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ABSTRACT
Motivated by applications in guaranteed delivery in compu-
tational advertising, we consider the general problem of bal-
anced allocation in a bipartite supply-demand setting. Our
formulation captures the notion of deviation from being bal-
anced by a convex penalty function. While this formulation
admits a convex programming solution, we strive for more
robust and scalable algorithms.

For the case of L1 penalty functions we obtain a simple
combinatorial algorithm based on min-cost flow in graphs
and show how to precompute a linear amount of information
such that the allocation along any edge can be approximated
in constant time. We then extend our combinatorial solution
to any convex function by solving a convex cost flow. These
scalable methods may have applications in other contexts
stipulating balanced allocation.

We study the performance of our algorithms on large real-
world graphs and show that they are efficient, scalable, and
robust in practice.

1. INTRODUCTION
In the guaranteed delivery setting, advertisers and users

are mediated by the publisher (e.g., a search engine, an on-
line newspaper). The advertiser buys a contract for a certain
number of impressions (user visits to the publisher’s page)
and declares interest in a subset of user population called
buckets. The goal of the publisher is to satisfy the demands
by placing an ad from the advertiser on the web page vis-
ited by a user, if the user (i.e., the impression) belongs to
the advertiser’s bucket.

Motivation. Consider the following setting in the con-
text of computational advertising and search engines. Each
search engine user has three attributes (gender, age, loca-
tion) and there are four advertisers who have bought con-
tracts to target various user subsets; each advertiser spec-
ifies its bucket of interest by specifying appropriate user
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attributes. Advertiser A’s bucket is young females (gen-
der=female, age=young), B’s bucket is all males (gender=male),
C’s bucket is senior Floridans (age=old, location=FL), and
D’s bucket is all Californians (location=CA). If the search
engine only needs to satisfy the contract’s requirement, as-
signing a sufficient number of users to an advertiser as long
as they belong to the advertiser’s bucket is an apparent fea-
sible solution.

Unfortunately, such an assignment can be unfair and unre-
warding to the advertiser for the following two main reasons.

(1) While each advertiser’s bucket has some of the user
attributes specified explicitly, the unspecified attributes are
subject to interpretation. Most often, the advertiser is equally
interested in all the users who belong to the bucket. For in-
stance, it will be undesirable if B were a sports car dealer
and the search engine assigns mostly middle-aged men to
B. Likewise, it is undesirable if a disproportionate number
of old women from Florida were assigned to C, who hap-
pens to be Florida real-estate agent. Thus, there is a tacit
assumption by each advertiser that the users assigned to it
are as “balanced and fair” as possible from the set of avail-
able users.

(2) There can be a large number of attributes and each at
different levels of granularity (location=city, state, country,
etc.) that it might never be fully possible for any advertiser
to specify the desired buckets to the finest conceivable detail.
For instance, A could be a toy store who failed to specify
an explicit age group; likewise, D could be an earthquake
insurance agent primarily targeting young homeowners near
the fault line. In either case, it is more desirable for the
search engine to assign a balanced set of users rather than
blame the advertiser for under-specifying its bucket.

In this paper we address this problem. Given a set of
impressions (i.e., the supply) and contracts (with demands
and buckets), how to find a feasible assignment of impres-
sions to contracts that is as balanced as possible? Answering
this question involves formulating what being balanced pre-
cisely means in this context. And, given the large number
of advertisers (typically, in the hundreds of thousands) and
the astronomical number of impressions (typically, in the
hundreds of millions) in an online setting, we insist on an
algorithm that is efficient, in both time and space, that is
scalable, and that yields insights into the structure of the
allocation problem itself. In particular, we desire an allo-
cation algorithm that is and whose allocation can be stored
succinctly, ideally, using space linear in the number of im-
pressions and contracts as opposed to the naive storage that
is linear in the number of pair of impression and contracts



(which can be quadratic). Of course, this succinct represen-
tation should let us reconstruct the allocation along every
pair of contract and impression in a time-efficient manner.
Thus, we trade space for time.

Our contributions. We consider the general problem of
balanced allocation in a bipartite supply-demand setting.
Our formulation, inspired by [14], is combinatorial and cap-
tures the notion of deviation from being balanced by a nat-
ural and general form of a penalty function. While this for-
mulation admits a convex programming solution (assuming
the penalty function is convex), it is undesirable in practice
because of efficiency considerations and therefore we seek
more robust and scalable solutions.

For the case of L1 penalty functions we obtain a simple
combinatorial algorithm for the balanced allocation prob-
lem. Our solution is based on solving a min-cost flow prob-
lem on bipartite graphs, which can be done very efficiently.
By using a powerful dual formulation stemming from our
combinatorial treatment of allocation and constraining the
flow to be unique in a certain way, we also show how to
precompute and store a linear amount of information such
that the allocation along any edge in the bipartite graph
can be approximately answered in constant time, under mild
assumptions on the input instances. This space-efficient re-
construction method might be of independent interest in
contexts beyond balanced allocation.

We also prove two additional properties of our formula-
tion. First is robustness, where we show how to upper bound
the performance loss when the supply estimates are only ap-
proximately known. Second is extensibility, where we show
an even simpler greedy approximate algorithm when some
of the demand constraints are allowed to be violated.

We perform an experimental evaluation of our algorithm
on a large real-world dataset obtained from the Yahoo!’s
display advertising system. Our experiments demonstrate
the efficiency and the scalability of our min-cost based algo-
rithm. In particular, our combinatorial solution (as opposed
to a black-box linear/convex programming solution) makes
it feasible to solve large instances effortlessly. Furthermore,
our experiments also illustrate the space savings enabled by
the reconstruction procedure.

Finally, we extend our combinatorial solution to any con-
vex function. This involves solving a convex cost flow, which
once again is more efficient than solve a general convex pro-
gram.

