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Abstract
This paper presents the SkipTree, a new balanced, distributed data
structure for storing data with multidimensional keys in a peer-to-
peer network. The SkipTree supports range queries as well as sin-
gle point queries which are routed inO(log n) hops. SkipTree is
fully decentralized with each node being connected toO(log n) other
nodes. The memory usage for maintaining the links at each node is
O(log n log log n) on average andO(log2 n) in the worst case. Load
balance is also guaranteed to be within a constant factor.

1 Introduction and Related Work
Over the past few years, there has been a trend to move from
centralized server based network architectures toward decentral-
ized and distributed architectures and peer to peer networks.
The termScalable Distributed Data Structure(SDDS) first in-
troduced by Litwin et al. in LH* [15] refers to this class of data
structures which hold the following properties:

• There is no central directory.

• Client images (i.e. client information on where data is lo-
cated) may be outdated, and is only adjusted in response to
read queries.

• A client may send a request to the incorrect server, which
will be forwarded to the correct server and the client image
will be updated.

Litwin et al. modified the original hash-based LH* [15]
structure to support range queries in RP*[14, 15]. Based on
the previous work of distributed data structures like LH* [15],
RP* [14] and Distributed Random Tree (DRT) [11], new data
structures based on either hashing or key comparison have been
proposed like Chord[20], Viceroy[16], Koorde[9], tapestry[22],
Pastry[19], PeerDB[18] and P-Grid[3]. Most existing peer-to-
peer overlays requireΘ(log n) links per node in order to achieve
O(log n) hops for routing. Viceroy[16] and Koorde[9] which
are based on DHTs are the remarkable exceptions in that they
achieveO(log n) hops with onlyO(1) links per node at the cost
of restricted or no load balancing. Family Tree[21] is the first
overlay network which does not use hashing but supports rout-
ing in O(log n) hops with onlyO(1) links per node.

Typically, those systems which are based on DHTs and hash-
ing lack range-query, locality properties and control over distrib-
ution of keys due to hashing. In contrast, those which are based

on key comparison, although requiring more complicated load
balancing techniques, do better in those respects. P-Grid [3] by
Aberer et al. is one of the systems based on key comparison
which uses a distributed binary tree to partition a single dimen-
sional space with network nodes representing the leaves of the
tree and each node having a link to some node in every sibling
subtree along the path from the root to that node. Gridella [4] a
P2P system based on P-Grid working on GNutella has also been
developed. Other systems like P-Tree [5] have been proposed
that provide range queries in single dimensional space. Besides,
Some data structures like dE-Trees[8] based on B-Trees have
been developed for distributed environments.

SkipNet[7] on which our new system relies heavily, is another
system for single dimensional spaces based on an extension to
skip lists.

G-Grid[6] is a solution proposed for the multidimensional
case which is also based on partitioning the space into regions.
However, regions in G-Grid are restricted in that they can only
be split to two regions of equal size. So, their boundaries cannot
take arbitrary values and are restricted to multiples of their size.
Their size are also restricted to negative powers of2.

RAQ[17] is also another solution for the multidimensional
case which incorporates a distributed partition tree structure to
partition the space. Its network model is similar to that of the P-
Grid[3], Therefore it requiresO(h) links at each node and routes
in O(h) hops whereh is the height of the partition tree which
can be ofO(n) for an unbalanced tree. Although it has been
shown[2, 1] that even for such unbalanced trees the number of
messages required to resolve a query still remains ofO(log n)
on average if the links are chosen randomly, the number of links
that a node should maintain and the memory requirement at each
node for storing information about the path from that node to the
root still remain ofO(h) which is as bad asO(n) for unbalanced
trees.

