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Motivation

I was looking for a structural approach to coalgebraic modal logic
independent of Stone duality, maps between semantics, and . . . a
category!

Modularity Colimits, limits, and compositions. No syntax
bookkeeping!

Full semantics The terminal object in some fibre.
Modality Objects of modalities characterised by Yoneda

Lemma.
Generality None of results depends on any particular

propositional logic.



What is . . . coalgebraic modal logic?

Modalities for coalgebras for some T : Set→ Set can be modelled
in different ways:

1 cover modality ∇ : T2− ⇒ 2T by Moss for weak-pullback
preserving T (not discussed here).

2 n-ary predicate liftings by Pattinson λ : (2−)n ⇒ (2T )

Definition (Logic of predicate liftings)

Syntax Φ 3 ϕ ..= ⊥ | ¬ϕ | ϕ ∧ ϕ | λ(ϕi )i=1...n.

Semantics For (X ξ−→ TX ), define [[−]] : Φ→ 2X by
[[⊥]] ..= ∅, [[¬ϕ]] ..= [[ϕ]]{, [[ϕ ∧ ψ]] ..= [[ϕ]] ∩ [[ψ]], and

[[λ(ϕi )]] ..= ξ−1 ◦ λX ([[ϕi ]])
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Example: Kripke semantics via predicate lifting

1 Classical modal logic

ϕ ..= ⊥ | ¬ϕ | ϕ ∧ ϕ | ♦ϕ

where ♦ is a predicate lifting for P defined by

♦X : (S ⊆ X ) 7→ {U ∈ PX | U ∩ S 6= ∅ }.

2 For any x ∈ (X , ξ), we have

x ∈ [[♦ϕ]] = ξ−1 ◦ ♦X ([[ϕ]])
⇐⇒ x ∈ { x ∈ X | ξ(x) ∩ [[ϕ]] 6= ∅ }
⇐⇒ ∃y ∈ ξ(x). y ∈ [[ϕ]]

That is, the usual semantics of possibility.
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One-step semantics for Stone duality

Facts (Kupke, Kurz and Pattinson, 2004) and (Kurz and Leal, 2012)

Both of approaches for T -coalgebras are of the following form

LQ ˙−→QT

where Q : Set→ BA is the contravariant powerset algebra functor.

Example (L as presentation of modalities)
Define L = M : BA→ BA by the presentation

MA ..= BA〈 {�a}a∈A | �⊥ = ⊥,�(a ∨ b) = �a ∨ �b 〉

and (Mf )(�a) ..= �fa. Every Boolean algebra with a
join-preserving function ♦ is an M-algebra α : MA→ A by

α(�a) ..= ♦(a) and conversely ♦(a) ..= α(�a).
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Example: Kripke semantics

1 For each set X , define δX : MQX ˙−→QPX on �S on
generators by

�S 7→ ♦X (S)
where S ⊆ X .

2 Every P-coalgebra is mapped to an M-algebra by

Qδ : (X ξ−→ PX ) 7→ (MQX δX−→ QPX Qξ−−→ QX )

which is the complex algebra.
3 The interpretation for (X , ξ) is unique morphism from the

initial M-algebra (Φ, α):

MΦ α
∼=

//

M[[−]]
��

Φ
[[−]]
��

MQX
δX
// QPX

Qξ
// QX

E.g. [[α(�ϕ)]] = (Qξ ◦ δX ◦M[[−]])(�ϕ) = (ξ−1 ◦ ♦X )([[ϕ]]).
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One-step semantics in general

Definition
A one-step semantics over a contravariant functor P : X → A
consists of

type of behaviour T : X →X ,
syntax of modalities L : A → A , and

interpretation of modalities δ : LP ˙−→PT .

P : X → A usually forms a dual adjuntion on the right with some
S, i.e.

X (X ,SA) ∼= A (A,PX )

natural in X and A.