Related work. The related work falls into three classes.
The first is work on online allocation problems. The sec-
ond is the ever-increasing body of literature in the area of
computational advertising. The third is network flow prob-
lems and the role of primal-dual methods in computational
advertising.

Vee, Vassilvitskii, and Shanmugasundaram first studied
the online allocation with forecast problem, where given an
approximation of the online supply, the goal is to create an
efficiently reconstructible plan for performing some form of
balanced allocation [15]. They focus on the efficiency and
sampling aspect of the problem and consider only the strictly
convex version, which makes it amenable to using fixed point
criteria such as KKT conditions for non-linear optimization.
Ghosh et al. [10] studied the problem of representative al-
location for display advertising when there are both spot
markets and guaranteed contracts; they propose a solution
where guaranteed contracts are implemented by randomized

bidding in spot markets. Devanur et al. [7] presented a sam-
pling based method that computes a near-optimal allocation
for online keyword matching with budget constrained adver-
tisers and random permutation model. Their approach also
computes a compact plan consisting of the dual variables of
an LP which can later be used to efficiently compute the
primal allocation online. None of these methods is combina-
torial like ours and hence are more likely to be less scalable.

Online advertising is one of the most profitable resources
for the large search engine companies and publishing sites
such as cnn.com, nytimes.com. Two popular methods used
for online advertising are slot ad auction and display ad-
vertisement. Most of the recent literature for online ad-
vertisement are focused on studying slot ad auction from
the game-theoretic perspective [8]. There have been some
recent work on display advertisement and guaranteed de-
livery. In [9], Feige et al. studied the guaranteed delivery
for display advertisement with penalties. In the guaranteed
delivery model, advertisers act as contractors. Each adver-
tiser requests some number of impressions. If this request
is accepted by the search engine, it would be called a con-
tract. In this model, for each accepted contract, either the
whole demand requested in the contract should be satisfied
or the search engine will pay extra penalties for the non-
satisfied portion of the demand. They showed that there
is no constant approximation for their problem and present
a bicriteria algorithm. Also they proved a structural ap-
proximation result for the adaptive greedy algorithm. The
problem of advanced booking with costly cancellation also
have been studied in [5] and [3] from a game-theoretic point
of view.

Our solution is mainly based on the network flow prob-
lem and its dual. There is a large amount of literature on
the network flow problem (e.g., [2]). The closest work to
our method is the push-relabel algorithm of Goldberg and
Tarjan [12]; they introduced a method for computing the
maximum flow problem without using augmenting paths.
The reconstruction of the min-cost flow instance is based on
the dual variables of the min-cost flow solution. Primal-dual
methods have been largely used as a tool to find approxima-
tion algorithms for various problems (e.g., [4, 1]). Recently,
Devanur et al. [6] and Jain and Vazirani [13] used primal-
dual methods and KKT conditions for solving market equi-
libria problems.

2. PRELIMINARIES
Suppose we are given a set I of impressions and a set

C of contracts. Each impression i ∈ I has a supply si >
0. Each contract c ∈ C has (i) a weight W c > 0 that
captures its importance, (ii) a desired bucket imp(c) ⊆ I of
impressions, and (iii) a demand dc > 0, denoting the number
of impressions that need to be allocated to this contract. For
an impression i, let con(i) ⊆ C denote the set of contracts
that desire i.

As stated earlier, the goal is to find the most balanced
allocation of impressions to contracts. Let yci be the number
of impressions i that are assigned to contract c in a given
allocation. Let

δci = dc · si∑
i′∈imp(c) si′

,

be quantity that captures the ideal balanced allocation of
impression i to contract c, i.e. a perfectly balanced number



of impressions from impression i are assigned to contract c.
Let wc = W c/dc. The goal is to minimize∑

c

wc
∑

i∈imp(c)

∆(yci , δ
c
i ),

where ∆(·, ·) is the penalty function that penalizes deviation
from the ideal balanced allocation, subject to the supply and
demand constraints. Different norm/distance functions can
be used for ∆(·, ·); for example, ∆ = L1, ∆ = L2, ∆ = KL,
and so on [14]. If ∆(·, ·) is not restricted to be convex,
then the problem becomes NP-hard to even approximate to
within a constant factor (proof omitted).

We define the notion of ε-robust input.

Definition 1 (ε-robust input). An input instance to
our problem is ε-robust if there is a feasible assignment of
impressions to contracts when we scale up all the demands
by a factor of 1 + ε.

Henceforth, we will assume that our input instances are
ε-robust for a suitable ε; this is a mild technical assumption
that typically holds in practice. Also, a superscript c will
always denote a contract and a subscript i will always denote
an impression.

3. THE L1 PENALTY FUNCTION
The balanced allocation problem with the L1 penalty func-

tion can be formulated as a linear programming (LP) prob-
lem. Our main result is that we can solve this LP by instead
solving a min-cost flow problem, i.e., there is a combina-
torial solution to the balanced allocation problem with L1

penalty. In Section 4, we show that by preprocessing the
network flow solution, we can find a succinct representa-
tion that only stores O(|C|+ |I|) values and can reconstruct
the asymptotically optimal solution in O(1) time. Later in
Section 5, we obtain an approximate solution (along with
efficient reconstruction) when the demand constraints are
“soft.”

We first consider an LP formulation of the problem:

min
∑
c∈C

wc
∑
i∈I

|yci − δci | , (1)

subject to

∀c ∈ C,
∑

i∈imp(c)

yci = dc (demand)

∀i ∈ I,
∑

c∈con(i)

yci ≤ si (supply)

To simplify the description, for a given allocation A, we
define unfair(y) =

∑
c w

c∑
i |y

c
i − δci |. The flow network,

with capacity cap(i, c) and cost cost(i, c) on each edge (i, c),
is constructed as a four layer graph G (Figure 1).

