , then $\tau_{\alpha}(s,A) = \tau_{\alpha}(s',A)$ for all $a \in L$

s and t are bisimilar if sRt for some bisimulation relation.

Can be extended to bisimulation between two different **LMPs**.

Logic

$$\mathcal{L} ::== \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi \qquad \qquad q \in \mathbb{Q} \cap [0,1]$$

$$s \models \langle \alpha \rangle_q \phi \quad \text{iff} \quad \tau_\alpha(s,\llbracket \phi \rrbracket) \geq q$$

$$\text{where } \llbracket \phi \rrbracket := \{ s \in S \mid s \models \phi \} \in \Sigma$$

$$\mathcal{L} ::== \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi$$

$$q \in \mathbb{Q} \cap [0,1]$$

$$s \models \langle \alpha \rangle_q \phi$$
 iff $\tau_\alpha(s, \llbracket \phi \rrbracket) \geq q$

where
$$\llbracket \phi \rrbracket := \{ s \in \mathcal{S} \mid s \models \phi \} \in \Sigma$$

Base case: $[T] = S \in \Sigma$.

Inductive Step: let $[\![\phi_i]\!], [\![\phi]\!] \in \Sigma$

$$\mathcal{L} ::== \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi$$

$$q \in \mathbb{Q} \cap [0,1]$$

$$s \models \langle \alpha \rangle_q \phi$$
 iff $\tau_{\alpha}(s, \llbracket \phi \rrbracket) \geq q$

where
$$\llbracket \phi \rrbracket := \{ s \in \mathcal{S} \mid s \models \phi \} \in \Sigma$$

Base case: $[T] = S \in \Sigma$.

Inductive Step: let $[\![\phi_i]\!], [\![\phi]\!] \in \Sigma$

$$[\![\phi_1 \land \phi_2]\!] = [\![\phi_1]\!] \cap [\![\phi_2]\!] \in \Sigma.$$

$$\mathcal{L} ::== \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi \qquad \qquad q \in \mathbb{Q} \cap [0,1]$$

$$s \models \langle \alpha \rangle_q \phi \quad \text{iff} \quad \tau_\alpha(s,\llbracket \phi \rrbracket) \geq q$$

$$\text{where } \llbracket \phi \rrbracket := \{ s \in S \mid s \models \phi \} \in \Sigma$$

Base case: $[T] = S \in \Sigma$. Inductive Step: let $[\![\phi_i]\!], [\![\phi]\!] \in \Sigma$ $\llbracket \phi_1 \wedge \phi_2 \rrbracket = \llbracket \phi_1 \rrbracket \cap \llbracket \phi_2 \rrbracket \in \Sigma.$ $\llbracket \langle a \rangle_q \phi \rrbracket = \{ s \in S \mid \tau_\alpha(s, \llbracket \phi \rrbracket) \geq q \} = 0$

Logic

$$\mathcal{L} ::== \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi \qquad \qquad q \in \mathbb{Q} \cap [0,1]$$

$$s \models \langle \alpha \rangle_q \phi \quad \text{iff} \quad \tau_\alpha(s,\llbracket \phi \rrbracket) \geq q$$

$$\text{where } \llbracket \phi \rrbracket := \{ s \in S \mid s \models \phi \} \in \Sigma$$

Proof of $\llbracket \phi \rrbracket \in \Sigma$ by structural induction.

Base case: $[T] = S \in \Sigma$. Inductive Step: let $[\![\phi_i]\!], [\![\phi]\!] \in \Sigma$

$$\llbracket \phi_1 \wedge \phi_2 \rrbracket = \llbracket \phi_1 \rrbracket \cap \llbracket \phi_2 \rrbracket \in \Sigma.$$

$$\llbracket \langle a \rangle_q \phi \rrbracket = \{ s \in \mathcal{S} \mid \tau_{\alpha}(s, \llbracket \phi \rrbracket) \geq q \} = \tau_{\alpha}(\cdot, \llbracket \phi \rrbracket)^{-1}([q, 1]) \in \Sigma$$

$$\mathcal{L} ::== \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi \qquad \qquad q \in \mathbb{Q} \cap [0,1]$$

$$s \models \langle \alpha \rangle_q \phi \quad \text{iff} \quad \tau_\alpha(s,\llbracket \phi \rrbracket) \geq q$$

$$\text{where } \llbracket \phi \rrbracket := \{ s \in S \mid s \models \phi \} \in \Sigma$$

