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What are Labelled Markov Processes?

LMPs are
probabilistic versions of labelled transition systems.
probabilistic data is internal
we observe the interactions - not the internal states.
the state space may be a continuum.
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Formal Definition of LMPs

An LMP is a tuple (S,Σ,L, ∀α ∈ L. τα)

(S,Σ) is an analytic space
L is a countable set of labels
τα : S × Σ −→ [0,1] is a stochastic kernel,

s
τα

22

,,

A τα(s,S) ≤ 1
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What is measure theory?

We want to assign a “size” to sets so that we can use it for
quantitative purposes, like integration or probability.

Examples (of known measures)

the size of an interval [π/2, π], the area of a figure
the probability of events when rolling a regular die

• Counting points is useless for the continuum.

•What is the “length” of the rational numbers in [0,1]?

•We want to assign sizes to these and (all?) other sets.
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What are measurable sets anyway?

Alas! Not all sets can be given a sensible notion of size
that generalizes the notion of length of an interval.
We take a family of sets satisfying “reasonable” axioms
and deem them to be “measurable.”
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Measurable space (X ,Σ)

A measurable space (X ,Σ) is a set X together with a family Σ
of subsets of X , called a σ-algebra or σ-field

Definition (σ-algebra)

Σ ⊆ P(X ) is a σ-algebra if
1 ∅ ∈ Σ,
2 A ∈ Σ implies that Ac ∈ Σ, and

3 if {Ai ∈ Σ|i ∈ I} is a countable family then ∪i∈IAi ∈ Σ.

If we require only finite union rather than countable union we
get a field or algebra.
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The σ-algebras generated by a family of sets

Any intersection of σ-algebras is a σ-algebra.
Thus given any family of sets B there is a least σ-algebra
containing B: the σ-algebra generated by B, noted σ(B).
σ(intervals in R) is called the Borel σ-algebra.
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Measure on a measurable space (S,Σ)

Definition
A measure (probability measure) on (S,Σ) is a set function

µ : Σ −→ [0,∞] ([0,1]),

s.t. if {Ai}i∈I is a countable family of pairwise disjoint sets then

µ (
⋃
i∈I

Ai) =
∑
i∈I

µ (Ai).

In particular if I is empty we have µ(∅) = 0.
and µ(Ac) = µ(S)− µ(A)

The structure (S,Σ, µ) is called a measure space.
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Measurable sets are complicated beasts, we often want to work
with families of simpler sets that generate the σ-algebra.

Corollary (to Dynkin’s λ-π theorem)

Two measures on (S,Σ) that agree on a π-system F ⊆ Σ
(closed under ∩) agree on σ(F).

Let
clΣ(F) := {A ∈ Σ | if s ∈ A and s ≡F s′ then s′ ∈ A}

⊇ σ(F)

Theorem (1) (DP: JLAP03)

Let (S,Σ) be an analytic space, and F with S ∈ F , countable
and closed under intersection.
If two measures on (S,Σ) agree on F ⊆ Σ, then they agree on
clΣ(F).
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Functions

What are the “right” functions between measurable spaces?

f : (X ,ΣX ) −→ (Y ,ΣY )

inverse image preserve ∅, complement and unions

thus σ-algebras behave well under inverse image.
{f−1(A)|A ∈ ΣY} form a σ-algebra on X .

Definition
A function f from a measurable space (X ,ΣX ) to a measurable
space (Y ,ΣY ) is said to be measurable if

f−1(A) ∈ ΣX whenever A ∈ ΣY .
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An example on (X ,P(X ))

Fix a set X and a point x of X . We define a measure, in fact a
probability measure, on the σ-algebra of all subsets of X as
follows. We use the slightly peculiar notation δ(x ,A) to
emphasize that x is a parameter in the definition.

δ(x ,A) =

{
1 if x ∈ A,
0 if x 6∈ A.