Note that minimizing absolute value can be converted to
two linear inequalities without loss of generality. The first
and the last layers are the source s and sink t respectively.
The second layer represents the set C of contracts, and the
third layer stands for the set I of impressions. Source s has
an edge (s, c) to each contract c ∈ C in the second layer,
with cap(s, c) = dc and cost(s, c) = 0. Contract c ∈ C in
the second layer is connected to the impression i ∈ I in the
third layer iff i ∈ imp(c). In this case, there are two edges
— a top edge and a bottom edge — between c and i. The
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Figure 1: The network construction with (capacity,
cost) on the edges for L1.

top edge has capacity dc − δci and cost 2wc and the bottom
edge has capacity δci and cost zero. Finally each impression
i ∈ I in the third layer is connected to the sink t by an edge
(i, t) with cap(i, t) = si and cost(i, t) = 0. Let E denote
the set of edges between the second and the third layers in
Figure 1.

Theorem 2. The min-cost s-t flow on G is the solution
to (1).

Proof. We need to show the following: (i) a maximum
s-t flow in G is a feasible solution to (1), provided (1) has a
feasible solution; (ii) any feasible solution to (1) is a feasible
s-t flow in G; and (iii) minimizing the cost of the maxi-
mum s-t flow in G is equivalent to minimizing the objective
in (1). It is easy to see that if (1) has a feasible solution,
then a maximum s-t flow in G is a feasible solution. Since
we look for the maximum flow, if there is any feasible so-
lution to the LP that can satisfy all the demands and the
supply constraint, then that solution would be selected as
the maximum flow as well. This means if (1) has a feasible
solution, then any feasible maximum flow in our network is
a feasible solution to (1). Second, it is easy to see that any
feasible solution to (1) is also a feasible s-t flow in G. And
last, we argue that the cost of the optimal solution to (1) is
the same as the minimum cost of the maximum flow in G.
In other words, we need to show that the costs of the flow
are computed correctly in G. Note that the total contribu-
tion to the cost of the pairs of impressions and contracts
that are over-assigned, i.e., yci > δci , is half of the total cost.
So it is enough to compute twice this cost. Now consider
an impression i and a contract c. If yci > δci , then we can
route at most δci flow through the edge with cost 0 and route
yci − δci through the edge with cost 2wc, which is equal to
2wc(yci −δci ), which is exactly twice the cost of this pair.

So we showed that our min-cost flow solution has exactly
the same value as (1). Next, we show that in fact, we can
preprocess the min-cost flow solution so that by keeping
track of just O(|C| + |I|) values, we can reconstruct the
complete flow.

4. RECONSTRUCTION FOR L1

Even though the min-cost flow formulation obtains the
optimal solution, as we mentioned earlier, it is not feasible
to store the entire allocation information. Naively storing
the solution representation is expensive since it uses O(|E|)
space. (As we will see in Section 6, supply–demand bipartite
graphs that occur in practice tend to have high average de-
gree, i.e., |E| is much larger compared to |C|+ |I|.) Ideally,



we wish to store just O(|C| + |I|) information (i.e., amor-
tized O(1) per node) that will let us reconstruct the flow
along every edge; for practical reasons, we also require such
a reconstruction to be time-efficient.

We consider the L1 formulation and show an approximate
reconstruction via dual variables for the nodes. First, we
write the LP corresponding to the min-cost flow; from The-
orem 2, this LP is equivalent to (1).

min
∑
c

∑
i∈imp(c)

2wcxci (2)

subject to

∀c ∈ C,
∑

i∈imp(c)

(xci + xci ) = dc

∀(i, c) ∈ E, xci ≤ δci
∀i ∈ I,

∑
c∈con(i)

(xci + xci ) ≤ si

∀(i, c) ∈ E, xci , x
c
i ≥ 0

Here, xci denotes the flow along the top edge and xci denotes
the flow along the bottom edge from c to i. The dual of the
above LP looks as follows.

max
∑
c∈C

Y cdc −
∑
i∈I

Zisi −
∑

(i,c)∈E
Aci δ

c
i (3)

subject to

∀(i, c) ∈ E, Y c − Zi −Aci ≤ 0

∀(i, c) ∈ E, Y c − Zi ≤ 2wc

∀(i, c) ∈ E, Aci , xi ≥ 0

Here, A denotes the allocation, where Aci is the allocation
amount from impression i to contract c. Since we want to
maximize the dual function and the coefficient of each Aci in
the objective function is negative, we would like to set the
Aci ’s as small as possible. From the constraints in the dual,
this means Aci = max(0, Y c−Zi) and hence we do not need
to keep track of Aci ’s. Next, we show how to reconstruct yci ’s
by only keeping Y c’s and Zi’s and then we show that in fact
it is enough just to keep track of the Y c’s.

Since we are considering an optimal solution, because of
the complementary slackness, we have three cases for each
edge between i and c. First we consider the bottom edges.

(i) Y c − Zi < 0: in this case, we have xci = 0.
(ii) Y c − Zi > 0: in this case, xci is fully saturated.
(iii) Y c − Zi = 0: in this case, we have Y c = Zi. This is

the only case that we have an edge between (i, c), with the
only constraint being the edge capacity constraint.

We have the same scenario for the top edges as well. In the
third case, the dual variables do not give us any information
on the value of the primal. We call the edges belonging to
the third class slack edges. Next, we argue that any feasible
assignment of flow to slack edges would be a solution. To
see this, first notice that the cost of any slack edge (i, c) is
exactly to Y c−Zi. Further, any path from i to c consisting
of only slack edges have the same cost. Also, any cycle con-
sisting of slack edges has a cost of 0. Therefore, any feasible
maximum flow on the slack edges would constitute a solu-
tion. However, this means we have to be able to reconstruct
a maximum flow on the slack edges. Thus, in the worst
case, reconstructing an arbitrary maximum flow using the
dual is no easier than finding a maximum flow from scratch!
Therefore, we need to store extra information to be able to
reconstruct a maximum flow on the slack edges efficiently.