Base case: $[T] = S \in \Sigma$. Inductive Step: let $[\![\phi_i]\!], [\![\phi]\!] \in \Sigma$ $\llbracket \phi_1 \wedge \phi_2 \rrbracket = \llbracket \phi_1 \rrbracket \cap \llbracket \phi_2 \rrbracket \in \Sigma.$ $\llbracket \langle a \rangle_q \phi \rrbracket = \{ s \in S \mid \tau_\alpha(s, \llbracket \phi \rrbracket) \ge q \} = \tau_\alpha(\cdot, \llbracket \phi \rrbracket)^{-1}([q, 1]) \in \Sigma$ $\llbracket \neg \phi \rrbracket = \llbracket \phi \rrbracket^c \in \Sigma$

Logic

$$\mathcal{L} ::== \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi \qquad \qquad q \in \mathbb{Q} \cap [0,1]$$

$$s \models \langle \alpha \rangle_q \phi \quad \text{iff} \quad \tau_\alpha(s, \llbracket \phi \rrbracket) \geq q$$

where $\llbracket \phi \rrbracket := \{ s \in S \mid s \models \phi \} \in \Sigma$

$$s_1 \models \langle a \rangle_x \langle b \rangle_1 \mathsf{T} \text{ for } x \geq .4$$

 $\models \langle a \rangle_4 (\langle b \rangle_1 \mathsf{T} \wedge \langle c \rangle_1 \mathsf{T})$

$$t_1 \models \langle a \rangle_{.5} \langle b \rangle_1 \langle a \rangle_1 \langle a \rangle_1 \mathsf{T}$$

Logic

$$\mathcal{L} ::== \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi \qquad \qquad q \in \mathbb{Q} \cap [0,1]$$

$$s \models \langle \alpha \rangle_q \phi \quad \text{iff} \quad \tau_\alpha(s,\llbracket \phi \rrbracket) \geq q$$

$$\text{where } \llbracket \phi \rrbracket := \{ s \in S \mid s \models \phi \} \in \Sigma$$

Theorem (DEP, LICS 1998, I & C 2002)

Two systems with analytic state spaces are bisimilar iff they obey the same formulas of \mathcal{L} .

Two processes that cannot be distinguished without negation. The formula that distinguishes them is $\langle a \rangle (\neg \langle b \rangle \top)$.

But it is!

We add probabilities to the transitions.

- If p + q < r or p + q > r, then some $\langle a \rangle_x \top$ distinguishes them.
- If p + q = r and p > 0 then q < r so $\langle a \rangle_r \langle b \rangle_1 \top$ distinguishes them.

bisimulation R on $(S, \Sigma, \tau_{\alpha})$ s R s', A an R-closed set, $\Rightarrow \tau_{\alpha}(s, A) = \tau_{\alpha}(s', A)$

$$\begin{array}{c|c}
\mathcal{L} : \mathsf{T} \mid \phi_1 \land \phi_2 \mid \langle \alpha \rangle_q \phi \\
s \models \langle \alpha \rangle_q \phi \\
\text{iff } \tau_\alpha(s, \llbracket \phi \rrbracket) \geq q
\end{array}$$

We prove by induction on ϕ that $\forall \phi \in \mathcal{L}$

$$\llbracket \phi \rrbracket$$
 is *R*-closed : i.e., $s \in \llbracket \phi \rrbracket \land sRs' \Rightarrow s' \in \llbracket \phi \rrbracket$

bisimulation
$$R$$
 on $(S, \Sigma, \tau_{\alpha})$
 $s R s'$, A an R -closed set,
 $\Rightarrow \tau_{\alpha}(s, A) = \tau_{\alpha}(s', A)$

$$\begin{bmatrix} \mathcal{L} : \mathsf{T} \mid \phi_1 \land \phi_2 \mid \langle \alpha \rangle_q \phi \\ s \models \langle \alpha \rangle_q \phi \\ \mathsf{iff} \ \tau_\alpha(s, \llbracket \phi \rrbracket) \geq q \end{bmatrix}$$