In this paper we propose a new efficient scalable distributed
data structure called theSkipTreefor storage of keys in multidi-
mensional spaces. Our system uses a distributed partition tree to
partition the space into smaller regions with each network node
being a leaf node of that tree and responsible for one of the re-
gions. In contrast to similar tree-based solutions the partition
tree here is used only to define an ordering between the regions.
The routing mechanism and link maintenance is similar to that
of SkipNet and independent of the shape of the partition tree,
so in general our system does not need to balance the partition



tree(in fact, it has been shown[12] that such a tree cannot be
balanced efficientlyby means of rotation). Our system, main-
tains a SkipNet by the leaves of the tree in which the sequence
of nodes in the SkipNet is the same sequence defined by the
leaves of the partition tree from left to right. Handling a single
key query is almost similar to that of an ordinary SkipNet while
range queries are quiet different due to the multidimensional na-
ture of the SkipTree. From another point of view, our system can
be seen as an extension to the SkipNet for the multidimensional
spaces.

In section 2we explain the basic structure of the SkipTree in-
cluding the structure of the partition tree, its associated SkipNet
and the additional information that needs to be stored in each
node. Insection 3, single and range queries are explained. In
section 4, the procedure for joining and leaving the network is
described. Insection 5, some techniques for load balancing in
SkipTrees are discussed. Insection 6we modify the SkipTree
structure to reduce the amount of information that needs to be
stored in each node about the partition tree and finallysection 7
concludes the paper.

2 Basic SkipTree Structure
The distributed data structure used in the SkipTree consists of
two parts. First, aPartition Tree is used to divide the search
space among the nodes. This is described insubsection 2.1.
Then, as is shown insubsection 2.2, nodes are linked together
using a technique similar to SkipNet.

2.1 Space Partitioning

We assume that each data element has a key which is a point in
ourk-dimensional search space. this space is split inton regions
corresponding to then network nodes. LetS(v) denote the re-
gion assigned to nodev. v is the node responsible for every data
element whose key is inS(v).

We usePartition Tree, a binary tree, to perform this assign-
ment. Although only leaves in the partition tree represent actual
nodes in our overlay network, each node in this tree has a corre-
sponding section in the search space. Thus, we extend the def-
inition of S(v) to also denote the region assigned to an internal
nodev in this tree.

Assumingr is the root of our Partition Tree,S(r) is always
the whole search space. Each internal node then recursively
splits its region into two smaller regions using a hyperplane
equation. That is, if an internal nodev has two children,l and
r, which are its left and right children respectively,S(l) will be
the portion ofS(v) left on one side of the hyperplane specified
by v andS(r) will be the space to the other side. A sample par-
tition tree and its corresponding space partitioning are depicted
in Figure 1.

For network nodeu, which corresponds to a leaf in the parti-
tion tree, we call the path connecting the root of the tree tou the
Principal Pathof nodeu. We refer to the hyperplane equations
assigned to the nodes of a principal path of a nodeu (including
information about on which side of those hyperplanesu resides)
as theCharacteristic Plane Equationsof u or CPEof u for short.
Every leaf node in the SkipTree stores its own CPE as well as the
CPE of its links. Using theses CPE information, every node like
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Figure 1: A sample two dimensional partition tree and its correspond-
ing space partitioning. Each internal node in the partition tree, labelled
with a number, divides a region using the line labelled with the same
number. Each leaf of the partition tree is a network node responsible
for the region labelled with the same letter.

u can locally identify if a given point belongs to a node to the
left or the right ofu or to the left or right of any of its links in the
partition tree. The latter is useful in routing queries as explained
in section 3. Hereafter, whenever we refer to a plane, we actu-
ally refer to a hyperplane ofk−1 dimensions in ak-dimensional
space.

Storing the above CPEs, however, requiresO(log nh) mem-
ory at every leaf node, whereh is the height of the tree. While
this is ofO(log2 n) for a balanced tree, it may require as much
asO(n) memory in the worst case. We will provide a method
for reducing the memory requirement insection 6.

2.2 Network Links
We link the network nodes in the SkipTree together by forming
a SkipNet among the leaves of the partition tree described in the
previous subsection. However, using the SkipNet requires a total
ordering to be defined among the nodes. We define this ordering
to be the order in which the nodes appear as the leaves of the
partition tree from left to right. We also make this sequence
circular by considering the rightmost leaf of the tree as the node
to the left of the leftmost leaf and vice versa.