Next, we provide a combinatorial solution in which we
show how to compute a representation for approximate re-
construction (Section 4.1) and how to use this representation
to do the actual reconstruction (Section 4.2). In Section 4.3
we discuss the generic effect of supply and/or demand scal-
ing, which is of interest when supply forecasts, for instance,
are not available precisely.

Remark. At a first glance, a extreme point solution to the
primal LP of the maximum flow might appear to require only
linear storage; this is not the case, however. The primal LP
of a maximum flow for a graph with n nodes and m edges
has m variables and m+ n constraints. If an extreme point
solution to this LP has k non-zero variables, there should be
k linearly independent tight constraints. Among those con-
straints, at most n of them could be node constraints and
the remaining k − n should be edge capacity constraints.
However, a tight edge capacity constraint uniquely identi-
fies the flow on it respective edge so we do not need to store
the flow value for these edges. So we need to store the flow
explicitly for at most n edges. This argument however re-
quires that we already know which edges have non-zero flow.
The number of edges with non-zero flow could be of O(m)
which would require more than linear space to store.

To illustrate this with an example, consider a maximum
flow on a graph with three nodes s, v, and t. Suppose there
is one edge of capacity k from s to v and k+ 1 edges from v
to t, each of capacity 1. Among the k+ 1 edges from v to t,
at most k edges can be tight and we need to store which k
of them are non-zero. Note that there is no way to identify
those k edges from the dual LP.

4.1 Computing the representation
As described earlier, by computing the dual variables of

the min-cost flow, we can decide which edges are saturated
and which are empty. For the remaining (i.e., slack) edges,
the problem is reduced to computing a maximum flow in
the new subgraph. Here, we present a way to find a specific
maximum flow solution that is easy to reconstruct. We start
by developing some definitions.

For a given node v ∈ V and a given flow function flow :
E → R+ on the edges, let

in(v) =
∑

u:(u,v)∈E

flow(u, v), out(v) =
∑

u:(v,u)∈E

flow(v, u),

excess(v) = in(v)− out(v).

Definition 3 (ε-feasible flow). A flow function flow(x, y) :
E → R+ is called ε-feasible if and only if for any contract
c, 0 ≤ excess(c) ≤ ε · out(c) or equivalently out(c) ≤ in(c) ≤
(1 + ε) out(c).

Suppose we have a function height : V → R+ such that
the flow on each edge e = (i, c) is given by

flow(i, c) = min(1,max(height(i)− height(c), 0)) · cap(i, c).
(4)

Before we show the existence of such a function, we de-
fine another function xheight(v) as follows. For a given
height(·), if by changing height(v) to height(v) + δ we get
excess(v) = 0, then we define xheight(v) = δ. Intuitively,
xheight(v) indicates how much we need to increase the height
of v (while keeping other nodes fixed) to reduce the excess
flow of v down to 0. It is easy to see that xheight(v) can



be computed using a binary search. (To see this, first as-
sume height(v′) is fixed for all v′ 6= v and wlog height(v1) ≤
· · · ≤ height(v|I|+|C|−1). If we assume that when excess(v) =
0, height(vi) ≤ height(v) ≤ height(vi+1), then computing
xheight(v) will be reduced to solving a linear equation. Now
to find i, we can perform a binary search over all the nodes
at the given heights.)

Next we show that there exists a function height(v) for
which the corresponding flow is ε-feasible and it is greater
or equal to maximum feasible flow on the slack edges. Note
that for a given function height(v), computing the corre-
sponding flow is trivial just from its definition using (4).
The method we use for computing the height function is as
follows. Let µ = ε

2|I|(1+ε) .

Algorithm 1 Computing height(·).
1: Initialize height(s) = 2|C|+2 and height(v) = 0 for v 6= s
2: repeat
3: For the current function height, find the node v with

largest xheight(v)
4: Set height(v) = height(v) + xheight(v) and update the

excess flow values and xheight(·) for the rest of the
nodes

5: until xheight(v) ≤ µ for all v ∈ V

Note that the above algorithm might appear similar to the
push-relabel algorithm of Goldberg and Tarjan [12]. How-
ever, the requirement that the amount of flow going through
an edge is a function of the height difference of its endpoints
and the non-integrality of the heights makes our setting dif-
ferent from theirs. We now show that the corresponding
flow for height(·) after the termination of the algorithm is
ε-feasible and is at least as large as the maximum feasible
flow. First we show some properties of the algorithm.

Lemma 4. After the termination of the algorithm, the set
of edges between s and contract nodes are all fully satu-
rated or in other words for any contract node c, height(c) ≤
height(s)− 1.

Proof. First we partition the nodes into two sets X and
Y based on whether they are reachable from s on the resid-
ual flow graph. We first claim that Y 6= ∅ and t ∈ Y . This
follows since there can be no simple path from s to t in the
residual graph. Any simple path from s to t is of length at
most 2|C| + 1 and since height(s) = 2|C| + 2, it should be
the case that for some edge (u, v) on the path, height(u) >
height(v) + 1 and therefore flow(u, v) = cap(u, v), which
means (u, v) is not in the residual graph. Thus, s and t
are disconnected.

Since X and Y are non-empty and disjoint, (X,Y ) is a
cut. Notice that the size of this cut is less than or equal to
the cut which consists of edges between s and the contract
nodes, because we may have some excess flow on nodes in
X. We can conclude that if the cut (X,Y ) is not the same as
the cut between s and the contract nodes then the demands
of the contracts were not satisfiable to begin with which
contradicts our assumption. Therefore, X = {s} and Y =
X̄, so for any contract node c, height(c) ≤ height(s)− 1.