This measure is called the Dirac delta measure. Note that we
can fix the set A and view this as the definition of a
(measurable) function on X . What we get is the characteristic
function of the set A, χA.
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Lebesgue measure on R

For any subset of R we define outer measure as the
infimum of the total length of the intervals of any covering
family of intervals.
The rationals have outer measure zero.
This is not additive so it does not give a measure defined
on all sets.
It does however give a measure on the Borel sets.
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Formal Definition of LMPs

An LMP is a tuple (S,Σ,L, ∀α ∈ L. τα)

(S,Σ) is an analytic space
L is a countable set of labels
τα : S × Σ −→ [0,1] is a stochastic kernel, that is,
- ∀s ∈ S, τα(s, · ) : Σ −→ [0,1] is a subprobability measure

- ∀A ∈ Σ, τα( ·,A) : S −→ [0,1] is a measurable function.
In particular, for q ∈ Q:

τα(·,

A

)−1

([q,1])

∈ Σ

s
τα

22

,,

A τα(s,S) ≤ 1
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Larsen-Skou Bisimulation - Example
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Bisimulation

Let S = (S, i ,Σ, τ) a LMP and R ⊆ S × S

A set is R-closed if whenever s ∈ A and sRs′ then s′ ∈ A.

Definition
An equivalence relation R is a bisimulation if

if s R s′, and if A is an R-closed set in Σ, then
τα(s,A) = τα(s′,A) for all a ∈ L

s and t are bisimilar if sRt for some bisimulation relation.

Can be extended to bisimulation between two different LMPs.
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Logic

L ::== T | φ1 ∧ φ2 | 〈α〉qφ q ∈ Q ∩ [0,1]

s |= 〈α〉qφ iff τα(s, JφK) ≥ q

where JφK := {s ∈ S | s |= φ}∈ Σ

Proof of JφK ∈ Σ by structural induction.

Base case: JTK = S ∈ Σ.
Inductive Step: let JφiK, JφK ∈ Σ

Jφ1 ∧ φ2K = Jφ1K ∩ Jφ2K ∈ Σ.
J〈a〉qφK = {s ∈ S | τα(s, JφK) ≥ q} = τα(·, JφK)−1([q,1]) ∈ Σ

J¬φK = JφKc ∈ Σ
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Logic

L ::== T | φ1 ∧ φ2 | 〈α〉qφ q ∈ Q ∩ [0,1]

s |= 〈α〉qφ iff τα(s, JφK) ≥ q

where JφK := {s ∈ S | s |= φ}∈ Σ

Theorem (DEP, LICS 1998, I & C 2002)
Two systems with analytic state spaces are bisimilar iff they
obey the same formulas of L.
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That cannot be right?

s0
a

��

a

��
s1 s2

b
��

s3

t0

a
��

t1

b
��

t2

Two processes that cannot be distinguished without negation.
The formula that distinguishes them is 〈a〉(¬〈b〉>).
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But it is!

We add probabilities to the transitions.

s0
a[p]

��

a[q]

��
s1 s2

b
��

s3

t0

a[r ]
��

t1

b
��

t2

If p + q < r or p + q > r , then some 〈a〉x> distinguishes
them.
If p + q = r and p > 0 then q < r so 〈a〉r 〈b〉1>
distinguishes them.
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The Easy Direction: sRs′ (bisimilar) ⇒ s ∼L s′

bisimulation R on (S,Σ, τα)
s R s′, A an R-closed set,

⇒ τα(s,A) = τα(s′,A)

L : T | φ1 ∧ φ2 | 〈α〉qφ
s |= 〈α〉qφ

iff τα(s, JφK) ≥ q

We prove by induction on φ that ∀φ ∈ L

JφK is R-closed : i.e., s ∈ JφK ∧ sRs′ ⇒ s′ ∈ JφK

Base case [[T]] = S
∧ is obvious from Inductive Hypothesis.
φ = 〈a〉qψ, where [[ψ]] R-closed from IH. Let s ∈ JφK ∧ sRs′

then τα(s, [[ψ]]) = τα(s′, [[ψ]])

thus [[〈a〉qψ]] is R-closed. 2

Josée Desharnais, Laval University Logical characterization of bisimulation for LMPs