In an SkipTree in its ideal form, a nodev keeps2 log2 n − 1
links to other nodes. These are the2ith nodes to the left and right
of v for everyi from 0 to log2n as shown inFigure 2. Unfor-
tunately, maintaining this form is very inefficient when handling
node arrivals and departures. As a result, only an approximation
to these ideal links is maintained in SkipNet.

For a giveni, if we start from any node and follow the links
that jump2i nodes in a specific direction in the ideal form, we
will find a loop of lengthn/2i. Lets call this loop a leveli ring.
There are2i level i rings. For example, there is only one level
0 ring, a circular doubly-linked list that connects every node in
the aforementioned order. On the other hand, there aren last
level rings consisting only of individual nodes. In general, there
are2i level i rings. As illustrated inFigure 3, the nodes in each
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Figure 2: The links maintained by nodeA in the ideal SkipTree. The
target nodes are independent of the tree structure. The tree only helps
us to put an ordering on the nodes. Theith link in each direction skips
over2i−1 − 1 nodes in that direction.

level i ring form exactly two disjoint leveli+1 rings. This is the
property which will be conserved when nodes are inserted into
or deleted from the SkipTree in sectionsection 4.
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Figure 3: The nodes in each leveli ring are split between two level
i + 1 rings. Solid arrows, representing leveli links, form the leveli
ring. Dashed arrows are the next level links that form two disjoint level
i + 1 rings.

Finally, we note that a real numberpv is assigned to each node
v. pv is randomly generated whenv joins the SkipTree so that
pa < pv < pb wherea andb arev’s predecessor and successor
in the total ordering. This number is used insubsection 3.2to
handle range queries more efficiently.

3 Handling Queries
Queries in a SkipTree can take two forms, either a single point
query or a range query. We will discuss them separately on the
following subsections.

3.1 Single Point Query

S A BX
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Figure 4: A point query is routed through the farthest link which does
not point past the destination node. Here,S receives a query targeting
nodeX, so it routes the query toA. The distance to the destination
node is at least halved at each hop.

Whenever a node in the network receives a single point query,
it must route the query to the node which is responsible for the
region containing the point. The routing algorithm is essentially
the same algorithm used in the SkipNet, that is every node re-
ceiving the query along the path, sends it through its farthest link
which does not point past the destination node. This is shown in
Figure 4where node S is about to route a single point query to
some unknown nodeX which lies somewhere between nodeA
and nodeB. HereA andB are two consecutive nodes in the list
of nodes to whichA has a direct link and are at distance2i and
2i+1 from A for somei respectively. Node S routes the query to
A and thenA routes the query again in the same way until the
query reaches its destination node. Note that the distance from
A to the destination node is less than2i, so the next hop is at
most2i−1 nodes away fromA. In fact, the distance to the desti-
nation node is at least halved at each hop. This implies that the
query reaches the destination after at mostlog2 n hops. How-
ever, because SkipNet uses a probabilistic method for selecting
and maintaining links in the network, it guarantees routing in
O(log n) hops w.h.p1. A formal proof of this can be found in
[7].

For the above procedure to be effective, given a point, every
node must be able to identify whether the node which is respon-
sible for that point lies to its left or to its right side. In other
words, we must be able to compare points against nodes to iden-
tify whether the node containing a given point lies before or af-
ter another node in the sequence. This is where the tree structure
helps us. To do so, a node compares the point against the planes
in its own CPE in the order they appear in its principal path start-
ing from the root until it finds the first plane where the current
node and the point lie on different sides of the plane. This is
where the point is contained in a region belonging to a sibling

1An event is said to be occurring with high probability (w.h.p) if for any
constant value ofα the event occurs with a probability of at least1−O( 1

nα ).