Lemma 5. For all v ∈ V , excess(v) is always non-negative
during running the algorithm.

Proof. First, we can see that at the initialization step,
excess(v) ≥ 0. We show that after running each step, the

property still holds. Suppose the algorithm selected v at a
round and relabeled it so after the relabel step excess(v) = 0.
For all nodes that has an outgoing edge to v, their outgoing
flow is only decreased so their excess will increase. And for
all nodes with incoming edges from v, their incoming flows
only increase so their excess will increase as well. For the
rest of the nodes the excess will not change.

Theorem 6. The flow computed by Algorithm 1 is ε-feasible.

Proof. Consider the time when the algorithm has ter-
minated. We know that for each v ∈ V , if we increase its
heights by xheight(v) < µ then excess(v) becomes 0. Con-
sider a node c from the contract layer at the end of the
algorithm. Since we know that all the contracts are satis-
fiable, the set of edges from s to the contract nodes is the
minimum cut and height(c) ≤ height(s) − 2. (Note that
height(s) = 2|C| + 2 and height(t) = 0 and any simple
path between each contract and t has a length less than
or equal to 2|C|.) Therefore, flow(s, c) = cap(s, c) and
raising c by µ will not change its incoming flow. Suppose
outmax(c) is the total capacity of edges going out of c. We
know that after the algorithm terminates, xheight(c) ≤ µ.
Hence, in(c) − out(c) = excess(c) ≤ µ outmax(c). Also note
that there can be at most 2|I| edges going out of c, each
one with a capacity of less than the incoming capacity of c
which was cap(s, c). This implies outmax(c) ≤ 2|I|cap(s, c)
and therefore in(c) − out(c) ≤ 2µ|I|cap(s, c). On the other
hand since in(c) = flow(s, c) = cap(s, c), we can conclude
that in(c) − out(c) ≤ 2µ|I| in(c). By rearranging the terms,
we get in(c) ≤ (1 + ε) out(c).

Next, we bound the running time of the algorithm that
computes the representation.

Lemma 7. The algorithm terminates after at most O((|C|+
|I|)|I| · |C|/ε) iterations.

Proof. First of all, at each iteration, we increase the
height(v) for some node v by at least µ. Notice that no node
will ever go higher than the source s so each node can be
relabeled at most (2|C| + 2)/µ times so the total number
of iterations (for all nodes) in the worst case is O((|C| +
|I|)|C|/µ) which is O((|C|+ |I|)|I| · |C|/ε).

Note that the algorithm 1 is used in the preprocessing
step which is offline. Furthermore, even at its worst-case
complexity which is O((|C|+ |I|)|I| · |C|/ε), it is still faster
than mincost-flow or LP.

4.2 Reconstruction using the representation
We now describe how to reconstruct the flow using just

height(v). For now we assume that after the termination
of the algorithm there is no excess flow on any node, i.e.,
∀v, excess(v) = 0. Obviously, because of the way we con-
structed the height function, the flow of every edge (u, v) is
flow(u, v) = min(1,max(height(u)− height(v), 0)) · cap(u, v).
This would work perfectly well if there was no excess flow on
any node. However because of the excess flows, the solution
may not be feasible. To fix that we first tweak the demands
before computing the height function and show that if the
input instance is (2ε+ ε2)-robust, then we can reconstruct a
feasible solution. Consider the following modification of our
method.



(i) Scale up all the demands by a factor of (1+ε)2, compute
the height function height(·) as explained in Algorithm 1,
and then set the demands back to their original values.

(ii) At reconstruction time, for each contract c and im-
pression i, reconstruct the flow on (c, i) using height(c) as
before but then scale it down by a factor of (1 + ε).

Theorem 8. Suppose that the given input instance is (2ε+
ε2)-robust. Then, the reconstructed solution according to the
above modification is feasible. Furthermore, it may assign
impressions to contracts up to (1 + ε) times their demand.

Proof. First, notice that since the input is (2ε + ε2)-
robust, we can still satisfy all the demands which means
the set of all demand edges is still a minimum cut. After
Algorithm 1 terminates, since the solution is ε-feasible, for
any contract c we have out(c) ≥ in(c)/(1 + ε). But notice
that we scaled up all the demands by (1 + ε)2 at the begin-
ning out height computation algorithm, so in(c) = (1+ε)2dc

where dc is the original demand of the contract c. Therefore,
out(c) ≥ (1 + ε)dc and clearly if we scale down the flow that
we reconstruct for the edges going out of c by (1+ε), still the
outgoing flow of c is at least as much as dc which means the
demand constraints are satisfied. Using a similar argument
for the supply side we can show that for any supply node i
the incoming flow of i cannot exceed its supply si.

A summary of the whole process is given in Algorithm 2
and Algorithm 3.

Algorithm 2 Preprocessing.

1: Build the min-cost flow graph G, run the min-cost flow
and compute the dual variables {Zi}i∈I and {Y c}c∈C

2: Remove the edges that are forced to be saturated or
empty, update the supplies and demands; let G′ =
(I ′, C′, E′) be the new graph

3: Scale all the demands by (1 + ε)2

4: ∀v ∈ I ′ ∪ C′, compute the height(v) using Algorithm 1

Algorithm 3 Reconstruction (c, i).

1: {(c, i) is the given edge}
2: if Y c − Zi < cost(i, c), then let flow(c, i) = 0
3: if Y c − Zi > cost(i, c), then let flow(c, i) = cap(c, i)
4: if Y c − Zi = cost(i, c), then let flow(c, i) =

min(1,max(height(c)− height(i), 0)) · cap(c, i)/(1 + ε)

Note that note 3 is the algorithm that is used in real-time
to serve the requests.