Intro Measure theory LMPs Proof Concluding remarks Bisim ⇒ logic Logic ⇒ bisim Analytic spaces

The Easy Direction: sRs′ (bisimilar) ⇒ s ∼L s′

bisimulation R on (S,Σ, τα)
s R s′, A an R-closed set,

⇒ τα(s,A) = τα(s′,A)

L : T | φ1 ∧ φ2 | 〈α〉qφ
s |= 〈α〉qφ

iff τα(s, JφK) ≥ q

We prove by induction on φ that ∀φ ∈ L

JφK is R-closed : i.e., s ∈ JφK ∧ sRs′ ⇒ s′ ∈ JφK

Base case [[T]] = S
∧ is obvious from Inductive Hypothesis.

φ = 〈a〉qψ, where [[ψ]] R-closed from IH. Let s ∈ JφK ∧ sRs′

then τα(s, [[ψ]]) = τα(s′, [[ψ]])

thus [[〈a〉qψ]] is R-closed. 2

Josée Desharnais, Laval University Logical characterization of bisimulation for LMPs



Intro Measure theory LMPs Proof Concluding remarks Bisim ⇒ logic Logic ⇒ bisim Analytic spaces

The Easy Direction: sRs′ (bisimilar) ⇒ s ∼L s′

bisimulation R on (S,Σ, τα)
s R s′, A an R-closed set,

⇒ τα(s,A) = τα(s′,A)

L : T | φ1 ∧ φ2 | 〈α〉qφ
s |= 〈α〉qφ

iff τα(s, JφK) ≥ q

We prove by induction on φ that ∀φ ∈ L

JφK is R-closed : i.e., s ∈ JφK ∧ sRs′ ⇒ s′ ∈ JφK

Base case [[T]] = S
∧ is obvious from Inductive Hypothesis.
φ = 〈a〉qψ, where [[ψ]] R-closed from IH. Let s ∈ JφK ∧ sRs′

then τα(s, [[ψ]]) = τα(s′, [[ψ]])

thus [[〈a〉qψ]] is R-closed. 2
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Proof Sketch of: s, s′ bisimilar ⇐ s ∼L s′

R is a bisimulation
s R s′, A an R-closed set,

⇒ τα(s,A) = τα(s′,A)

L : T | φ1 ∧ φ2 | 〈α〉qφ
s |= 〈α〉qφ

iff τα(s, JφK) ≥ q

Show that the relation s ∼L s′ is a bisimulation.
– this relation gives τα(s, [[φ]]) = τα(s′, [[φ]])

– [[L]] := {[[φ]] | φ ∈ L} contains S, is countable and closed
under intersection.

– τα(s, ·) and τα(s′, ·) agree on [[L]]

– by Theorem (1), if (S,Σ) is analytic, they agree on clΣ([[L]])

– ∼L-closed sets are exactly members of clΣ([[L]]). 2

Hence negation plays no role!
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Digression on Analytic Spaces

The last step of the previous proof used:

Theorem (1) (DP: JLAP03)

Let (S,Σ) be an analytic space, and F ⊆ Σ with S ∈ F ,
countable and closed under intersection.
If two measures agree on F , then they agree on clΣ(F).

The first step is the following theorem

Corollary (to Dynkin’s λ-π theorem)

Two measures that agree on a π-system F agree on σ(F).

Now look at the following theorem on analytic spaces:

Theorem (Unique Structure Theorem)

If (S,Σ) is an analytic space, Σ0 a sub-σ-algebra of Σ that
separates points and is countably generated then Σ0 = Σ.
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Analytic Spaces

Definition
An analytic set A is the image of a Polish space X (or a Borel
subset of X ) under a continuous (or measurable) function f : X
−→ Y , where Y is Polish.

