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Abstract 

Carbon nanotubes (CNTs) are rolled sheets of carbon whose atoms are arranged in a 
hexagonal pattern. CNTs measure about a millionth of a millimeter in diameter and show great 
promise for nanotechnology applications. Use of CNTs in nanoelectronics can lead to nanoscale 
sensitive devices, such as sensors that can detect environmentally toxic microscopic agents. To 
investigate the electrical properties of such sensors, CNT-embedded metal-oxide-semiconductor 
structures are analyzed using numerical modeling. The Poisson equation which describes the 
electric field in the sensor is solved numerically to obtain the electrostatic potential and 
capacitance of sensor devices. The effects of CNTs on device performance are examined by 
graphing results in the one and two dimensional cases. 

Motivation 

Since the earliest days of recorded history, the deliberate contamination of the environment 
has been an unfortunate but common tactic in warfare1. For the past two and a half millennia and 
perhaps even earlier, mechanisms such as “the catapulting of plague victims to the deliberate use 
of infected clothes, insect vectors, and specialized weapon systems”2 have been used to carry out 
such warfare and to cause an innumerable number of deaths. Environmental contagion is thus 
one of the longest-surviving, continuously-used techniques in offensive warfare. Today, a range 
of microscopic chemical agents have been developed and are being held by a number of 
countries and organizations3. These include the famed nerve agent sarin and the biological toxin 
ricin.4 
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The popularity and longevity of such methods are a 
direct result of the sheer difficulty of detecting invisible, 
toxic substances in the air, water, and food supply. The 
advent of modern packaging and distribution methods for 
toxins, as illustrated by the deadly anthrax attacks on the 
United States in 20025, has made the detection of 
contaminants even more elusive. The issues compound 
when soldiers are operating in a foreign, unfamiliar and 
possibly hostile territory and/or in a crowded urban 
environment.  

Recent advances in nanoengineering* pose a potential 
solution to the problem of detecting toxins. The proposed 
sensor makes use of nanoscale components and will have a 
high sensitivity to chemical and biochemical substances 
that potentially cause disease. It is being designed to report 
the presence of such hazards even at extremely low 
quantities and with a very fast response rate. In addition, 
the device will be very compact and it will be easy to carry 
around on any mission, thanks to its tiny components. Thus, such a device may serve as the first 
line of defense against environmental toxins for soldiers and civilians in any situation 
imaginable. 

The purpose of this undergraduate research project is to elucidate the properties of such a 
device proposed by the United States Army Research Laboratory, as will be described in the 
following pages. The project was conducted as a part of the University of Maryland Engineering 
Research Internship Teams (MERIT). I would like to express my sincerest thanks to Prof. Neil 
Goldsman and Dr. Akin Akturk for guiding and supporting me throughout this project. I am also 
indebted to the United States Army Research Laboratory for the funding and the idea which 
made this research possible. The interest and understanding that this project instilled in me have 
enabled and encouraged me to continue doing research in this area at my home institution, 
Cornell University. 

1 Introduction  

We propose to build a fast, sensitive sensor based on a metal-oxide-semiconductor (MOS) 
structure with an embedded carbon nanotube (CNT). A description of these concepts follows 
this introduction. Subsequently, we develop numerical modeling to study the electrostatic 
properties of the device. Among the factors varied in the simulation are the diameter and 
potential of the sensing plate (such as a nanotube) and the dimensions of each component of the 
structure. The Poisson equation is solved numerically for the electrostatic potential of each MOS 
device and the capacitance is calculated using the electric field. Finally, we analyze and compare 
the results to find trends in capacitance. In addition, we validate our solutions by several methods 
and compare our results to other capacitive sensor designs.  

                                                 
* Nanoengineering is the study of the construction of devices measuring on the order of 10–9 meter or 1 

nanometer.  

Figure 2-1 (above)   
Electron micrograph of the first carbon 
nanotubes produced by Sumio Iijima. The 
scale gives an idea of the tubes’ extremely 
small size, and there are even smaller 
ones available.6 

3 nm 
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2 Overview of Key Concepts 

2.1 Carbon Nanotube (CNT) 

The carbon nanotube was discovered by Sumio Iijima of NEC in 19916 (see figure 2-1). A 
nanotube, pictured in figure 2-2, is a rolled sheet of graphene, which is in turn comprised of 
hexagonal rings of carbon atoms bonded in sp2 hybridization6. The discovery ushered a wave of 
advanced research in the field of nanotube-based electronics. We propose one such application in 
this project.  

It has been observed that nanotubes are superior in a large number of physical properties 
when compared to today’s leading materials.7 First, the size of nanotubes gives a distinct 
advantage in constructing nanoscale electronic devices because the diameter of nanotubes has a 
lower limit of 0.6 to 1.8 nanometers in diameter, compared to devices produced by lithography 
that are usually about an order of magnitude larger.7 Nanotubes are able to carry 1 billion 
amperes per centimeter squared, a thousand times more current than copper wire.7 This research 
investigates advantages for using a nanotube in a MOS chemicapacitor and examines the 
capacitance of various such devices when compared to more traditional sensors. 

2.2 Metal-Oxide-Semiconductor (MOS) Capacitor 

The metal-oxide-semiconductor (MOS) capacitor is common in many semiconductor 
applications. A MOS capacitor can be made by shorting the drain and source terminals of a 
MOSFET (metal-oxide-semiconductor field affect transistor).8 As the name suggests, a MOS 
capacitor has three layers: a metal, an oxide, and a semiconductor. However, variants of this 
structure are often used in modern electronics. In fact, the metal is usually replaced by a highly 
conductive polycrystalline silicon.8 In this project we proposed to replace a traditional, 
“rectangular” semiconductor plate with a nanotube. The general structure of a MOS capacitor is 
illustrated in figure 2-3. For the MOS capacitor that we will study in this project, please see 
figure 3-1.  