4.3 Effect of supply scaling
Notice in applying Theorem 8, we scale up the demands

before running the height algorithm but we use the same
supply. There might be also other reasons for scaling up
the demands. For example, suppose we do not know the
exact supply of the supply nodes (i.e., the si values), but we
may have an estimate of each supply node which we call s′i.
For example suppose we know that with high probability,

si ≥ s′i
1+ε

. Under, such a circumstance we may want to scale

down all the supply estimate s′i by some factor 1 + α (or
equivalently scale up all the demand constraints, compute
the flow and then scale the flow down by the same factor)

to make sure that with high probability we can always meet
the the supply constraints.

Scaling the demands (or supplies) may affect the value of
our objective function. The next result gives an upper bound
on the change of the objective function when we scale the
demands by an arbitrary factor.

Theorem 9. For a given input instance which is α-robust,
and with the optimal objective function value Opt, if we
scale the demands by 1 + α, then the new optimal value of
the objective function Opt′ is at most |C|2α·maxc∈C d

c away
from Opt and that is tight.

Proof. Consider the flow corresponding to the optimal
allocation of the original input (before scaling up the de-
mands). Now, for each contract c one by one, we scale
cap(s, c) by 1 + α. Since the input instance is α-robust,
we should be able to augment the flow by αdc which is the
amount of increase in the capacity of (s, c). By applying the
augmentation we may change the flow of each of the other
contract nodes by at most αdc which means the value of
the objective function may increase at most by αdc. Since
there are |C| augmentations and each augmentation may
affect the flow of all the other contract nodes, in the worst
case the total change in the objective function value is upper
bounded by |C|2αmaxc∈C d

c. The tight example is omitted
in this version.

5. A GREEDY SOLUTION FOR L1 ALLO-
CATION WITH SOFT DEMAND

In this section we present a simple greedy approach for a
slightly generalized version of the L1 penalty function. In
this version, we assume the demand constraints are soft,
meaning, it is possible to satisfy a contract partially. (The
search engine, however, should pay extra amount per un-
satisfied demand, similar to the model used in [9]; we will
capture this by a parameter β.) We also show how to
preprocess and then reconstruct the greedy solution using
O(|C| + |I|) space for storing the preprocessed information
and O(maxi∈I |con(i)|) time to recompute the allocation.

We assume each contract has its own weight wc = Wc

dc

and to implement the soft demand constraint, we assume
an amount of β ·wc is paid for each impression that cannot
be allocated to the contract c, where the factor β ≥ 1. We
now present a greedy algorithm and prove that the total cost
of its solution is at most 1+β/2 that of the optimal solution.
The greedy algorithm proceeds as follows.

Algorithm 4 Greedy allocation

1: repeat
2: Let c be the next contract with the largest wc

3: Give the most balanced allocation possible to contract
c

4: until all contracts are considered

We now show that this algorithm obtains an approxima-
tion to the optimum.

Lemma 10. Algorithm 4 is a 1 + β/2-approximation for
the L1 penalty function for the soft demand case with factor
β.

Proof. The proof is based on charging. We start by
defining some notation. As usual, for a given allocation A,



let Aci be the number of allocations from impression i to
contract c. In an allocation A, we call a contract c on im-
pression i as under-represented if Aci < δci ; let underci (A) =
max(0, δci − Aci )wc. Similarly, we call c over-represented on
i if Aci > δci and let overci (A) = max(0, Aci − δci ).w

c. Let
Opt denote the optimal allocation and Greedy denote the
greedy allocation. Two kinds of penalties are considered in
the objective function: Unbalance part and partial contract
allocation. Now we make the following claim: in any allo-
cation A, we have unfair(A) ≤ 2

∑
i∈I,c∈C underci (A). The

claim holds because for any contract c,
∑
i∈I overci (A) ≤∑

i∈I underci (A), where the inequality changes to equality
when dc is completely satisfied in A. In addition,

unfair(A) =
∑

i∈I,c∈C

(underci (A) + overci (A)).

This means that the unbalance of our solution is at most
twice as under representativeness of our solution. Also, since
the allocation is greedy, the amount of under-balance on
each impression in greedy is lower than any other alloca-
tion. I.e.,

∑
i∈I,c∈C underci (Greedy) ≤

∑
i∈I,c∈C underci (A)

for any allocation A including Opt.
Now, let us consider the total cost of under-balance on

impression i in the greedy solution,

underi(Greedy) =
∑

c∈con(i)

underci (Greedy).

Even if we do not accommodate these contracts in any other
impression and pay the β factor instead of allocating them,
the total amount would be at most β ·underi(Greedy). Now
the total value of the objective function for the greedy so-
lution is at most (β + 2)

∑
i∈I underi(Greedy). From the

earlier argument, we know that
∑
i∈I underi(Greedy) ≤

Opt/2. These imply that the greedy solution is a 1 + β/2
approximation for the L1 penalty with soft demand.

5.1 Reconstructing the greedy solution
Next, we show how we can reconstruct the greedy solution

by storing only O(|C|) preprocessed information. The run-
ning time for reconstructing the allocation based on stored
information isO(maxi∈I |con(i)|). In the preprocessing phase,
we compute the greedy allocation as described in Section 4.
The stored information for each contract c is

∑
i∈imp(c) overci (Greedy).

The reconstruction is as follows:

Algorithm 5 Greedy reconstruction (i)

1: {A new impression from bucket i}
2: For all contracts c, set overc =

∑
i∈imp(c) overci (Greedy)

3: C′ = {c ∈ con(i) | c is under-represented}
4: if C′ 6= ∅ then
5: Assign the new impression to arg maxc∈C′ w

c

6: else
7: C′ = {c ∈ con(i) | overc > 0}
8: Assign the new impression to arg maxc∈C′ w

c

9: overc = overc − 1.