Theorem (quotient of analytic is analytic)

Given (S,Σ) an analytic space and ∼ an equivalence relation
such that there is a countable family of real-valued measurable
functions fi : S −→ R such that

∀s, s′ ∈ S.s ∼ s′ ⇐⇒ ∀fi . fi(s) = fi(s′)

then the quotient space (Q,Ω) - where Q = S/ ∼ and Ω is the
finest σ-algebra making the canonical surjection q : S −→ Q
measurable - is also analytic.
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The Quotient

Theorem (unique measure)

Let (S,Σ) be an analytic space, and F ⊆ Σ with S ∈ F ,
countable and closed under intersection.
If two measures agree on F , then they agree on clΣ(F).

clΣ(F) := {A ∈ Σ | if s ∈ A and s ≡F s′ then s′ ∈ A}
The equivalence s ≡F s′ is witnessed also by the functions
IF : S −→ R, for F ∈ F defined by

IF (s) = 1 if s ∈ F , and 0 otherwise

They are a countable family of measurable functions.
Thus the quotient space (Q,Ω) is analytic.
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Through the quotient: q : (S,Σ) −→ (Q,Ω)

Recall that Ω := {Y ⊆ Q | q−1(Y ) ∈ Σ}

We prove q(clΣ(F)) = Ω

⊇: because q−1(Y ) is ≡F -closed for Y ∈ Ω

⊆: if X ∈ clΣ(F) then q(X ) ∈ Ω because q−1(q(X )) = X (1)
s ∈ q−1(q(X)) implies that q(s) ∈ q(X), i.e. ∃s′ ∈ X .s ' s′, but X is closed so s ∈ X .

Now q(σ(F))

is a sub-σ-algebra of Ω (inclusion is by (1))
= σ(q(F)) and hence is countably generated and
separates points

Thus q(σ(F)) = q(clΣ(F))
The argument finishes with σ(F) = clΣ(F) 2
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Simulation on an LMP S = (S,Σ, τ)

Definition (DGJP I&C03)
A preorder R is a simulation if

if s R s′, and if A is an R-closed set in Σ, then
τα(s,A) ≤ τα(s′,A) for all a ∈ L

s and t are bisimilar if sRt for some bisimulation relation.
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Simulation on an LMP S = (S,Σ, τ)

Definition (DLT in QEST08)
A preorder R is a ε-simulation if

if s R s′, and if A is an R-closed set in Σ, then
τα(s,A) ≤ τα(s′,A)−ε for all a ∈ L

s and t are bisimilar if sRt for some bisimulation relation.
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Logic for simulation?

The logic used in the characterization has no negation, not
even a limited negative construct.
One can show that if s simulates s′ then s satisfies all the
formulas of L that s′ satisfies.
What about the converse?

Josée Desharnais, Laval University Logical characterization of bisimulation for LMPs



Intro Measure theory LMPs Proof Concluding remarks Simulation Logic for simulation Conclusion

Counter example!

�L

In the following picture, t satisfies all formulas of L that s
satisfies but t does not simulate s.
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All transitions from s and t are labelled by a.

t1 cannot simulate any state but t reaches it with probability 1
4

s |= 〈a〉 7
8
(〈a〉0.1T ∨ 〈b〉0.1T)

t 6|=
t |= 〈a〉0.1(〈a〉0.1T ∧ 〈b〉0.1T).
s 6|= so s 6∼L t
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A logical characterization for simulation

The logic L does not characterize simulation. One needs
disjunction.

L∨ := L | φ1 ∨ φ2.

Theorem (DGJP I&C03)
An LMP s1 simulates s2 if and only if for every formula φ of L∨
we have

s1 |= φ⇒ s2 |= φ.

The only proof we know uses domain theory.
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Other Logics

LCan := L0 | Can(a)

L∆ := L0 | ∆a

L¬ := L0 | ¬φ
L∧ := L¬ |

∧
i∈N

φi

where

s |= Can(a) to mean that τa(s,S) > 0;
s |= ∆a to mean that τa(s,S) = 0.

We need L∨ to characterise simulation.
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Conclusions

Strong probabilistic bisimulation is characterised by a very
simple modal logic with no negative constructs.
There is a logical characterisation of simulation.
There is a “metric” on LMPs which is based on this logic.
Why did the proof require so many subtle properties of
analytic spaces? The logical characterisation proof is
“easy” for event- bisimulation, but the two bisimulations
coincide only on analytic spaces.
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