subtree. If that subtree is a left (right) subtree, all of its nodes
as well as the node containing the point must also be to the left
(right) of the current node. That is why every node in the net-
work must also store the CPE of its link nodes in addition to its
own CPE to be able to compare queries against its links too. The
above procedure leads toO(min(h log n, n)) memory usage at
each node for storing the CPE, whereh is the height of the tree.
This may be as bad asO(n) memory for an unbalanced tree. We
will modify the tree structure insection 6to overcome this prob-
lem and guaranteeO(log h log n) memory usage at each node
for the storage of CPE, which meansO(log n log log n) on av-
erage andO(log2 n) memory usage in the worst case for an un-
balanced tree.

3.2 Range Query
A range query in the SkipTree is a3-tuple of the form(R, fs, ls)
whereR is the query range andfs andls are two real numbers
which define the range of nodes in the sequence of nodes to be
searched. That is, only the network nodes whose sequence num-
bers reside in the interval[fs, ls] are searched. Using this form
of queries one can perform a complete range query for a region
R using the3-tuple (R,−∞,+∞), so that all of the nodes are
included in the search regardless of their sequence number. Note
that the region defined byR can be of any shape as long as every
node can locally identify whetherR intersects with a given hy-
percube.
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Figure 5: A range query is propagated through each of the links main-
tained byS whenever there is node which intersectsR between that link
and the next link. Here,S has consecutive links toA andB. A copy
of the query is propagated toA if any of the nodes betweenA andB
intersects withR.

Handling a range query is very similar to that of a single point
query with some minor differences. Suppose that a nodeS re-
ceives a range query(R, fs, ls). To handle this query thenS
breaks the range query to several queries (at mostO(log n) new
queries) with each targeting fewer number of nodes relative to
the original query. A range query is propagated to each of the
links maintained byS whenever there is node which intersects
with the regionR between that link and the next link. Assume
thatA andB shown inFigure 5are two nodes corresponding to

some two consecutive links maintained byS. S sends a copy
of the query toA if there is any node betweenA andB which
intersectsR. Every such node, if any, must reside in one of the
crosshatched subtrees illustrated in the figure. In fact, such a
node must be to the right of the nodes marked with+ and to the
left of the node marked with− and becauseS has all of CPEs
corresponding to its links, it also has the plane equations corre-
sponding to the internal nodes marked with a+ or− sign. So, it
can easily identify from those equations the regions in the multi-
dimensional space associated with each of the subtrees between
A andB and from that it can determine whether there is any
subtree betweenA andB whose region intersects withR and if
there is such a subtree, it must also contain a node whose region
intersects withR. In this way a query is broken byS to several
queries and is propagated until it reaches its targets. Note that
thefs andls fields of the query are modified appropriately be-
fore a copy of the query is sent through a link. The reason is to
restrict the sequence of nodes to be searched to prevent dupli-
cate queries. For example inFigure 5, suppose that a copy of
the form(R, fs, ls) is to be sent fromS to A. Also assume that
A.seq andB.seq are the sequence number ofA andB respec-
tively. ThenS computes the interval[fs′, ls′] as the intersection
of [fs, ls] and[A.seq, B.seq] and it sends the query(R, fs′, ls′)
to A. This will ensure that no nodes in the network receives the
query more than once.

For the above procedure note that the length of the path that
a query travels through is ofO(log n) regardless of the width of
propagation at each hop. The proof is basically the same as the
case with the single point query.

It is worth mentioning that this is the only place where se-
quence numbers are actually used. Sequence numbers make it
possible to determine the relative ordering of two nodes in the
network without knowing their corresponding plane equations
or the regions they represent.

4 Node Join and Departure
Join and Departure operations are described in the following
subsections. For each operation the node has to perform two
relatively independet actions. Update the Partition Tree and up-
date the network connections.

4.1 Joins

To join the SkipTree, a new nodev has to be able to contact an
existing nodeu in the SkipTree.v then splits the space assigned
to u using a new plane. This allowsu to transfer the control of
one of the new regions along with its stored data items tov.