As described earlier, we need to keep track of only one
variable for each contract. Also at each impression arrival, in
the worst case we have O(maxi∈I |con(i)|) processing time.
With similar argument given in Lemma 10, we can show that
the computed solution here is also 1+β/2-approximation for
the balanced allocation with soft demands.

|I| 13,414
|C| 14,880
|E| 1,113,776

(1/|I|)
∑
i∈I con(i) 83.03

(1/|C|)
∑
c∈C imp(c) 74.85∑

i∈I si 184 ×109∑
c∈C d

c 89 ×109

Table 1: Impression–contract graph G: characteris-
tics.

6. EXPERIMENTS
In this section we perform an experimental evaluation of

our algorithm on large real-world datasets. The goal of the
experiment is three-fold: (i) to demonstrate the practical
feasibility and the scalability of our min-cost based algo-
rithm, on large instances of the problem, especially com-
pared to using a black-box linear/convex programming so-
lution, (ii) to compare the performance of our algorithm to
that of baselines such as Greedy (Section 5) and its heuris-
tic variants, and (iii) to understand the space savings en-
abled by the reconstruction procedure.

Data and implementation. The datasets consist of var-
ious subsets of actual impressions buckets and advertiser
contracts from Yahoo!’s display advertising system. For sim-
plicity of exposition, we discuss the results for the largest
graph in this collection. A gist of results for other graphs is
given in Table 4.

The basic characteristics of the largest graph is shown in
Table 1. We can see that the average degree of both the
impression and contractor nodes is fairly high. The supplies
and demands are integral and in our experiments, we treat
all contracts equally, i.e., wc = 1 for all c ∈ C. First, we
ensure that this instance is in fact feasible by checking that
the maximum flow in the instance is at least the sum of the
demands of the contracts.

Next, we implement the min-cost based algorithm for min-
imizing the L1 penalty. To do this, we use Goldberg’s al-
gorithm [11] for min-cost flow, obtained from http://www.

avglab.com/andrew/soft.html. Since this implementation
requires integral capacities and costs, we round the costs and
capacities when constructing the graph in Figure 1. Addi-
tionally, since parallel edges are not supported in the imple-
mentation, we split each bottom edge in the middle layer of
Figure 1 by introducing a new node; the costs and capaci-
ties of the newly created edges are the same as the original
bottom edge.

The program was run on a single CPU 1.8GHz Linux ma-
chine with 16G memory. The min-cost based algorithm took
178 seconds to run on our input instance; we believe this
can be significantly improved by careful fine-tuning. Besides
providing insights into the problem itself, this is more time-
efficient than applying a black-box LP solver (an untuned
version of which took over 4000 seconds on our instance).
Also, the LP solver is unhelpful in efficient reconstruction.

Performance. The performance of this algorithm is com-
pared to that of the Greedy algorithm. Since the contracts
are unweighted in our instance, we try two additional vari-
ants of Greedy: the contracts are ordered by decreasing
demands (denoted Greedy<) and increasing demands (de-
noted Greedy>). The results are shown in Table 2. The
second column reports the L1 penalty as in (1). For com-



Algorithm L1 L2
2 % unsatisfied

penalty penalty (×108) demands
Theorem 2 1315 4.252 0
Greedy 2754 5.337 1.594
Greedy< 5521 10.27 2.645
Greedy> 746.3 2.457 0.673

Table 2: Performance of various algorithms.

parison purposes, we also compute the L2 penalty as in (5)
and report it in the third column. The fourth column con-
tains the fraction of contracts that are unsatisfied by the
allocation; notice that the min-cost based algorithm always
satisfies all the demands, as long as the instance is feasible.
As we see, the L1 penalty of the min-cost based algorithm
is much less than the first two versions of Greedy. Inter-
estingly, the third version Greedy> does better in terms of
both L1 and L2 penalties, but unfortunately does not sat-
isfy all the demands. If however the demands are soft, i.e.,
there is a cost associated with not fully satisfying a demand,
we can apply Lemma 10 to comment on the performance of
Greedy.

To understand the solution produced by the min-cost algo-
rithm better, we consider the distribution of the L1 penal-
ties per contract (i.e., for a contract c, the penalty value
wc
∑
i∈I |y

c
i − δci |). Figure 2 shows this distribution: the

x-axis represents the L1 penalty values and the y-axis rep-
resents the fraction of contracts with this penalty value. As
we see, the penalties of the min-cost flow-based algorithm
is sandwiched between the greedy counterparts. This shows
that in order to satisfy all the contracts, one has to incur
fairly high L1 penalties at least for some contracts. (Greedy
and its variants do not take this into account and hence
might end up not satisfying some contracts.)
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Figure 2: Distribution of penalties.

Efficacy of reconstruction. Finally, we look at the effi-
cacy of the reconstruction. To study the space savings, we
examine the values of the dual variables in (3). Table 3(a)
shows the values. It is clear that the flow is either saturated
or empty for more than 99% of the edges in the graph. Thus,
the reconstruction becomes an efficient proposition since we
only need to address the remaining 0.36% of the edges.

The graph G′ in Algorithm 2 for our instance is fairly
small; Table 3(b) shows its properties. From the data, we
can store (|C|+ |I|+ |C′|+ |I ′|) values (instead of |E|) and
can reconstruct the solution. This is 3.1% — smaller by
almost two orders of magnitude — of the space without the
reconstruction! The time for reconstructing the flow for each

Condition % edges
on (i, c)
Y c < Zi 59.71
Y c > Zi 14.77
Y c = Zi 0.363

|I ′| 2001
|C′| 4160
|E′| 5407

(1/|I ′|)
∑
i∈I′ con(i) 2.70

(1/|C′|)
∑
c∈C′ imp(c) 1.30

(a) (b)

Table 3: (a) Distribution of the dual variables. (b)
Reconstruction graph G′: characteristics.