We prove by induction on ϕ that $\forall \phi \in \mathcal{L}$

$$\llbracket \phi \rrbracket$$
 is *R*-closed : i.e., $s \in \llbracket \phi \rrbracket \land sRs' \ \Rightarrow \ s' \in \llbracket \phi \rrbracket$

- Base case [T] = S
- \(\) is obvious from Inductive Hypothesis.

bisimulation
$$R$$
 on $(S, \Sigma, \tau_{\alpha})$
 $s R s'$, A an R -closed set,
 $\Rightarrow \tau_{\alpha}(s, A) = \tau_{\alpha}(s', A)$

$$\begin{array}{c|c}
\mathcal{L} : \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi \\
s \models \langle \alpha \rangle_q \phi \\
\text{iff } \tau_\alpha(s, \llbracket \phi \rrbracket) \geq q
\end{array}$$

We prove by induction on ϕ that $\forall \phi \in \mathcal{L}$

$$\llbracket \phi \rrbracket$$
 is *R*-closed : i.e., $s \in \llbracket \phi \rrbracket \land sRs' \ \Rightarrow \ s' \in \llbracket \phi \rrbracket$

- Base case [T] = S
- \(\) is obvious from Inductive Hypothesis.
- $\phi = \langle a \rangle_q \psi$, where $\llbracket \psi \rrbracket R$ -closed from IH. Let $s \in \llbracket \phi \rrbracket \wedge sRs'$

bisimulation
$$R$$
 on $(S, \Sigma, \tau_{\alpha})$
 $s R s'$, A an R -closed set,
 $\Rightarrow \tau_{\alpha}(s, A) = \tau_{\alpha}(s', A)$

$$\begin{array}{c|c}
\mathcal{L} : \mathsf{T} \mid \phi_1 \land \phi_2 \mid \langle \alpha \rangle_q \phi \\
s \models \langle \alpha \rangle_q \phi \\
\text{iff } \tau_\alpha(s, \llbracket \phi \rrbracket) \geq q
\end{array}$$

We prove by induction on ϕ that $\forall \phi \in \mathcal{L}$

$$\llbracket \phi \rrbracket$$
 is *R*-closed : i.e., $s \in \llbracket \phi \rrbracket \land sRs' \ \Rightarrow \ s' \in \llbracket \phi \rrbracket$

- Base case [T] = S
- \(\) is obvious from Inductive Hypothesis.
- $\phi = \langle a \rangle_a \psi$, where $\llbracket \psi \rrbracket$ R-closed from IH. Let $s \in \llbracket \phi \rrbracket \wedge sRs'$

then
$$\tau_{\alpha}(s, \llbracket \psi \rrbracket) = \tau_{\alpha}(s', \llbracket \psi \rrbracket)$$

thus $[\![\langle a \rangle_a \psi]\!]$ is R-closed.

R is a bisimulation s R s', A an R-closed set, $\Rightarrow \tau_{\alpha}(s, A) = \tau_{\alpha}(s', A)$

$$\begin{array}{c|c}
\mathcal{L} : \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi \\
s \models \langle \alpha \rangle_q \phi \\
\text{iff } \tau_\alpha(s, \llbracket \phi \rrbracket) \geq q
\end{array}$$

Show that the relation $s \sim_{\mathcal{L}} s'$ is a bisimulation.

- this relation gives $\tau_{\alpha}(s, \llbracket \phi \rrbracket) = \tau_{\alpha}(s', \llbracket \phi \rrbracket)$

$$R$$
 is a bisimulation $s R s'$, A an R -closed set, $\Rightarrow \tau_{\alpha}(s, A) = \tau_{\alpha}(s', A)$

$$\begin{array}{c|c} \mathcal{L} : \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi \\ \mathsf{s} \models \langle \alpha \rangle_q \phi \\ \mathsf{iff} \ \tau_\alpha(\mathsf{s}, \llbracket \phi \rrbracket) \geq q \end{array}$$

Show that the relation $s \sim_{\mathcal{L}} s'$ is a bisimulation.