  

Figure 2-2 (above)  Schematic of a typical MOS capacitor.8 

2.3 Chemicapacitive Sensing and Scope of this Research 

The purpose of a chemical sensor is to detect the presence of a certain substance in the 
environment. This can be done readily with a capacitor since the capacitance changes as the 
charge on the plates of the sensor is altered, which happens when a foreign particle attaches. In 

Oxide (an insulator) 

Semiconductor (substrate) 

Metal 
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order to selectively sense particles, we use a polymer sensitizer to limit entry into the capacitor to 
certain substances. We will not focus on specific substances or on the polymer sensitizer in this 
project. Instead, we will have a generic “particle” that acts as the absorbate to the sensor.  

Assume that we have the following device, a “traditional” microelectronic capacitor. The 
diagrams below represent a parallel-plate chemicapacitive sensor,9 a model that has been 
discussed in the published literature since 1983.10 This design has had applications as a sensor 
for the vapor phase of water (humidity),11 for detecting organic compounds,9 and for detecting 
ammonia in an industrial setting.12 In the diagram to the right, a particle that we are trying to 
detect has entered the sensor. 

                     

 

Figure 2-3 (above)  Cross section of a traditional MOS capacitor that will act as a sensor. In (a) there is no particle and 
in (b) there is a particle attached to the metal plate. 

The particle will cause a change in the capacitance of the device. A more sensitive sensor will 
have a greater percent change in capacitance when the particle enters so that it will be more 
easily detected.  

In this project, we investigate whether embedding a carbon nanotube into the air of the MOS 
using the single nanotube planar capacitor geometry,13 shown in figure 2-5, makes a better 
capacitive sensor and if it induces a higher sensitivity (as measured by percent change) in 
capacitance when the particle enters. 

                     

Figure 2-4 (above)  Cross sections of (a) a MOS Sensor with embedded nanotube and (b) the same device with a 
particle attached to the nanotube. 
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3 Background to the Numerical Model 

3.1 Notations and Conventions  

We have already seen several figures of different MOS structures. For the purpose of 
analyzing the sensor and creating the associated numerical models, we use the geometry 
presented below in figure 3-1. Notice that the metal plate at the top of the oxide represents the 
entire top boundary, followed by a rectangular region representing the oxide and then a 
rectangular region representing air. Just below the interface between the oxide and air, a plate or 
nanotube of varying size and shape may be added to serve as a second capacitor plate. The x, y, 
and z axes illustrated here will be used to develop all of the simulations. The arrows represent the 
direction of increasing value for each variable. The z-axis is illustrated below by an X, which 
means that this axis is perpendicular to the page, with values increasing in the direction down 
into the page. Please also note the example values of ε  given on this diagram. These will be 
used for the models developed in this project. 

   

Figure 3-1 (above) This structure will be investigated in this research.  

3.2 Electrostatic Modeling   

We solve the Poisson equation to obtain the electrostatic potential of our chemicapacitors. 
We then calculate measurable quantities such as capacitance and electric field that characterize 
the performance of our sensors. The Poisson equation is a partial differential equation that can 
be used to relate  potential to net charge density,14 as written below: 

 ( ) qε φ ρ∇ ⋅ ∇ = −  (3.1) 

Above, ε  is the space dependent dielectric constant, φ  is the electrostatic potential, ρ  is the net 
charge density, and q is the elementary charge, which is equal to −× 191.6 10  C .  

We take ρ as zero within the sensor device. We do not have trapped, surface, or free charges 
in our sensor device except at the gate terminal and the sensing plate, shown in figure 3-1. 

  x
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 In other words, using the reciprocity theorem, charge is not dealt with directly, but indirectly 
by setting the potential at certain locations. Therefore, equation (3.1) simplifies to 

 ( )ε φ∇ ⋅ ∇ = 0  (3.2) 

In this research, we will introduce both Dirichlet and Neumann boundary conditions for the 
numerical solution of the Poisson equation. In a Dirichlet (fixed) boundary, potential is set to a 
constant, i.e., φ = c . In a Neumann (floating) boundary, the derivative of the potential is 
constant in a direction perpendicular to the boundary, e.g., if the bottom x boundary of the MOS 

is floating, then its boundary condition will be φ∂
=

∂
0

y
, since the y-axis is perpendicular to the x-

axis.  

The Poisson equation can be written in one, two, or three dimensions, as follows: 

 ( ) ( )( ) 0y yε φ∇ ⋅ ∇ =  (one-dimensional Poisson Equation) (3.3) 

 ε φ
⎛ ⎞⎛ ⎞ ⎛ ⎞

∇ ⋅ ∇ =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

0
x x
y y

 (two-dimensional Poisson Equation) (3.4) 

 ε φ
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟∇ ⋅ ∇ =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

0
x x
y y

z z
 (three-dimensional Poisson Equation) (3.5) 

Each of these equations requires specific boundary conditions in order to have a finite solution. 

Considering figure 3-1, the one dimensional case may be represented by constant x and z 
positions with a varying y position. The two dimensional case is represented by a constant z 
position and varying x and y positions. In three dimensions, the x, y, and z positions vary. 

In this project, we aim to solve the Poisson equation for φ , the potential at an arbitrary point 
on the MOS capacitor, which can in turn be used to solve for the capacitance of the device and 
for its electric field. 

4 Numerical Modeling  

4.1 Meshes Used for Numerical Approximation 

Using a numerical model means that we will only be able to solve φ  for a certain number of 
points on the MOS structure. This rectangular grid is known as a mesh and each of its points is 
known as a meshpoint. The number of meshpoints is represented in this work by n subscripted 
by the appropriate direction. Meshes can be created in one, two, or three dimensions. The 
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distance between each point and its neighbor is called the spacing. In some cases, it is the same 
in all directions and between all points. This is called a square mesh, and the spacing may be 
represented by Δ  since it is always constant. In a uniform mesh, the separation distance is 
constant in each direction, but is not necessarily the same in all directions; thus, three separate 
variables must be used: xΔ , yΔ , and zΔ  for the x, y, and z directions, respectively. In a 
nonuniform mesh, the separation distance between the meshpoints is determined by a function 
of the location along the current axis and can be represented by the functions ( )x xΔ , ( )y yΔ , 
and ( )z zΔ  for the x, y, and z directions, respectively. These functions will be described in more 
detail in section 4.3.1. In this work the square and nonuniform meshes are used predominantly. 
For examples of meshes, see the solutions for potential in section 6.1. 