G |I| |C| m L1 time |I′| |C′| |E′|/
(K) cost (sec) |E|

1 6683 7485 269 1252 26.5 1855 2351 1.23
2 3942 4461 104 811 8.03 932 1173 0.86
3 10720 11793 71 1278 95.2 2166 3586 0.63
4 10772 4455 264 136 25.9 370 805 0.21
5 3948 11862 260 4613 22.6 5157 2807 7.73
6 1318 13373 973 4524 8.40 5835 1236 6.47
7 12092 1509 890 14 5.77 53 93 0.06
8 1358 1500 104 258 0.23 265 350 0.52
9 12024 13416 906 1368 125.0 2483 4091 0.72

Table 4: Summary of results for nine other graphs.

edge is essentially negligible by applying Algorithm 3.

Results for other graphs. We present a summary of re-
sults for nine other graphs of varying sizes and characteris-
tics. From Table 4, we see that our min-cost based algorithm
performs uniformly well over all these graphs, especially in
terms of the running time and the reconstruction size.

7. CONVEX PENALTY FUNCTIONS
In this section we describe the combinatorial solution for

a general convex penalty function. Our solution is based on
finding a convex cost flow. For simplicity of exposition, we
describe the method for the L2

2 function; the general method,
however, works for any convex distance function.

For L2
2 penalty function, the quadratic programming for-

mulation of the problem is as follows.

min
∑
c

wc
∑
i

(yci − δci )2, (5)

subject to

∀c,
∑
i

yci = dc (demand)

∀i,
∑
c

yci ≤ si (supply)

We show how to solve (5) using a convex cost flow. The flow
network, with capacity and cost on each edge, is constructed
as follows. We create a node for each contract and a node for
each impression. Now compute the completely balanced al-
location for each contract. In this tentative allocation, some
of the impressions could be overfull and some of them could
have excess supply. The goal is to reallocate the contracts to
impressions in the least expensive way (according to the L2

2

penalty) such that none of the impressions is overfull. We
represent the excess of impression i by ei = si−

∑
c∈con(i) δ

c
i .

If ei ≤ 0, then we consider the impression node as a supply
node and set its supply equal to −ei. If ei ≥ 0, then we set
the impression node as a demand node and set its demand
equal to ei. Also we connect each supply impression node



i to each contract c that is interested in that impression,
setting cap(c, i) = δci and cost 2x2W c, where x is the flow
on that edge (Figure 3).

impressions

je          (    , 2x  w )δ
j
i

j2

(inf, −r )i

(inf, 2x  w )2 j

contracts

  ij

i

Figure 3: The network construction with (capacity,
cost) on the edges for L2

2.

From our construction, it is easy to see the following (proof
similar to that of Theorem 2).

Lemma 11. The solution to network described above is
equivalent to the solution to (5).

7.1 Efficient reconstruction for L2
2

In [15], Vee et al. showed that the solution to the L2
2

can be reconstructed using the Lagrange multipliers of the
quadratic program. As part of their method, they show that,
assuming that the Lagrange multiplier for supply constraint
is pi and the Lagrange multiplier for demand constraint is
αc, the best allocation that minimizes L2

2 norm and is a
feasible solution satisfies

yci = max(0, gci (α
c − pi)), where

gci (x) = dc · si∑
i∈imp(c) si

(
1− x

dc

)
. (6)

and store the values, we can reconstruct the allocation. They
also showed that the solution to L2

2 is unique, which means
that the returned solution by the convex cost function also
fits in their argument. Earlier in this section, we showed how
to compute yci values. Here, we give a solution sketch on
how we can compute Lagrange multipliers combinatorially
as well, given the primal solution. For simplicity, we denote
φ = dc · si∑

i∈imp(c) si
and σ = si∑

i∈imp(c) si
. Rewriting (6), we

have yci = φ− σ · (αc − pi). Thus if we compute yci , we can
compute αc − pi as well. So, for all pairs (c, i) with yci > 0,
we first compute dci = αc − pi. We now construct a graph
with one node for each Lagrange multiplier (in total |I|+ |C|
nodes) and place an edge between two of them if there is a
corresponding yci > 0 for them; let the length of the edge
be dci . First of all it is easy to see that in each connected
component, if we know the Lagrange multiplier for one of
the nodes (for example pi), the Lagrange multiplier for the
rest of the nodes in the same component can be computed
as well. So for each connected component, we assign some
variable p to one of the nodes and compute the distance of
all the nodes from that node. This way, the value of the
Lagrange multipliers in each component can be represented
by p+d for which d is already computed and the only variable
is p. So the only remaining question is how to choose p
values in each component. Looking back at the Lagrangian
for the quadratic program, and replacing yci ’s and αc and
pi by their computed values, the objective can be written
as a linear function in terms of the selected representing

values (p values) for each component. It is enough now to
compute the best value for each of them assuming that we
want to minimize the Lagrange objective function. We omit
the details in this version.

8. CONCLUSIONS
In this paper we considered the problem of balanced al-

location in a bipartite supply-demand setting. We worked
with a simple formulation and circumvented the need for
mathematical programming solutions by taking a more di-
rect and combinatorial look at the formulation. We obtained
a flow-based algorithm for the L1 penalty case, the insights
from which allowed us to precompute and store a linear
amount of information such that the allocation can be re-
constructed in constant time per edge. We extended the
flow-based algorithm to the general convex function case.

Interesting directions for future work are: Is there a non-
flow based solution to the L1 penalty case, assuming certain
structure on the contracts and/or impressions? Can sam-
pling be used to approximate the L1 penalty case and obtain
an even more efficient solution? Is there a regular (i.e., not
convex) flow solution to the L2

2 penalty case?
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