Predicates

Example

1 Stone dualities Q : Set→ BA, 2− : Set→ Set,
O : Top→ Frm, and Clp : Stone→ BA.

2 S : Meas→ ∧-SLat maps a measurable space to its σ-algebra
as a ∧-semilattice.

Let P be one of the above with the dual adjoint S;
A = Set, BA, Frm, ∧-SLat with F the left adjoint to the
forgetful functor U : A → Set.
UPX is understood as “predicates” on X and moreover

UPX ∼= Set(1,UPX ) ∼= A (F1,PX ) ∼= X (X ,SF1)

A predicate on X is a test on X by Ω.



for 2− : Set→ Set and Q : Set→ BA,

Ω ∼= {⊥,>}

for O : Top→ Frm,

Ω ∼= ({⊥,>}, {∅, {>}, {⊥,>})

the Sierpiński space.
for the clopen funtor Clp : Stone→ BA and
S : Meas→ ∧-SLat,

Ω ∼= ({⊥,>}, {∅, {>}, {⊥}, 2}}

the discrete space on {⊥,>}.
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Notions of maps between semantics
Question: What are morphisms between one-step semantics over
the same P? Two possible choices

1 Interpretation-preserving translations τ : L1 ˙−→L2 between
syntaxes

L1P
δ1

""
τP
��

L2P
δ2
// PT

2 Natural transformations between types of
behaviour ν : T2 → T1 satisfying

LP δ1 //

δ2 ""

PT1

Pν
��

PT2
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My answer: Both. A morphism from (L1,T1, δ1) to (L2,T2, δ2) is a
pair of natural transformations τ : L1 → L2 and ν : T2 → T1
satisfying

L1P
δ1 //

τP
��

PT1

Pν
��

L2P
δ2
// PT2

The previous choices are special cases for ν = id or τ = id
respectively.



Category of One-Step Semantics

The category of one-step semantics over P, denoted CoLog
(with P implicit) is a category consisting of

objects one-step semantics (L,T , δ : LP ˙−→PT ) over P.
morphisms a pair (τ : L1 ˙−→L2, ν : T2 ˙−→T1) of nat. trans. is a

morphism from (L1,T1, δ1) to (L2,T2, δ2) if

L1P
δ1 //

τP
��

PT1

Pν
��

L2P
δ2
// PT2

In short, CoLog is the comma category (P∗↓P∗) from the
pre-composition of P to the post-composition P.



Modularity: Colimits of one-step semantics

If pointwise coproduct L1 and L2 exists, then

L1P
δ1 //

inj1P
��

PT1

Pproj1
��

(L1 + L2)P δ // P(T1 × T2)

L2P

inj2P
OO

δ2
// PT2

Pproj2

OO

and δ is a coproduct in CoLog. It also applies to colimits in
general.

Example (Labelling T A)
The A-fold coproduct of modal logic is multi-modal logic for
A-labelled Kripke frames X → (PX )A.
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Modularity: Product of one-step semantics
Assume P has a dual adjoint. Then,

L1P
δ1 // PT1

(L1 × L2)P
proj1P

OO

proj2P ��

δ // P(T1 + T2)
Pinj1

OO

Pinj2��
L2P

δ2
// PT2

and δ is a product in CoLog. It applies to limits in general.

Example

1 An alternating system over an action set A is a coalgebra for
D + PA where D is the probability distribution functor.

2 A modal logic for alternating system is a product of
probabilistic modal logic and A-labelled modal logic.
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Modularity: Compositions of one-step semantics

Endofunctors are composable, so are one-step semantics. Define
the composition δ1 ⊗ δ2 of δ1 and δ2 by pasting diagrams

{� δ1

L1ooOO OO

T1
oo

⊗ {� δ2

L2ooOO OO

T2
oo

..= �� δ1⊗δ2

L1L2ooOO OO

T1T2
oo

that is,
δ1 ⊗ δ2 : L1L2P

L1δ2−−→ L1PT2
δ1T2−−−→ PT1T2.

Theorem
The composition ⊗ with the identity semantics (I, I, idP) is a
strict monoidal structure on CoLog.



Example: Simple Segala system

Definition
A simple Segala system for a set A of actions is a

1 a coalgebra for PA ◦ D
2 D is the probability distribution functor defined by

DX ..= {µ : X → [0, 1] |
∑
x∈X

µ(x) = 1 and |µ(x) 6= 0| ∈ N }

for each set X .

A modal logic for simple Segala systems can be derived as the
composition of

1 the A-fold coproduct
∐

A(M,P, δ) and
2 probabilistic modal logic (LΛ,D, δΛ) induced by predicate

liftings
〈p〉(S) ..= {µ ∈ DX |

∑
µ(S) ≥ p }
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Monoid objects

Theorem
A monoid object in the strict monoidal category (CoLog,⊗, id)
consists of a monad L on A , a comonad T on X and a one-step
semantics δ : LP → PT satisfying the homomorphism condition.