4.2 Numerical Model for Uniform and Square Meshes 

4.2.1 General Solution 

In order to solve the numerical approximation for uniform and square meshes, we have 
chosen to use the central difference approximation. For each dimension (x, y, and/or z), we 

must simplify the Poisson equation (3.2) into a first derivative in the form ( )r
r

ξ∂
∂

, where ξ  is 

some function, r is the direction x, y, or z, and rΔ  is the value representing the separation 
distance in the r direction. 

We use the Taylor approximation15 to solve for ( )rrξ + Δ  and ( )rrξ − Δ : 

 ( ) ( ) ( ) ( ) ( ) ( )
2 3

2 3 4
2 3

1 1
2! 3!r r r r r

r r r
r r O

r r r
ξ ξ ξ

ξ ξ
∂ ∂ ∂

+ Δ = + Δ + Δ + Δ + Δ
∂ ∂ ∂

 (4.1)  

and 

 ( ) ( ) ( ) ( ) ( ) ( )
2 3

2 3 4
2 3

1 1
2! 3!r r r r r

r r r
r r O

r r r
ξ ξ ξ

ξ ξ
∂ ∂ ∂

− Δ = − Δ + Δ − Δ + Δ
∂ ∂ ∂

 (4.2) 

We now subtract equation (4.2) from equation (4.1), solve for ( )r
r

ξ∂
∂

, and neglect the error term 

O: 

 ( ) ( ) ( )
2

r r

r

r rr
r

ξ ξξ + Δ − −Δ∂
=

∂ Δ
 (4.3) 

To allow for the storage of fewer meshpoints, we divide each of the quantities in the right hand 
side of the equation by 2: 
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 ( ) 2 2
r r

r

r rr
r

ξ ξξ
Δ Δ⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠=

∂ Δ
   

 (First derivative approximation formula for uniform meshes) (4.4) 

4.2.2 One-Dimensional Square/Uniform Mesh 

To be consistent with figure 3-1, we will choose our variable dimension to be y. Note that the 
square and uniform meshes are the same here since there is only one dimension. First, we rewrite 
the one-dimensional Poisson equation (3.3): 

  ( ) ( )( )ε φ∇ ⋅ ∇ = 0y y  (4.5) 

Evaluating the inner gradient (∇ ) operator, we derive that  

 ( ) ( ) 0
y

y
y

φ
ε

⎛ ⎞⎛ ⎞∂⎛ ⎞
∇ ⋅ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠

j  (4.6) 

Now we simplify the outer divergence, which is a dot product, resulting in a scalar equation: 

 
( ) ( )

0

y
y

y
y

φ
ε
⎛ ⎞∂⎛ ⎞

∂ ⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠ =
∂

 (4.7) 

We apply equation (4.4) on the inner derivative, setting r y= , ξ φ= , and rΔ = Δ  (square 
mesh):  

 
( ) ( ) ( )2 2

0

y y
y

y

φ φ
ε
⎛ ⎞+ Δ − + Δ⎛ ⎞

∂ ⎜ ⎟⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠ =
∂

 (4.8) 

Expanding, 

 

( ) ( ) ( ) ( )2 2

0

y y y y

y

ε φ ε φ+ Δ − −Δ⎛ ⎞
∂ ⎜ ⎟Δ⎝ ⎠ =

∂
 (4.9) 

Now we apply equation (4.4) to the outer derivative, setting r y= , 
( ) ( ) ( ) ( )2 2

0
y y y yε φ ε φ

ξ
+ Δ − −Δ

= =
Δ

, and rΔ = Δ : 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 2 2

2 2 2 2 2 2

0

y y y y

y y y y

ε φ ε φ

ε φ ε φ

+ Δ + Δ + Δ − + Δ −Δ + Δ⎛ ⎞
⎜ ⎟Δ⎜ ⎟

− Δ + Δ −Δ − −Δ −Δ −Δ⎜ ⎟
−⎜ ⎟
⎝ Δ ⎠ =

Δ
 (4.10) 

which readily simplifies to  

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 2 2 2 0y y y y y y yε φ ε ε φ ε φ−Δ − Δ − + Δ + −Δ + + Δ + Δ =   
 (one dimensional square mesh numerical model) (4.11) 

Notice that since we have a square mesh, all of the Δ  expressions in the denominator have 
cancelled. 

This form is especially convenient because it can readily be written in matrix format in the 
discrete mesh of yn meshpoints and solved using linear algebra methods (discussed in more 
depth in section 5). Note that in some cases 0 terms may be replaced by numbers, such as when 
implementing a nonuniform mesh. 

( )
( )
( )

( )

Boundary0 0 0 0 0 0 0condition
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

Boundary0

2

0 0 0 0 0 condition

Coefficients of :  rows by 

2

2

 columns

2

pos

pos y

y y

y

y n

n n

y

y
yy

ε

ε
ε

φ

ε

⎡ ⎤=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= Δ ⎢

+ Δ⎛ ⎞
−⎜ ⎟⎜ ⎟+ −

+ Δ
Δ

⎥

⎝

⎣ ⎦

− Δ
⎠

( )

( )
( )

( )

( )

Boundary
0 condition

0
0

0
0

Boundary
condition

:  elements
elements

y

y
y

n

y

n

y
y

n

φ

φ

φ

φ

φ

φ

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥

− Δ

⎣ ⎦ ⎢ ⎥
⎣

+ Δ

⎦

 (one dimensional matrix equation) (4.12) 

4.2.3 Two-Dimensional Square Mesh 

Extending the one-dimensional solution derived above to two dimensions is straightforward. 
Recall equation (3.4), the two dimensional version of the Poisson equation:  

 ε φ
⎛ ⎞⎛ ⎞ ⎛ ⎞

∇ ⋅ ∇ =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

0
x x
y y

 (4.13) 

Since the mesh we are working with is still a square mesh, the spacing is represented by Δ . By 
applying procedures similar to those described in section 4.2.2 on both the x and y directions, we 
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derive a similar discretized equation along the x and y axes. Thus our numerical solution can be 
expressed as a sum of the solutions in the x and y directions: 

2 2 2
2 2 2

2
 0

2

x x x x x x x x x
y y y y y y y y y

x x x x
y y y y

ε φ ε φ ε ε ε ε φ

ε φ ε φ

− Δ −Δ + Δ −Δ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− Δ −Δ + Δ −Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

+ Δ + Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ Δ + Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 (two dimensional square mesh numerical solution) (4.14) 

This equation is similarly convenient to express as a matrix. We have yn  meshpoints in the y 
direction and xn  meshpoints in the x direction. Using the form below, the Poisson equation can 
be solved using linear algebra. Again, some of the 0 terms may be replaced by numbers in some 
solutions. See the Appendix (page 20) for this matrix.  

