
!

!

!

!

!

!

!

!

11.3. Texture Mapping for Rasterized Triangles 253

texture coordinates in screen space results in incorrect images, as shown for the
grid texture shown in Figure 11.11. Because things in perspective get smaller as
the distance to the viewer increases, the lines that are evenly spaced in 3D should
compress in 2D image space. More careful interpolation of texture coordinates is
needed to accomplish this.

Figure 11.11. Left: correct
perspective. Right: interpo-
lation in screen space.

11.3.1 Perspective Correct Textures

We can implement texture mapping on triangles by interpolating the (u, v) co-
ordinates, modifying the rasterization method of Section 8.1.2, but doing this
without accounting for perspective results in the problem shown at the right of
Figure 11.11. A similar problem occurs for triangles if screen-space barycentric
coordinates are used as in the following rasterization code:

for all xs do
for all ys do
compute (α,β, γ) for (xs, ys)
if α ∈ (0, 1) and β ∈ (0, 1) and γ ∈ (0, 1) then
t = αt0 + βt1 + γt2
drawpixel (xs, ys) with color texture(t) for a solid texture
or with texture(β, γ) for a 2D texture.

This code will generate images, but there is a problem. To unravel the basic prob-
lem, let’s consider the progression from a world space point q to the homogeneous
screen-space point r to the homogenized screen-space point s:









xq

yq
zq
1









transform−−−−−→









xr

yr
zr
wr









homogenize
−−−−−−−→









xr/wr

yr/wr

zr/wr

1









≡









xs

ys
zs
1









.

The simplest form of the texture coordinate interpolation problem is when we
have texture coordinates (u, v) associated with two points, q andQ, and we need
to generate texture coordinates in the image along the line between s and S. If the
world-space point q′ that is on the line between q and Q projects to the screen-
space point s′ on the line between s and S, then the two points should have the
same texture coordinates.

The naı̈ve screen-space approach, embodied by the algorithm above, says that
at the point s′ = s+α(S− s) we should use texture coordinates us+α(uS −us)
and vs + α(vS − vs). This doesn’t work correctly because the world-space point
q′ that transforms to s′ is not q+ α(Q− q).



!

!

!

!

!

!

!

!

254 11. Texture Mapping

However, we know from Section 7.4 that the points on the line segment be-
tween q and Q do end up somewhere on the line segment between s and S; in
fact, in that section we showed that

q+ t(Q− q) %→ s+ α(S+ s).

The interpolation parameters t and α are not the same, but we can compute one
from the other:1

t(α) =
wrα

wR + α(wr − wR)
and α(t) =

wRt

wr + t(wR − wr)
. (11.4)

These equations provide one possible fix to the screen-space interpolation idea.
To get texture coordinates for the screen-space point s′ = s+ α(S− s), compute
u′
s = us+ t(α)(uS −us) and v′s = vs+ t(α)(vS −vs). These are the coordinates
of the point q′ that maps to s′, so this will work. However, it is slow to evaluate
t(α) for each fragment, and there is a simpler way.

xr

yr
ur

xs

ys
us

perspective

Figure 11.12. Geomet-
ric reasoning for screen-
space interpolation. Top:
ur is to be interpolated
as a linear function of
(xr, yr). Bottom: after
a perspective transforma-
tion from (xr, yr, ur, wr)
to (xs, ys, us, 1), us is a
linear function of (xs, ys).

The key observation is that because, as we know, the perspective transform
preserves lines and planes, it is safe to linearly interpolate any attributes we want
across triangles, but only as long as they go through the perspective transforma-
tion along with the points. To get a geometric intuition for this, reduce the di-
mension so that we have homogeneous points (xr, yr, wr) and a single attribute u
being interpolated. The attribute u is supposed to be a linear function of xr and yr,
so if we plot u as a height field over (xr, yr) the result is a plane. Now, if we think
of u as a third spatial coordinate (call it ur to emphasize that it’s treated the same
as the others) and send the whole 3D homogeneous point (xr, yr, ur, wr) through
the perspective transformation, the result (xs, ys, us) still generates points that lie
on a plane. There will be some warping within the plane, but the plane stays flat.
This means that us is a linear function of (xs, ys)—which is to say, we can com-
pute us anywhere by using linear interpolation based on the coordinates (xs, ys).

Returning to the full problem, we need to interpolate texture coordinates (u, v)
that are linear functions of the world space coordinates (xq, yq, zq). After trans-
forming the points to screen space, and adding the texture coordinates as if they
were additional coordinates, we have





















u
v
1
xr

yr
zr
wr





















homogenize
−−−−−−−→





















u/wr

v/wr

1/wr

xr/wr = xs

yr/wr = ys
zr/wr = zs

1





















(11.5)

1It is worth while to derive these functions yourself from Equation (7.6); in that chapter’s notation,
α = f(t).



!

!

!

!

!

!

!

!

11.3. Texture Mapping for Rasterized Triangles 255

The practical implication of the previous paragraph is that we can go ahead and
interpolate all of these quantities based on the values of (xs, ys)—including the
value zs, used in the z-buffer. The problem with the naı̈ve approach is simply that
we are interpolating components selected inconsistently—as long as the quantities
involved are from before or all from after the perspective divide, all will be well.

The one remaining problem is that (u/wr, v/wr) is not directly useful for
looking up texture data; we need (u, v). This explains the purpose of the extra
parameter we slipped into (11.5), whose value is always 1: once we have u/wr,
v/wr, and 1/wr, we can easily recover (u, v) by dividing.

To verify that this is all correct, let’s check that interpolating the quantity
1/wr in screen space indeed produces the reciprocal of the interpolated wr in
world space. To see this is true, confirm (Exercise 2):

1

wr
+ α(t)

(

1

wR
−

1

wr

)

=
1

w′
r

=
1

wr + t(wR − wr)
(11.6)

remembering that α(t) and t are related by Equation 11.4.

This ability to interpolate 1/wr linearly with no error in the transformed space
allows us to correctly texture triangles. We can use these facts to modify our
scan-conversion code for three points ti = (xi, yi, zi, wi) that have been passed
through the viewing matrices, but have not been homogenized, complete with
texture coordinates ti = (ui, vi):

for all xs do
for all ys do
compute (α,β, γ) for (xs, ys)
if (α ∈ [0, 1] and β ∈ [0, 1] and γ ∈ [0, 1]) then
us = α(u0/w0) + β(u1/w1) + γ(u2/w2)
vs = α(v0/w0) + β(v1/w1) + γ(v2/w2)
1s = α(1/w0) + β(1/w1) + γ(2/w2)
u = us/1s
v = vs/1s
drawpixel (xs, ys) with color texture(u, v)

Of course, many of the expressions appearing in this pseudocode would be
precomputed outside the loop for speed. For solid textures, it’s simple enough
to include the original world space coordinates xq, yq, zq in the list of attributes,
treated the same as u and v, and correct interpolated world space coordinates will
be obtained, which can be passed to the solid texture function.