- this relation gives $\tau_{\alpha}(s, \llbracket \phi \rrbracket) = \tau_{\alpha}(s', \llbracket \phi \rrbracket)$
- $[\![\mathcal{L}]\!] := \{ [\![\phi]\!] \mid \phi \in \mathcal{L} \}$ contains S, is countable and closed under intersection.
- $-\tau_{\alpha}(s,\cdot)$ and $\tau_{\alpha}(s',\cdot)$ agree on $[\![\mathcal{L}]\!]$

Corollary (to Dynkin's λ - π theorem)

Two measures on (S, Σ) that agree on a π -system $\mathcal{F} \subseteq \Sigma$ (closed under \cap) agree on $\sigma(\mathcal{F})$.

Show that the relation $s \sim_{\mathcal{L}} s'$ is a bisimulation.

- this relation gives $\tau_{\alpha}(s, \llbracket \phi \rrbracket) = \tau_{\alpha}(s', \llbracket \phi \rrbracket)$
- $[\![\mathcal{L}]\!] := \{ [\![\phi]\!] \mid \phi \in \mathcal{L} \}$ contains S, is countable and closed under intersection.
- $\tau_{\alpha}(s,\cdot)$ and $\tau_{\alpha}(s',\cdot)$ agree on $\llbracket \mathcal{L} \rrbracket$

Theorem (1) (DP: JLAP03)

Let (S, Σ) be an analytic space, and $\mathcal{F} \subseteq \Sigma$ with $S \in \mathcal{F}$, countable and closed under intersection.

If two measures agree on \mathcal{F} , then they agree on $cl_{\Sigma}(\mathcal{F})$.

- this relation gives $\tau_{\alpha}(s, \llbracket \phi \rrbracket) = \tau_{\alpha}(s', \llbracket \phi \rrbracket)$
- $[\![\mathcal{L}]\!] := \{ [\![\phi]\!] \mid \phi \in \mathcal{L} \}$ contains S, is countable and closed under intersection.
- $\tau_{\alpha}(s,\cdot)$ and $\tau_{\alpha}(s',\cdot)$ agree on $\llbracket \mathcal{L} \rrbracket$

Theorem (1) (DP: JLAP03)

Let (S, Σ) be an analytic space, and $\mathcal{F} \subseteq \Sigma$ with $S \in \mathcal{F}$, countable and closed under intersection.

If two measures agree on \mathcal{F} , then they agree on $cl_{\Sigma}(\mathcal{F})$.

- this relation gives $\tau_{\alpha}(s, \llbracket \phi \rrbracket) = \tau_{\alpha}(s', \llbracket \phi \rrbracket)$
- [\mathbb{L}] := {[ϕ] | $\phi \in \mathcal{L}$ } contains S, is countable and closed under intersection.
- $\tau_{\alpha}(s,\cdot)$ and $\tau_{\alpha}(s',\cdot)$ agree on $\llbracket \mathcal{L} \rrbracket$
- by Theorem (1), if (S, Σ) is analytic, they agree on $cl_{\Sigma}(\llbracket \mathcal{L} \rrbracket)$

$$R$$
 is a bisimulation $s R s'$, A an R -closed set,
$$\Rightarrow \tau_{\alpha}(s, A) = \tau_{\alpha}(s', A)$$

$$\begin{array}{c|c}
\mathcal{L} : \mathsf{T} \mid \phi_1 \wedge \phi_2 \mid \langle \alpha \rangle_q \phi \\
s \models \langle \alpha \rangle_q \phi \\
\text{iff } \tau_\alpha(s, \llbracket \phi \rrbracket) \geq q
\end{array}$$

Show that the relation $s \sim_{\mathcal{L}} s'$ is a bisimulation.

- this relation gives $\tau_{\alpha}(s, \llbracket \phi \rrbracket) = \tau_{\alpha}(s', \llbracket \phi \rrbracket)$
- $[\![\mathcal{L}]\!] := \{ [\![\phi]\!] \mid \phi \in \mathcal{L} \}$ contains S, is countable and closed under intersection.
- $-\tau_{\alpha}(s,\cdot)$ and $\tau_{\alpha}(s',\cdot)$ agree on $[\![\mathcal{L}]\!]$
- by Theorem (1), if (S, Σ) is analytic, they agree on $cl_{\Sigma}(\llbracket \mathcal{L} \rrbracket)$
- $-\sim_{\mathcal{L}}$ -closed sets are exactly members of $cl_{\Sigma}(\llbracket \mathcal{L} \rrbracket)$.