4.3 Numerical Solutions for Nonuniform Meshes  

4.3.1 Mesh Definition 

To choose the separation distance for a nonuniform mesh, we choose two values for each 
direction: p and Δ . Then the separation distance between each of the meshpoints is determined 
by the following series: 

 3 2 2 3p p p p p p⎡ ⎤Δ Δ Δ Δ Δ Δ Δ Δ⎣ ⎦  (4.15) 

In most cases, two additional meshpoints that do not conform to this series must be added at both 
ends of the mesh to complete the structure’s desired size (see section 6.1 for more details about 
device sizes). 

4.3.2 Numerical Modeling  

4.3.2.1 Model for the points inside the air and oxide 

For each dimension (x, y, and/or z), we discretize the second derivative in the Poisson 

equation (3.2).  The second derivative is ( )2

2

r
r
ξ∂
∂

, where ξ  is some function, r is the direction x, 

y, or z. During discretization, we represent the nonuniform spacing in the r direction by ( )r rΔ . 
First we choose two values of ( )r rΔ , to be referred to as 1rΔ  (forward spacing) and 

2rΔ (backward spacing). Again we use the Taylor approximation and multiply the forward and 
backward expansions by the backward and forward spacings, respectively: 

 ( ) ( ) ( ) ( ) ( )ξ ξ
ξ ξ

∂ ∂
Δ + Δ = Δ + Δ Δ + Δ Δ + Δ Δ

∂ ∂

2
2 3

2 1 2 1 2 1 2 1 22

1
2!r r r r r r r r r

r r
r r O

r r
 (4.16) 
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 ( ) ( ) ( ) ( ) ( )ξ ξ
ξ ξ

∂ ∂
Δ −Δ = Δ − Δ Δ + Δ Δ + Δ Δ

∂ ∂

2
2 3

1 2 1 2 1 2 1 2 12

1
2!r r r r r r r r r

r r
r r O

r r
 (4.17) 

Adding these two formulas and ignoring higher order terms,  

 ( ) ( ) ( ) ( ) ( ) ( )ξ
ξ ξ ξ ξ

∂
Δ + Δ + Δ −Δ = Δ + Δ + Δ Δ Δ + Δ

∂

2

2 1 1 2 2 1 1 2 1 22r r r r r r r r r r
r

r r r r
r

 (4.18) 

Now we assume that ( )1r r iΔ = Δ  and that ( )2 1r r iΔ = Δ − , where i is the meshpoint number. 

Solving for ( )2

2

r
r
ξ∂
∂

 and applying this assumption:   

 ( ) ( )( )
( ) ( ) ( )( )

( )
( ) ( )

( )( )
( ) ( ) ( )( )

2

2

2 22
1 1 1 1

r r

r r r r r r r r

r r r rr r
r r r r r r r r r

ξ ξξ ξ− Δ + Δ∂
= − +

∂ Δ − Δ + Δ − Δ Δ − Δ Δ + Δ −
  

 (Second derivative approximation formula for nonuniform meshes) (4.19) 

4.3.2.2 Model for the interface  

The above model is valid everywhere in the device except at the interface between the oxide 
and the air. At this part of the device, we must use a different formula that takes into account the 
special properties of the boundary. Assume that we take a small cylinder of volume V around a 
certain section of the interface, perpendicular to the interface. Regardless of the dimension of the 
simulation, our interface at 0y y=  is always only perpendicular to the y-axis, so we will solve 
this equation specifically for this direction. 

 

Figure 4-1 (above) Derivation of the interface equation.  

Starting from the Poisson equation (3.2), we have  

 ( )ε φ∇ ⋅ ∇ = 0  (4.20) 

From the physics of electricity, we know that φ−∇ = E , where E is the electric field. Thus, we 
may write this equation as  

 ( ) 0Eε∇ ⋅ =  (4.21) 

Taking the volume integral of the cylinder, we have 

Oxide 
 
 

   V 
Air 

y

0y  
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 ( ) 0
V

E dVε∇ ⋅ =∫  (4.22) 

By Stoke’s Theorem, 

 0
S

EdSε =∫  (4.23) 

As the cylinder is collapsed to a radius of 0, all surface vectors cancel except at the top and 
bottom circle, leaving us with 

 ε φ ε φ+ −− ∇ + ∇ =
0 0

0oxide airy y
 (4.24) 

Which, by the definition of the derivative, evaluates to our formula: 

 
( ) ( )( )

( )
( )( ) ( )
( )

0 0 0 0 0
1

y y
oxide air

y y

y y j y j y
j j

φ φ φ φ
ε ε

− −Δ + Δ −
− =

Δ − Δ
 (4.25) 

where j is the meshpoint number. To facilitate storage in the matrix, this formula may be 
rewritten as 

 
( )

( )( ) ( ) ( )
( )

( )
( )( )0 0 0 0

1 1
oxide oxide air air

y y
y y y y

y j y y j
j j j j

ε ε ε εφ φ φ
⎛ ⎞

− Δ − + + + Δ =⎜ ⎟⎜ ⎟Δ − Δ − Δ Δ⎝ ⎠
  

 (approximation formula at interface for all nonuniform mesh problems) (4.26) 

4.3.3 Two Dimensional Nonuniform Mesh 

Recall equation (3.4), the two dimensional version of the Poisson equation:  

 ε φ
⎛ ⎞⎛ ⎞ ⎛ ⎞

∇ ⋅ ∇ =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

0
x x
y y

 (4.27) 

This equation may reduce to the following form (see section 4.2.2 for derivation in one 
dimension): 

 0

x x
x xy y
y yx y

x y

φ φ
ε ε

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠+ =

∂ ∂
 (4.28) 
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Recall that we derived a separate formula for the interface of the device in equation (4.26). 