The algorithm is shown in functionv.join( u) of Figure 6.
In lines 1 and2, the new node copies the CPE of the exisiting
node. Then, a new plane equation is generated to split the region
formerly assigned tou. This plane can be arbitrarily chosen
as our load balancing protocol will gradually change the par-
titioning to a more balanced configuration. Each of the two
nodes then selects one of the two newly created regions. This
is done in lines3-5 by extending the principal paths using the
add to cpe() function.

The provided algorithm insertsv immediately after u
and chooses the side of the plane containing the origin



(ORIGIN SIDE) for u and the other side (OTHER SIDE) for
v. This will help us in performing memory optimization insec-
tion 6.

// Join new node v to the SkipTree.
// u is an arbitrary node in SkipTree.
v.join( u) {

v.cpe← u.cpe;1

v.height← u.height;2

new plane← choose plane( v.cpe, v.height ) ;3

u.add to cpe( new plane, ORIGIN SIDE ) ;4

v.add to cpe( new plane, OTHER SIDE ) ;5

v.seq← random number in6

(u.sequence, u.successor.sequence);
v.join SkipNet( u) ;7

u.transfer data( v) ;8

}
// Append a plane to the CPE.
v.add to cpe( plane, side ) {

v.cpe[v.height].plane← plane;
v.cpe[v.height].side← side;
v.height← v.height + 1;

}
Figure 6: Joining the SkipTree

After updating the Partition Tree,v has to establish its net-
work connections. This is done by insertingv into approxi-
mately log n rings mentioned insubsection 2.2. Starting with
the level 0 ring,v randomly selects one of the two leveli + 1
rings derived from the selected leveli ring until it reaches a ring
in which there is no node except the new node itself.v then
moves backward, inserting itself in each of these rings with re-
gard to the total ordering defined insubsection 2.2which is the
same as usingpv. The exact algorithm is described in [7] and
involves onlyO(log n) steps w.h.p.

Finally, u transfers the data items which are no longer in its
assigned region tov in line 8.

4.2 Departures

When nodev is leaving the SkipTree, it has to follow three steps.
First, update the Partition Tree; second, transfer its data items to
the appropriate nodes; and third, leave the SkipNet.

Suppose thatv is responsible for regionR and that the nodes
in its sibling subtree are collectively responsible for the region
S. In other words, the last plane in the nodev’s CPE, calledP ,
splits its parent’s region into regionsR andS. To update the
Partition Tree, nodev sends a special range query to the nodes
in regionS and instructs them to remove the planeP from their
CPE. This will effectively removev from the partition tree and
shift every node inS one level closer to the root by removing
their common parent.

To transfer the data items,v can simply find the node respon-
sible for each item using a single point query and transfer the
item accordingly. However, a more efficient method is to create
a collection of the regions associated with every possible target

node forv’s data items and perform the single point queries for
these items locally. This collection can be created by asking
every node (as part of the previous special range query) inS to
send its newly associated region tov if this region intersects with
R.

In the last step,v has to close itsO(log n) connections. As [7]
points out, all pointers except the ones forming the level 0 ring
can be regarded as redundant routing optimization hints and can
be updated using a background repair process similar to Chord
and Pastry. Therefore,v only needs to cleanly remove itself from
the level 0 ring before leaving the SkipTree.

5 Load Balancing
Many distributed lookup protocols use hashing to distribute keys
uniformly in the search space and achieve some degree of load
balance. Hashing cannot be used in the SkipTree as it makes
range queries impossible. As a result, a load balancing mecha-
nism is necessary to deal with the nonuniform key distribution.

Our load balancing protocol is derived from theItem Bal-
ancing technique in [10]. Load balancing is achieved using a
randomized algorithm that requires a node to be able to contact
random nodes in the network. This can implemented either using
the existing network connections in SkipNet or using the under-
lying peer-to-peer routing framework. The second approach is
preferred because of its higher speed and lower network traffic.