Hence negation plays no role!

Digression on Analytic Spaces

The last step of the previous proof used:

Theorem (1) (DP: JLAP03)

Let (S, Σ) be an analytic space, and $\mathcal{F} \subseteq \Sigma$ with $S \in \mathcal{F}$, countable and closed under intersection.

If two measures agree on \mathcal{F} , then they agree on $cl_{\Sigma}(\mathcal{F})$.

The first step is the following theorem

Corollary (to Dynkin's λ - π theorem)

Two measures that agree on a π -system \mathcal{F} agree on $\sigma(\mathcal{F})$.

Digression on Analytic Spaces

The last step of the previous proof used:

Theorem (1) (DP: JLAP03)

Let (S, Σ) be an analytic space, and $\mathcal{F} \subseteq \Sigma$ with $S \in \mathcal{F}$, countable and closed under intersection. If two measures agree on \mathcal{F} , then they agree on $cl_{\Sigma}(\mathcal{F})$.

The first step is the following theorem

Corollary (to Dynkin's λ - π theorem)

Two measures that agree on a π -system \mathcal{F} agree on $\sigma(\mathcal{F})$.

Now look at the following theorem on analytic spaces:

Theorem (Unique Structure Theorem)

If (S, Σ) is an analytic space, Σ_0 a sub- σ -algebra of Σ that separates points and is countably generated then $\Sigma_0 = \Sigma$.

Intro Measure theory LMPs Proof Concluding remarks Bisim ⇒ logic Logic ⇒ bisim Analytic spaces

Analytic Spaces

Definition

An analytic set A is the image of a Polish space X (or a Borel subset of X) under a continuous (or measurable) function $f: X \to Y$, where Y is Polish.

Analytic Spaces

Definition

An analytic set A is the image of a Polish space X (or a Borel subset of X) under a continuous (or measurable) function f: X \rightarrow Y, where Y is Polish.

Theorem (quotient of analytic is analytic)

Given (S, Σ) an analytic space and \sim an equivalence relation such that there is a countable family of real-valued measurable functions $f_i: S \to \mathbf{R}$ such that

$$\forall s, s' \in S.s \sim s' \iff \forall f_i . f_i(s) = f_i(s')$$

then the quotient space (Q,Ω) - where $Q=S/\sim$ and Ω is the finest σ -algebra making the canonical surjection $g: S \to Q$ measurable - is also analytic.

Theorem (unique measure)

Let (S, Σ) be an analytic space, and $\mathcal{F} \subseteq \Sigma$ with $S \in \mathcal{F}$, countable and closed under intersection.

If two measures agree on \mathcal{F} , then they agree on $cl_{\Sigma}(\mathcal{F})$.

 $cl_{\Sigma}(\mathcal{F}) := \{A \in \Sigma \mid \text{ if } s \in A \text{ and } s \equiv_{\mathcal{F}} s' \text{ then } s' \in A\}$ The equivalence $s \equiv_{\mathcal{F}} s'$ is witnessed also by the functions $I_F: S \to \mathbf{R}$, for $F \in \mathcal{F}$ defined by

$$I_F(s) = 1$$
 if $s \in F$, and 0 otherwise

They are a countable family of measurable functions. Thus the quotient space (Q, Ω) is analytic.

Recall that $\Omega := \{ Y \subseteq Q \mid q^{-1}(Y) \in \Sigma \}$

We prove $q(cl_{\Sigma}(\mathcal{F})) = \Omega$

- \supset : because $q^{-1}(Y)$ is $\equiv_{\mathcal{F}}$ -closed for $Y \in \Omega$
- \subseteq : if $X \in cl_{\Sigma}(\mathcal{F})$ then $q(X) \in \Omega$ because $q^{-1}(q(X)) = X$ (1) $s \in q^{-1}(q(X))$ implies that $q(s) \in q(X)$, i.e. $\exists s' \in X.s \simeq s'$, but X is closed so $s \in X$.