Then, for all non-interface meshpoints, 
x
y

ε
⎛ ⎞
⎜ ⎟
⎝ ⎠

 may be considered constant. Therefore, we can 

rewrite the equation as: 

 

2 2

2 2 0

x x
y y

x xx y
x x x y y
y y yx y x y

φ φ

φ φ
ε ε ε

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟∂ ∂
⎜ ⎟ ⎜ ⎟∂ ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞

∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟+ = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

 (4.29) 

which means that we can apply equation (4.19) twice, one time for each dimension. From this 
application, we receive the numerical formula 

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( )

( ) ( ) ( )( ) ( )

φ φ

φ

φ φ

⎛ ⎞ − Δ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟− Δ Δ − Δ + Δ −Δ − Δ + Δ − ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟Δ − Δ Δ − Δ ⎝ ⎠⎝ ⎠

⎛ ⎞+ Δ⎛ ⎞
+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟+ ΔΔ Δ + Δ − Δ Δ + Δ −⎝ ⎠ ⎝ ⎠

2 2
1 11 1

2 2
1 1

2 2 0
1 1

x

y x x xy y y

x x y y

x

yx x x y y y

x x i
y j i i i yj j j

x
yi i j j

xx i
y ji i i y j j j

  

 (two dimensional nonuniform mesh numerical solution) (4.30) 

where i is the meshpoint number in the x direction and j is the meshpoint number in the y 
direction.  

The matrix derived is similar to the one in equation (8.1), with the appropriate coefficients 
and one row corresponding to the interface that represents equation (4.26). 

4.3.4 Three Dimensional Nonuniform Mesh 

Recall equation (3.5), the two dimensional version of the Poisson equation:  

 ε φ
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟∇ ⋅ ∇ =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

0
x x
y y

z z
 (4.31) 

We can see based on equation (4.19) and the solution derived in section 4.3.3 that the 
numerical solution for three dimensions may be expressed as follows: 
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( ) ( ) ( )( ) ( )
( ) ( ) ( )( )

( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )

( ) ( ) ( )( )

φ φ

φ

φ

φ φ

⎛ ⎞ − Δ⎛ ⎞
⎜ ⎟ ⎜ ⎟− Δ +⎜ ⎟ ⎜ ⎟Δ − Δ + Δ −Δ − Δ + Δ − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟

+ ⎜ ⎟Δ − Δ + Δ − ⎜ ⎟− Δ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎜ ⎟− + +⎜ ⎟ ⎜ ⎟⎜ ⎟Δ − Δ Δ − Δ Δ − Δ ⎜ ⎟⎝ ⎠ ⎝ ⎠

+ Δ⎛ ⎞
⎜ ⎟+ +⎜ ⎟Δ Δ + Δ − Δ Δ + Δ −⎜ ⎟
⎝ ⎠

2 2
1 11 1

2
1 1

2 2 2
1 1 1

2 2
1 1

x

y
x x xy y y

z z z
z

x x y y z z

x

x x x y y y

x x i
y j y

i i ij j j zz

x
y

k k k
z k

x
y

i i j j k k
z

x i
y

i i i j j jz
( )

( ) ( ) ( )( ) ( )
φ

⎛ ⎞
⎜ ⎟

+ Δ⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟

+ =⎜ ⎟Δ Δ + Δ − ⎜ ⎟+ Δ⎝ ⎠

2 0
1

y

z z z
z

x
y j

z

x
y

k k k
z k

  

 (three dimensional nonuniform mesh numerical solution) (4.32) 

where i is the meshpoint number in the x direction, j is the meshpoint number in the y direction, 
and k is the meshpoint number in the z direction. 

The matrix for this case is similar to the two dimensional matrix but includes all of the terms 
above and has dimensions z x yn n n  rows by z x yn n n  columns, where ,  ,  and z x yn n n  represent the 
number of meshpoints in the z, x, and y directions, respectively. There is one row representing 
the interface that solves equation (4.26). 

5 Methods of Computing the Solution 

5.1 Gauss-Jordan Elimination 

It is theoretically possible to solve all problems in this work for φ  using the familiar linear 
algebra method of Gaus-Jordan elimination. The version of this method16 we used requires the 
storage of all elements of the matrix, storage of the right hand side vector and solution vector. 
Each variable of size double requires a storage space of 8 bytes.17 Given a matrix of n by n 
elements and a two vectors of n elements, the computational complexity is ( )3O n  and the space 

complexity is ( )( ) ( )2 28 bytes 2n n O n+ = ,16 when yn n=  for the one dimensional case, x yn n n=  
for the two dimensional case, and x y zn n n n=  for the three dimensional case.  
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5.2 Sparse Matrix Format and Solution 

5.2.1 Space-Saving Indexed Storage of Sparse Matrices 

Recall from section 4 that most elements of the matrix are 0s. Especially see equations (4.12) 
and (8.1). Our implementation of the Gauss-Jordan elimination method stores and solves all of 
these zeros, and this takes up most of the time and space. Thus we use a sparse matrix format for 
the larger solutions. This format does not store any 0s in the off diagonals. It requires two 
vectors, one of variables of type unsigned long and the other of double precision values. The size 
of each of these vectors is all of the diagonal elements+ the number of all nonzero off diagonal 
elements+ 1. The right hand side and solution vectors are stored completely.  