Let li, the load on nodei, be the number of data items stored
on i andα be a constant number so thatα > 1. We will prove
that the SkipTree’s load will be balanced w.h.p. if each node per-
forms a minimum number ofload balancing testsas per system
half-life2.

Load Balancing Test In a load balancing test, nodei asks a
randomly chosen nodej for lj . If lj ≥ αli or li ≥ αlj ,
i performs aload balancing operation.

Load Balancing Operation Assume w.l.o.g thatli < lj . First,
nodei normally leaves the SkipTree using the algorithm
given in subsection 4.2. Then, i joins the network once
again at nodej and selects a hyperplane for the newly cre-
ated internal node in the partition tree in a way that the
number of data elements is halved at both sides of the hy-
perplane. This makes bothli andlj to become equal to half
the old value oflj .

Theorem 1 If each node performsΩ(log n) load balancing op-
erations per half-life as well as whenever its own load doubles,
then the above protocol has the following properties whereN is
the total number of stored data items.

• With high probability, the load of all nodes is betweenN8αn

and 16αN
n .

• The amortized number of items moved due to load balanc-
ing isO(1) per insertion or deletion, andO(N/n) per node
insertion or deletion.

The proof of this theorem using potential functions can be
found in [10].

2A half-life is the time it takes for half the nodes or half the items in the
system to arrive or depart. [13]



6 Memory Optimization
Throughout the previous sections we assumed that every node
in the network must store the CPE of all of the nodes to which
it maintains a link as well as its own CPE. As we mentioned
earlier, in a SkipTree of heighth, this requiresO(h log n) mem-
ory for each node to store its own CPE as well as CPEs of its
link nodes. So, a node may requireO(n) memory with an un-
balanced SkipTree in the worst case. In this section we enforce
some constraints on the plane equations that a node may choose
when joining the network and splitting another node, so that for
a SkipTree of heighth only O(log h) of the plane equations of
any CPE will be needed for the correct operation of the Skip-
Tree. The constraints that we enforce are the following:

• The planes must be perpendicular to a principal axis. So, in
a k-dimensional space of(x1, x2, · · · , xk) it must take the
form of xi = c for some1 ≤ i ≤ k and some value of
c. This effectively means that every such plane partitions
the keys in the space based on the value ofxi for somei.
We put further constraints on how such a plane likexi = c
partitions a region into two smaller region by requiring that
every such plane partitions the region associated with an
internal node of the SkipTree likeU in such a way that the
region containing the points withxi ≤ c is assigned to the
left subtree ofU and the region containing the points with
c < xi is assigned to the right subtree ofU .

• If the search space isk-dimensional, we precisely define
the form of the plane equation that may be assigned to an
internal node depending on the depth of that node. We first
introduce the following notation:

dA: for a nodeA in the SkipTree, the depth ofA is rep-
resented bydA and is defined to be the length of the
principal path corresponding toA plus one. For an
example see the SkipTree ofFigure 7.

lA: for every nodeA in the SkipTree, the level ofA is
indicated bylA wherelA = dlog2 (dA

k + 1)e. This
means that all of the nodes whose depth are in the
interval [k(2i − 1) + 1, k(2i+1 − 1)] belong to level
i+1. This implies that on any principal path, the first
k nodes are in level1, the next2k nodes are in level
2, the next4k are on the next level and so on. For an
example see the SkipTree ofFigure 7.

d′A: for a nodeA in the SkipTree, the relative depth of
A is represented byd′A and is defined so thatd′A =
dA − dB + 1 where B is the highest node which has
the same level asA, or alternatively we can define
d′A = dA − k(2lA−1 − 1). For an example see the
SkipTree ofFigure 7.

sA: for a nodeA in the SkipTree, the section number of

A is represented bysA wheresA = dd′
A

k e. In fact,
nodes at every level are partitioned tok sections. This
implies that on on thei-th level of any principal path,
the first2i−1 nodes have section number1, the next
2i−1 nodes are in section2 and so on.