Are they multi-step semantics? Any other kind of objects? Any
use? Future work.

Remark
Some of them were done in Set by (Cîrstea and Pattinson, 2007) and
(Schröder and Pattinson, 2011).



Category of semantics for T -coalgebras

Now, we fix the type of behaviour . . .

Definition
The category CoLogT of one-step semantics for T -coalgebras
consists of

objects natural transformations δ : LP ˙−→PT , i.e. one-step
semantics (L, δ) with T implicit.

morphisms a natural transformation τ : L1 → L2 is a morphism
from (L1,T , δ1) to (L2,T , δ2) if

L1P
δ1 //

τ

��

PT

L2P
δ2

<<

In short, CoLogT is the fibre over T .



Terminal object in CoLogT

Theorem
Suppose that P has a dual adjoint S. Then every fibre CoLogT
has a terminal object (PTS,PT ε : PTSP ˙−→PT )

XT
)) P

((

S
hh A PTSff

where ε : I → SP is the counit of the dual adjunction.

This one-step semantics is called the full one-step semantics
for T -coalgebras.
Its presentation is not clear, but we will restrict to its
equationally presentable part shortly.



1 For every (L, δ), there is τ : L→ PTS by L Lη−→ LPS δS−→ PTS.
2 τ is a translation because

LP //LηP //

id ##

LPSP
LPε
��

δSP // PTSP
PT ε
��

LP
δ
// PT .

3 for every translation τ ′ : (L, δ)→ (PTS,PT ε) the diagram

L τ ′
//

Lη
��

PTS
id

%%
PTSη

��
LPS

τ ′PS
//

δS

OOPTSPS
PT εS

// PTS

commutes, so τ = τ ′.
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Finitely based functors
We restrict to those “presentable” L:

Definition (see (Bonsangue and Kurz, 2006) and (Velebil and Kurz,
2011))

Let U : A → Set be a finitary and monadic functor. A functor
L : A → A is finitely based if one of the following holds:

1 L is finitary and preserves canonical presentations;
2 L preserves sifted colimtis;
3 L is a left Kan extension LanJLJ for the inclusion function

from the subcategory of A on Fn for n ∈ N.

That is,
LA = Colimσ : Fn→ALFn

LFn
Lf

//

66

LFm

OO



Fact
Every finitely based functor L : A → A is isomorphic to a functor
defined by

LA ∼= A 〈 {σ(~a)}σ∈Σn,~a∈An | E 〉

where Σn is a set of n-ary operations and E a set of rank-1
equations.

E.g. M, LΛ for a set Λ of predicate liftings.

Theorem
The category Fin[A ,A ] of finitely based endofunctors is the
coreflexive subcategory of the category [A ,A ] of endofunctors.

A finitely based coreflection ρ of L is a natural transformation

ρL : LanJLJ ˙−→L

derived by ColimFn→ALFn.
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Categories for equational semantics
Assume that there is a finitary and monadic U : A → Set.

Definition

1 The category ECoLog is the subcategory of CoLog on
one-step semantics whose syntax functor L is finitely based.

2 The category ECoLogT is the subcategory of CoLogT and a
fibre of ECoLog over T .

Proposition

1 ECoLog is a coreflexive subcategory of CoLog.
2 ECoLogT is a coreflexive subcategory of CoLogT .

The coreflection is derived by precomposing the coreflection ρL of L

(LanJLJ)P ˙−→LP ˙−→PT



Moduarity, revisited

Proposition
ECoLog is closed under colimits, finite products, and
compositions.

It follows from coreflexivity, the commuting property of sifted
colimits with finite products, and the preservation property.
E.g. A-fold coproduct of M∐

A
MB ∼= BA〈 {♦ia}i∈A,b∈B | · · · 〉
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Terminal object in ECoLogT

Theorem
Suppose that P has a dual adjoint S. Then every fibre ECoLogT
has a terminal object

(LanJPTSJ ,PT ε ◦ ρP : (LanJPTSJ)P ˙−→PT )

where J is the inclusion from the subcategory of A on Fn for
n ∈ N, ε : I → SP is the counit of the dual adjunction and
ρ = ρPTS is the finitely based coreflection of PTS.