Making precise prediction of spatial complexity is somewhat harder now because we cannot 
readily predict the number of off-diagonal elements. However, we can use the upper bound for 
the number of diagonal elements plus the number of nonzero off diagonal elements, 5 x yn n  in two 
dimensions and 7 x y zn n n  in three dimensions. Here, xn , yn , and zn refer to the number of points 
in x, y, z directions. These bounds are derived from the number of maximum nonzero diagonals 
in each matrix (5 in two dimensions and 7 in three dimensions). Also, they can be derived using 
the number of neighbors: in the two-dimensional case, a point can have at most four neighbors, 
leading to five nonzero diagonals, including the point itself. For each problem, we need to store 
one such vector of double precision values (8 bytes) and one such vector of unsigned long values 
(4 bytes).17 It follows that the total storage space for each two dimensional solution will be 

( ) ( ) ( ) ( ) ( )5 8 bytes 5 4 bytes 8 bytes 8 bytesx y x y x y x y x yn n n n n n n n O n n+ + + =  and for each three 
dimensional solution, it will be 

( ) ( ) ( ) ( ) ( )7 8 bytes 7 4 bytes 8 bytes 8 bytesx y z x y z x y z x y z x y zn n n n n n n n n n n n O n n n+ + + = . 

For a detailed explanation of how the elements are stored, please see reference 16, page 78 
(freely available at http://www.library.cornell.edu/nr/bookcpdf/c2-7.pdf [page 8 of PDF]).  

5.2.2 Biconjugate Gradient Method  

The biconjugate gradient method exploits the indexed storage for sparse matrices discussed 
above to reduce the computational complexity of the solution to ( )O n  compared to ( )3O n  for 
the Gauss-Jordan elimination (see 16, page 83 or page 13 of the PDF referenced above). In 
practice, using the biconjugate gradient method is far more advantageous in terms of memory 
and computing time required when compared to the Gauss-Jordan elimination method in 
complicated examples. However, for small cases it may be easier to use the Gauss-Jordan 
Elimination method. 
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6 Results 

6.1 Computational Results: Electrostatic Potential, Electric Field, and Capacitance 

This section details various problems that were solved directly in this research. This list is not 
exhaustive and builds up to the addition of a nanotube to the device to represent the proposed 
sensor. More overarching, 
analytical solutions can be found 
in section 6.2. 

6.1.1 One Dimensional Case 
Uniform Mesh  

Problem statement: Solving 
for the one-dimensional case, we 
will focus on the y-axis, shown in 
figure 3-1. We choose a device 
that has a 500 nm oxide (silicon 
dioxide; 3.9ε = ) and 1000 nm of 
air ( 1.0ε = ). The oxide is 
represented by the negative 
values of y; the air by the 
positive values. We use fixed 
boundary conditions: the left 
potential is set to 1 V; the 
right is set to 0 V. Using 151 
meshpoints in the y direction, 
we obtain the solution for 
electrostatic potential 
illustrated in figure 6-1. This 
is not a continuous line but is 
instead a series of discrete 
points. The uniform spacing 
is 10 nm.  

6.1.2 Two Dimensional 
Case Square Mesh 

Problem statement: We 
solve the same problem as above but in two dimensions using Gauss Jordan elimination. The 
device is again partitioned along the y direction, 500 nm for silicon dioxide ( 3.9ε = ) and 1000 
nm for air ( 1.0ε = ). The device width in the x direction is 500 nm and there is no nanotube. Our 
boundary conditions are constant on the y extremes (1 V at 500y = −  nm and 0 V at 1000y =  

nm) and are floating on the x boundaries ( 0
y
φ∂
=

∂
). 

Figure 6-2 (above) Two-dimensional solution for potential. 
y position (nm)

Figure 6-1 (above) One-dimensional solution for potential. 
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Figure 6-3 (above) Plot of the electrostatic potential of problem 6.1.3. 

The number of meshpoints in the y direction is 31 ( 31yn = ); in the x direction it is 11 
( 11xn = ). We obtain the result for electrostatic potential illustrated in figure 6-2. We can clearly 
see the square mesh in this figure because the spacing between the meshpoints is 50 nm. The 
limitation of this solution is that the smallest nanotube that it supports is 50 nm by 50 nm, which 
is generally too large to represent reality. In the next examples, we will see how to solve denser 
problems efficiently. We use the Gauss-Jordan elimination method to solve this problem, which 
takes a reasonable amount of time and space. 

6.1.3 Two Dimensional Solution with a Nanotube Uniform Mesh 

Problem statement: We now introduce a nanotube. This nanotube will be represented by 
four meshpoints (20 nm by 20 nm square) of a fixed potential (0 V) at a distance of 1 nm from 
the interface of the oxide and air, inside the air. We will now have 151 meshpoints in the y 
direction ( 151yn = ) and 51 meshpoints in the x direction ( 51xn = ). The physical dimensions of 
the figure are the same as in the previous problem (see section 6.1.2), as are all boundary 
conditions except the bottom boundary in the y direction, which is changed to a floating 

boundary ( 0
x
φ∂
=

∂
). The 

calculated result for 
electrostatic potential is 
illustrated in figure 6-3. 
This result is obtained 
using the biconjugate 
gradient method. 

The mesh spacing in 
this example is 10 nm. This 
creates a very smooth 
solution, but it still limits 
the size of features we can 
add. Using this method, the 
smallest nanotube that we 
can insert is represented by 
a 10 nm by 10 nm square, 
still quite large. Smaller 
tubes will be added in the 
following example.  

Capacitance: The gate capacitance of this device, with the gate and nanotube acting as the 
plates, was calculated to be 0.215 Picofarads/cm. 

6.1.4 Two Dimensional Solution with a Nanotube Nonuniform Mesh 

Problem statement: We will now add a 2 nm by 2 nm square representing a nanotube at a 
distance of 1 nm from the interface between the oxide and air into our device. This is 
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representative of the 
approximate size of 
a real nanotube (see 
section 2.1). The 
component size and 
boundary conditions 
are otherwise the 
same as in the 
previous example. 
We will now 
introduce a 
nonuniform mesh, 
centered at the 
nanotube. The 
advantage is that 
this allows us to 
have four small 
meshpoints 
representing the 
nanotube while not 
requiring such a 
large number of 
points that would 
make the 
computation inefficient. We choose 1.0x yΔ = Δ =  and 1.2x yp p= =  in equation (4.15) for the 
nonuniform mesh. The calculated potential is illustrated in figure 6-4.  