G
F

E
D

C

B

A
level 1

k nodes

level2
2k nodes

level 3
4k nodes

Figure 7: A sample SkipTree for a two dimensional space. NodesA
to G have depths1 to 7 respectively.A andB are on level1; C, D,
E and F are on level2 and G is on level3. The relative depth are:
d′A = 1, d′B = 2, d′C = 1, d′D = 2, d′E = 3, d′F = 4, d′G = 1.

We are now ready to state the last constraint:

If A is an internal node, the plane equation assigned toA
must be of the formxsA

= c for an arbitrary value ofc,
that is for any giveni, all of the nodes whose section num-
bers arei are assigned plane equations of the formxi = c.
This implies that whenever a new node joins the SkipTree
and splits the region of another node which leads to a new
internal node, the plane equation of that internal node must
obey the above schema. So the only parameter that the new
node can define to balance the load when it splits a region is
the value of the constantc which should be enough for that
purpose. A typical2-dimensional space partitioned under
the above constraints and its associated tree are shown in
Figure 8.
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Figure 8: The left is a sample partitioning of a2-dimensional space
under the memory optimization constraints, from the view point of node
A and the right is the principal path of nodeA. The plane equations
assigned to the internal nodes are shown in the arrows.



Lemma 1 In any principal path of lengthh nodes are parti-
tioned to at mostkdlog2 (h

k + 1)e different sections.

Proof: Since we defined the level of a node at depthd to be
dlog2( d

k + 1)e, nodes in any principal cannot be partitioned to
more thandlog2(h

k + 1)e levels. Nodes at each level are further
partitioned tok sections so there can be at mostkdlog2(h

k + 1)e
sections in any principal path.

Lemma 2 For any leaf nodeA in a SkipTree,A needs to store
only two plane equations for each section of its principal path.
we call the sequence of these pairs of plane equations that node
A stores, theReduced-Characteristic Plane Equationsof nodeA
or for short theRCPEof nodeA.

Proof: All of the planes on the same section partition the space
based on the value of the same fieldxi. For example inFigure 8,
in the section1 in the3rd level of principal path ofA, all of the
internal nodes are assigned a plane equation of the formy = c
for different values ofc and the region associated with nodeA
or any other leaf for that matter is between at most two of the
planes of that section. That is, for every section in the principal
path for any nodeA, there are at most two planes which best
represent the region in whichA’s region lies. So for each of the
sections,A needs to store an inequality of the forma ≤ xi <
b. Therefore an RCPE can be stored as an ordered sequence of
inequalities of the forma ≤ xi < b, one for each section in
the principal path. When a node likeA receives a point query it
finds the first inequality in the RCPE sequence that does not hold
for the queried point. Then the first constraint we introduced on
the beginning of this section ensures that the destination node
which is responsible for the queried point will be to the left of the
current node if the point is to the left of the interval represented
by the first unsatisfied inequality and the destination node will
be to the right of the current node otherwise. The situation with
range queries is quite similar. The sequence of inequalities in
the RCPE for the nodeA in Figure 8is shown bellow:

• level=1, section=1 :c0 ≤ y < +∞

• level=1, section=2 :c1 ≤ x < +∞

• level=2, section=1 :c0 ≤ y < c3

• level=2, section=2 :c4 ≤ x < c5

• level=3, section=1 :c8 ≤ y < c9

6.1 Node Join and Departure
Joining mechanism is the same as before except that a new node
must obey the constraints mentioned earlier. However leaving
is a bit tricky since when some nodeA is about to leave, it
must then remove the internal node which is its direct parent
which causes the plane associated with that internal node to be
removed from the RCPE of the nodes in its sibling subtree as
well. This becomes a problem only when that plane belongs to
a level which is not the last level in the principal path of some
nodeB in the sibling subtree ofA because removing it will con-
tradict the second constraint of memory optimization since it is