Now $q(\sigma(\mathcal{F}))$

- is a sub- σ -algebra of Ω (inclusion is by (1))
- $\bullet = \sigma(q(\mathcal{F}))$ and hence is countably generated and separates points

Thus
$$q(\sigma(\mathcal{F})) = q(cl_{\Sigma}(\mathcal{F}))$$

The argument finishes with $\sigma(\mathcal{F}) = cl_{\Sigma}(\mathcal{F})$

Simulation on an LMP $S = (S, \Sigma, \tau)$

Definition (DGJP I&C03)

A preorder *R* is a simulation if

if
$$s R s'$$
, and if A is an R -closed set in Σ , then $\tau_{\alpha}(s, A) \leq \tau_{\alpha}(s', A)$ for all $a \in L$

s and t are bisimilar if sRt for some bisimulation relation.

Simulation on an LMP $S = (S, \Sigma, \tau)$

Definition (DGJP I&C03)

A preorder R is a simulation if

if
$$s R s'$$
, and if A is an R -closed set in Σ , then $\tau_{\alpha}(s, A) \leq \tau_{\alpha}(s', A)$ for all $a \in L$

s and t are bisimilar if sRt for some bisimulation relation.

Simulation on an LMP $S = (S, \Sigma, \tau)$

Definition (DLT in QEST08)

A preorder R is a €-simulation if

if
$$s R s'$$
, and if A is an R -closed set in Σ , then $\tau_{\alpha}(s, A) \leq \tau_{\alpha}(s', A) - \epsilon$ for all $a \in L$

s and t are bisimilar if sRt for some bisimulation relation.

Logic for simulation?

- The logic used in the characterization has no negation, not even a limited negative construct.
- One can show that if s simulates s' then s satisfies all the formulas of L that s' satisfies.
- What about the converse?

Counter example!

In the following picture, t satisfies all formulas of \mathcal{L} that s satisfies but t does not simulate s.

All transitions from s and t are labelled by a.

In the following picture, t satisfies all formulas of \mathcal{L} that s satisfies but t does not simulate s.

All transitions from s and t are labelled by a.

 t_1 cannot simulate any state but t reaches it with probability $\frac{1}{4}$

$$s \models \langle a \rangle_{\frac{7}{8}} (\langle a \rangle_{0.1} \mathsf{T} \vee \langle b \rangle_{0.1} \mathsf{T})$$

$$t \not\models$$

$$t \models \langle a \rangle_{0.1} (\langle a \rangle_{0.1} \mathsf{T} \wedge \langle b \rangle_{0.1} \mathsf{T}).$$

 $s \not\models \qquad \text{so } s \not\sim_{\mathcal{L}} t$

A logical characterization for simulation

The logic \mathcal{L} does **not** characterize simulation. One needs disjunction.

$$\mathcal{L}_{\vee} := \mathcal{L} \mid \phi_1 \vee \phi_2.$$

Theorem (DGJP I&C03)

An **LMP** s_1 simulates s_2 if and only if for every formula ϕ of \mathcal{L}_{\vee} we have

$$s_1 \models \phi \Rightarrow s_2 \models \phi$$
.

The only proof we know uses domain theory.

$$\mathcal{L}_{\operatorname{Can}} := \mathcal{L}_0 \mid \operatorname{Can}(a)$$
 $\mathcal{L}_{\Delta} := \mathcal{L}_0 \mid \Delta_a$
 $\mathcal{L}_{\neg} := \mathcal{L}_0 \mid \neg \phi$
 $\mathcal{L}_{\land} := \mathcal{L}_{\neg} \mid \bigwedge_{i \in \mathbf{N}} \phi_i$

where

$$s \models \operatorname{Can}(a)$$
 to mean that $\tau_a(s, S) > 0$; $s \models \Delta_a$ to mean that $\tau_a(s, S) = 0$.

We need \mathcal{L}_{\vee} to characterise simulation.

Intro Measure theory LMPs Proof Concluding remarks Simulation Logic for simulation Conclusion

Conclusions

- Strong probabilistic bisimulation is characterised by a very simple modal logic with no negative constructs.
- There is a logical characterisation of simulation.
- There is a "metric" on LMPs which is based on this logic.
- Why did the proof require so many subtle properties of analytic spaces? The logical characterisation proof is "easy" for event- bisimulation, but the two bisimulations coincide only on analytic spaces.