The nonuniform nature of the solutions is clear from the different sizes of the squares in 
figure 6-4, as is the power of this method to create very small components efficiently. The small 
size of the nanotube can be seen by comparing the region of fixed potential to the one in figure 
6-3. 

This solution was completed using the biconjugate gradient method. We determine the 
number of meshpoints only after running the simulation, in this case, 

45 points and 57 pointsx yn n= = . 

Capacitance: The gate capacitance of this device was calculated to be 0.127 Picofarads/cm. 

The electric field at the nanotube is seen in figure 6-5. 

6.1.5 Adding a Particle to Problem 6.1.4 

Problem statement: This problem is identical to Problem 6.1.4, but now we assume that a 
particle (1 nm by 1.2 nm) has been captured in the sensor. We will see how this impacts the 
electrostatic potential, electric field, and capacitance. Again, we use the biconjugate-gradient 
method to compute the solution. 

Figure 6-4 (above) Nonuniform two dimensional solution, including a 2 nm 
by 2 nm square representing a nanotube. 
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Electrostatic Potential: Figure 6-7 is a zoomed in and rotated view of the potential near the 
nanotube. The particle, nanotube, and interface are pointed out in the figure. Part of the electric 
field is illustrated in figure 6-6. Note the difference from figure 6-5, where the particle is absent. 

 

Capacitance: The gate capacitance of this device was calculated to be 0.136 Picofarads/cm. 
This change is caused by the change in electric field. 

 

Figure 6-6 (above) Part of the plot for the 
electric field of problem 6.1.5. Notice the 
effects of the particle when compared to 
figure 6-5, to the left. This change leads to a 
difference in capacitance, which can be 
sensed. 

Figure 6-5 (above) Plot for the electric field of 
problem 6.1.4. 
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Figure 6-7 (above)  Nonuniform two dimensional solution, including a 2 nm by 2 nm square representing a nanotube 
and a 1 nm by 1.2 nm square particle. The particle is located 1 nm from the interface. 

6.1.6 Three Dimensional Solution with Nanotube Nonuniform Mesh 

Problem statement: We now extend our solution into three dimensions. The width of the 
figure in the x-direction is 500 nm and its length in the z-direction is 10,000 nm. The nanotube 
added has a diameter of 2 nm by 2 nm. In the y-direction, the oxide is 500 nm long ( 3.9ε = ) and 
the air is 1000 nm long ( 1.0ε = ). Both of the x boundaries, the bottom y boundary, and a square 
around the nanotube in both z boundaries (in this case a substantial 3 meshpoints by 3 
meshpoints) have floating boundary conditions. The top y boundary and the rest of both z 
boundaries are fixed to 1 V. The solution for potential is illustrated in figure 6-8 (below and on 
the next page). Note that fully drawing this solution requires four dimensions (one for each 
direction and one for potential). Since it is not possible to draw in this manner, we take a 
snapshot of the potential at every z meshpoint. This simulation was solved using the biconjugate 
gradient method. The number of meshpoints is 7,  7,x yn n= =  and 5zn = . 
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Figure 6-8 (above and on the previous page)  Three dimensional, nonuniform solution with a 2 nm by 2 
nm nanotube. 

6.2 Analytical Results and Solution 
Validation 

6.2.1 Effect of Nanotube Potential on 
Gate Capacitance 

We found that the fixed potential 
of the nanotube has no impact on the 
gate capacitance, as illustrated by the 
graph in figure 6-9. We here 
investigated two device configurations, 
and varied the potential on the 
nanotube:  

 

Figure 6-9 (above) 
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Simulations:  

<1> The device examined in example 6.1.4, which has a 500 nm x-width.  

<2> A device similar to <1>, but with a 100 nm x-width. 

6.2.2 Effect of Gate Width (x-direction) on Gate Capacitance 

In this example, the gate x-width is varied. 

6.2.2.1 Devices 

For all the devices below, the oxide and air have thicknesses of 500 nm and 1000 nm, and 
relative dielectric constants of 3.9 and 1.0, respectively. In addition, we used fixed boundary 
conditions (1 V) for the gate terminal, and floating boundary conditions for all other sides. 

Simulated Nanotube-Embedded Sensors (nanotube size—2nm by 2nm): 

<1> This is the sensor device that does not have any particles attached to it. See example 6.1.4. 

<2> This is the sensor with a charged particle. Its configuration is explained in example 6.1.5. 
The size of the particle is always 1 nm by 1.2 nm, exactly, because it is near the center of 
the nonuniform mesh. This particle is always located 1 nm from the interface between the 
oxide and air in the y-direction.  

<3> This is the sensor with a charged particle attached to another location. The difference 
between <3> and <2> is that the particle is slightly larger in effective size and is farther 
away from the interface.   

Theoretical Nanotube Sensor Analysis (nanotube diameter—2nm): 

<4> To obtain the capacitance between an infinite plane and an infinitely long tube, we used the 
following analytical expression: 

 
( )

02
ln 4

C
t d

πεε
≈  (6.1) 

where ε is the average relative dielectric constant of the medium, t is the distance between 
the tube and the plane, and d is the diameter of the tube.18 We use ε = ×3.9 0.85 , 

500 nmt = and 2 nmd = . 
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Simulated Traditional Sensors (metal plate— 129nm by 129nm): 

<5> This is a sensor shown in figure 2-4(a), where we have a metal plate under the oxide 
instead of a nanotube.  This metal plate is much bigger in size compared to a nanotube. To 
obtain its capacitance, we fixed its potential to a constant. 

<6> We have a particle attached to the metal plate. The size of the particle is always 1 nm by 
1.2 nm, exactly, because it is near the center of the nonuniform mesh. This particle is 
always located 1 nm from the interface between the oxide and air in the y-direction.  

<7> This sensor also has a particle attached to the metal plate. However, the particle has a larger 
size and is farther away from the interface. 