removed from a level which is not the last level for some prin-
cipal path. To overcome this problemA sends a special form
of range query containing the region associated with its sibling
subtree and by this special query it tries to find some nodeX
in its sibling subtree such that the sibling subtree ofX does not
contain a node whose level is greater than that ofX, then node
A andX swap their roles, that is they swap their associated re-
gions as well as the keys that they store and their position in the
SkipTree. After this swapping,A will be in place of theX in
the SkipTree so it can then leave the network using the proce-
dure described in the previous sections and this time the above
problem will not occur forX because of the way the nodeX
was chosen. It is easy to see that such a nodeX must always
exist. For example the lowest node in the sibling subtree ofA
always has the desired property although it is not the only node
with such property.

6.2 Complexity
The memory requirement of any nodeA for storing its RCPE
as well as the RCPE of its links as described earlier is of
O(log h log n) where h is the height of the tree which is a major
improvement over theO(min(h log n, n)) memory requirement
in the default case.

In addition to the memory requirement guarantee, the con-
straints that we enforced insection 6, guarantee the following
strong invariant on the distribution of planes in each direction
for every principal path:

Theorem 2 For every principal path in a SkipTree ifmi is the
number of plane equations of the formxi = c and mj is the
number of plane equations of the formxj = c for possibly dif-
ferent values ofc, then the inequalityxi ≤ 2xj + 1 must always
hold.

Proof: For every principal path in a SkipTree, there are equal
number of plane in each direction at each level except possibly
for the last level (the level with highest number, that is the level
of the lowest part of the path), because every level except the last
level consists of exactlyk different sections of equal size with all
of the plane of each section being in the same direction. Besides,
the number of planes in a single section at theith level is2i−1,
so if a principal path consists ofr levels, for each direction, the
total number of planes in that direction at all levels except the
last level is20 + 21 + 22 + · · ·+ 2l−2 which is2l−1 − 1. Also,
for each direction, the number of planes in that direction at the
last level is between0 to 2l−1. So, in any principal path, for each
direction, the total number of planes in that direction at all levels
is between2l−1−1 to 2l−1 and the above inequality obviously
results.

FromTheorem 2, it is implied that the planes are distributed
almost uniformly in each direction which is an advantage over
the default case where the plane equations are chosen randomly.

7 Conclusion and Future Work
In this paper we introduced theSkipTreewhich is designed to
handle point and range queries over a multidimensional space
in a distributed environment. Our data structure maintains
O(log n) links at each node and guarantees an upper bound of



O(log n) messages w.h.p for point queries and also gurantees
range queries with depth ofO(log n) message w.h.p. It im-
proves the previously proposed data structures for multidimen-
sional space which where based on binary trees in the following
aspects:

• Links: every node in a SkipTree needs to keep track of
O(log n) links regardless of the shape of the tree in contrast
to other tree based structures where each node should keep
track ofO(h) links, whereh (the height of the tree) can be
of O(n) for an unbalanced tree.

• Query depth: the maximum depth of a point and range
query in a SkipTree is ofO(log n) regardless of the shape
of the tree, in contrast to other tree based structures where a
query may travelO(h) hops in the worst case whereh can
be ofO(n) for an unbalanced tree.

• Memory requirement: using the memory optimization of
section 6, each node needs only to store the RCPE of it-
self and its links that requiresO(log h log n) which is quiet
an improvement over memory requirement of similar tree
based structures where each node maintains information for
every node along its principal path which requiresO(h)
memory that can be as bad asO(n) for unbalanced trees.

In addition to the above improvements we also adapted some
load balancing techniques to improve our data structure. How-
ever it seems that the load balancing procedure and the memory
optimization technique may be conflicting. In fact in some situa-
tion the node swapping method described insubsection 6.1may
cancel out the effect of the load balancing method. This is one
important area which needs further investigation. Another im-
portant area which needs further improvement is about the fault
tolerance of the structure in presence of node failures. Also, as
mentioned above load balancing and memory optimization need
more improvements.
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