This one-step semantics is called the full equational
one-step semantics for T -coalgebras.
It corresponds to the logic of all finitary predicate liftings
subject to a complete axiomatisation.1

1Its characterisation is ignored in this talk, see my MFPS paper or thesis.



Object of predicate liftings

Let F be the left adjoint to U : A → Set. Note that LanJPTSJ
can be computed as ColimFn→APTSFn on A ∈ A .

Lemma
For each n ∈ N, there is a natural isomorphism

UPTSFn ∼= Nat(UPn,UPT )

For P = 2−,Q, a natural transformation from UPn to UPT
coincides with a predicate lifting for a set functor T .
We shall call a natural transformation λ : UPn → UPT a
predicate lifting either.



Proof.
By Yoneda Lemma, the dual adjunction, and the free adjunction,
we have

UPTSFn ∼= Nat(X (−, SFn),UPT )
∼= Nat(A (Fn,P−),UPT )
∼= Nat(UPn,UPT )

Remark

1 It is known in (Schröder, 2008) for 2− by Yoneda Lemma and
the fact that 2− ∼= Set(−, 2) is representable.

2 It was suggested implicitly in (Klin, 2007).

A higher generality gives an even simpler argument.
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Theory map

For simplicity, assume that the category X of state spaces is
concrete.

1 Let (L,T , δ) be a one-step semantics such that the initial
L-algebra (Φ, α) exists.

2 The interpretation [[−]] : Φ→ PX for a T -coalgebra (X , ξ) is
the unique L-algebra homomorphism to
(LPX δX−→ PTX Pξ−→ PX ) as usual.

3 The theory map th : X → SΦ is the transpose of [[−]]

E.g. for P = 2−, the theory of x is the set of true propositions on x

th(x) = {ϕ ∈ Φ | x ∈ [[ϕ]] }
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Logical equivalence, adequacy, and expressiveness

1 Two elements x and y are logically equivalent wrt (L,T , δ)
if th(x) = th(y).

2 x and y are behaviourally equivalent (or bisimilar) wrt T if
there exists a coalgebra homomorphism f with f (x) = f (y).

3 A logic is adequate if behaviourally equivalent elements are
logically equivalent. It holds for all one-step semantics
(L,T , δ) with an initial L-algebra.

4 A logic is expressive if every two logically equivalent elements
are behaviourally equivalent.
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One-step expressiveness
Define the mate δ∗ for δ : LP ˙−→PT by pasting

L // S //

S
//

I

??

�#
η P

OO

T op
//

�#δ P

OO
�#
ε

I

??

i.e. δ∗ is a natural transformation SLη ◦ SδS ◦ εTS from TS to SL.

Theorem ((Klin, 2007) and (Jacobs and Sokolova, 2010))

Suppose that X has a proper factorisation system (E ,M). Then,
a one-step semantics (L,T , δ) is expressive if

1 T preservesM-morphisms and
2 the mate δ∗ is a pointwiseM-morphism.

A one-step semantics is one-step expressive if it satisfies the
above two conditions.
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Preservation of one-step expressiveness

Theorem

1 The composition of two one-step expressive semantics remains
one-step expressive.

2 A colimit of one-step expressive semantics remains expressive.

Proof sketch.

1 By the fact that (δ1 ⊗ δ2)∗ = δ∗1L2 ◦ T1δ
∗
2 and Ti preserves

M-morphisms.
2 By the fact the mate of a colimit δ is a pointwise limit, and
M is closed under limits in the arrow category.
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Corollary (Labelling by A)
An A-fold coproduct of a one-step semantics (L,T , δ) is expressive
if and only if (L,T , δ) is one-step expressive.

E.g.
1 Multi-modal logic for labelled image-finite Kripke frames (or

descriptive general frames) is one-step expressive;
2 Probabilistic multi-modal logic is one-step expressive for

labelled Markov chains.
3 Stochastic multi-modal logic is one-step expressive for labelled

Markov processes.
4 . . .
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Conclusion

We have seen the following points in CoLog:
Modularity Colimits, limits, and compositions.

Full semantics Every logic for T -coalgebras can be translated to
the full semantics.

Modality Characterising modalities by Yoneda Lemma.
Generality None of results depends on any particular

propositional logic.

Thank you for your attention! Questions?
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