Theoretical Parallel Plate Capacitor Analysis: 

<8>  The per length capacitance of  a parallel plate capacitor can be written as follows:  

 0
WC
t

εε=  (6.2) 

whereε is the relative dielectric constant of the medium, W is the width of the plate, and t is 
the separation of the plates. We use ε = ×3.9 0.85 , and 500 nmt = .  

Figure 6-10 (above) 
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6.2.2.2 Conclusions 

We can make the following conclusions by looking at figure 6-10: 

1. The capacitance increases as gate width increases due to higher charge accumulation.  

2. In the nanotube sensor, the capacitance increases more dramatically when a particle is added, 
compared to the traditional sensor. It increases more with a particle closer to the interface. 
The line for device <5>, the traditional capacitor without a particle, is hidden by the two 
other lines for the traditional capacitors with particles (<6> and <7>) because the values are 
close to each other. 

3. We see that the metal plate sensor has a higher absolute capacitance than the nanotube 
sensor. 

4. In this graph, we have information that validates our results: (1) The lines for the traditional 
capacitor are relatively close to those of the classic parallel plate capacitor, as we expect; and 
(2) the line for the infinite nanotube sensor is the same order of magnitude as the lines of the 
nanotube sensors. It is expected that the value for the infinite-gate sensor is greater than that 
of the simulated nanotube sensors because, as we have shown, capacitance increases with 
gate width. 

In the next section, we will examine more specifically how these results can be interpreted in 
light of the intended sensor application. 
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6.2.3 Effects of Gate Width (x-direction) on Sensitivity 

 

We noted above that the difference between the particle and no-particle cases appears much 
greater in the nanotube sensor than in the traditional sensor. Here, we measure sensitivity by 
determining the percent difference of the capacitance with and without a particle. We will now 
quantify it with the graph in figure 6-11. We see that: 

1. The capacitance of nanotube sensors changes to a much greater extent than that of traditional 
sensors. Here we show the key advantage of using the proposed sensor design: it is much 
easier to detect larger changes in capacitance than smaller ones. The percent difference in the 
nanotube is higher by orders of magnitude than that of a traditional sensor. 

2. In all cases, sensitivity increases as gate width (x-direction) increases. 

3. For both the traditional and nanotube sensors, the percent difference in capacitance is smaller 
for the particle farther away from the interface.  

 

Figure 6-11 (above) 
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6.2.4 Effects of Oxide Thickness (y-direction) on Gate Capacitance 

 

In this analysis, we will vary the oxide length (y-axis) and observe the effects that this has on 
gate capacitance. 

6.2.4.1 Devices 

We used the same devices as in section 6.2.2.1, except that now we vary the oxide thickness 
and keep the x-width constant at 500 nm. We also omit devices <3> and <7> in 6.2.2.1.  Our 
results are graphed in figure 6-12. 

6.2.4.2 Conclusions  

1. Without exception, we see that capacitance decreases as oxide thickness increases, in 
agreement with theory and equation (6.2).  

2. As in our previous results, the traditional sensor has a higher capacitance than the nanotube 
sensor. 

3. As before, the only line visible for the traditional sensor is the line for device <6>. The line 
for device <5> is hidden underneath it since the values are close together. 

Figure 6-12 (above) 
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4. As expected, the infinite x-width plate capacitor <4> has a higher capacitance than the other 
nanotube devices, whose x-width is 500 nm. 

5. Again, we see a higher difference between the cases with and without the particle in the 
nanotube sensor than in the traditional sensor, as explained below.  

6.2.5 Effect of Oxide Thickness (y-direction) on Sensitivity 

Again we use percent difference as a measure of sensitivity. 

Here we compare the change in capacitance when a particle is added to traditional and 
nanotube sensors in the previous example. See the graph in figure 6-13. We see that: 

1. As before, the nanotube sensor far exceeds the traditional sensor in terms of percent 
difference in capacitance. Again, this is a major advantage of using nanotube-embedded 
sensors over traditional ones. 

2. In both cases, the percent difference decreases as oxide thickness (y-axis) increases.  

 Figure 6-13 (above) 

0

2

4

6

8

10

12

0 100 200 300 400 500 600

%
 D

if
fe

re
nc

e 
b

et
w

ee
n 

ca
se

 w
it

ho
ut

 p
ar

ti
cl

e 
an

d
 c

as
e 

w
it

h
 

pa
rt

ic
le

Oxide Thickness (y-direction) (nm)

Oxide Thickness vs. Sensitivity

% 
Difference 
in 
traditional 
sensor with 
particle  
<6>

% 
Difference 
in nanotube 
with 
particle 
<2>



 

29 
 

7 Discussion and Conclusions 

The numerical solutions show unequivocally that the proposed design for a nanotube sensor 
is advantageous over the traditional design in terms of percent difference upon the insertion of a 
particle, which leads to a higher sensitivity. According to our results, the highest percent 
difference occurs in sensors which have a high gate width (x-direction) and a low oxide thickness 
(y-direction). This will make detection easier—even one particle (1 nm by 1.2 nm) gives a 
percent difference on the order of 010  to 110 , which can be readily detected. This is significantly 
higher than the order 210−  to 110−  percent differences of the traditional sensors, in which case 
multiple particles need to enter the device before the change in capacitance is large enough to be 
detected. 

The key advantages of such a development include the following: 

1. Due to the small size of its components, the nanotube sensor will inherently respond more 
quickly than a traditional sensor. 

2. Detection of the desired particle will occur at a lower concentration and with far fewer 
particles. 

3. Faster speed of detection will be experienced because the detector will be activated upon the 
entry of one particle, not many. Considering the probabilistic nature of particles entering this 
device, this may be a very significant advantage. 

In practical terms, this might mean more time for soldiers to don a protective mask or for a 
building or area to be evacuated. We hope that this sensor will be used to protect and defend 
against needless environmental contamination and biochemical weapons and that it will be used 
as a shield against loss of life. 
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Appendix: 2D Matrix Equation 
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B.C. means boundary condition (two dimensional matrix equation) (8.1)  

 


