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Abstract. With more than four billion usage of cellular phones worldwide, mo-
bile advertising has become an attractive alternative to online advertisements.
In this paper, we propose a new targeted advertising policy for Wireless Ser-
vice Providers (WSPs) via SMS or MMS- namely AdCell. In our model, a WSP
charges the advertisers for showing their ads. Each advertiser has a valuation for
specific types of customers in various times and locations and has a limit on the
maximum available budget. Each query is in the form of time and location and is
associated with one individual customer. In order to achieve a non-intrusive de-
livery, only a limited number of ads can be sent to each customer. Recently, new
services have been introduced that offer location-based advertising over cellular
network that fit in our model (e.g., ShopAlerts by AT&T) .
We consider both online and offline version of the AdCell problem and develop
approximation algorithms with constant competitive ratio. For the online version,
we assume that the appearances of the queries follow a stochastic distribution
and thus consider a Bayesian setting. Furthermore, queries may come from dif-
ferent distributions on different times. This model generalizes several previous
advertising models such as online secretary problem [10], online bipartite match-
ing [13,7] and AdWords [18]. Since our problem generalizes the well-known sec-
retary problem, no non-trivial approximation can be guaranteed in the online set-
ting without stochastic assumptions. We propose an online algorithm that is sim-
ple, intuitive and easily implementable in practice. It is based on pre-computing
a fractional solution for the expected scenario and relies on a novel use of dy-
namic programming to compute the conditional expectations. We give tight lower
bounds on the approximability of some variants of the problem as well. In the of-
fline setting, where full-information is available, we achieve near-optimal bounds,
matching the integrality gap of the considered linear program. We believe that our
proposed solutions can be used for other advertising settings where personalized
advertisement is critical.
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1 Introduction

In this paper, we propose a new mobile advertising concept called Adcell. More than
4 billion cellular phones are in use world-wide, and with the increasing popularity of
smart phones, mobile advertising holds the prospect of significant growth in the near fu-
ture. Some research firms [1] estimate mobile advertisements to reach a business worth
over 10 billion US dollars by 2012. Given the built-in advertisement solutions from
popular smart phone OSes, such as iAds for Apple’s iOS, mobile advertising market is
poised with even faster growth.

In the mobile advertising ecosystem, wireless service providers (WSPs) render the
physical delivery infrastructure, but so far WSPs have been more or less left out from
profiting via mobile advertising because of several challenges. First, unlike web, search,
application, and game providers, WSPs typically do not have users’ application context,
which makes it difficult to provide targeted advertisements. Deep Packet Inspection
(DPI) techniques that examine packet traces in order to understand application context,
is often not an option because of privacy and legislation issues (i.e., Federal Wiretap
Act). Therefore, a targeted advertising solution for WSPs need to utilize only the infor-
mation it is allowed to collect by government and by customers via opt-in mechanisms.
Second, without the luxury of application context, targeted ads from WSPs require non-
intrusive delivery methods. While users are familiar with other ad forms such as ban-
ner, search, in-application, and in-game, push ads with no application context (e.g., via
SMS) can be intrusive and annoying if not done carefully. The number and frequency
of ads both need to be well-controlled. Third, targeted ads from WSPs should be well
personalized such that the users have incentive to read the advertisements and take pur-
chasing actions, especially given the requirement that the number of ads that can be
shown to a customer is limited.

In this paper, we propose a new mobile targeted advertising strategy, AdCell, for
WSPs that deals with the above challenges. It takes advantage of the detailed real-time
location information of users. Location can be tracked upon users’ consent. This is al-
ready being done in some services offered by WSPs, such as Sprint’s Family Location
and AT&T’s Family Map, thus there is no associated privacy or legal complications. To
locate a cellular phone, it must emit a roaming signal to contact some nearby antenna
tower, but the process does not require an active call. GSM localization is then done by
multi-lateration3 based on the signal strength to nearby antenna masts [22]. Location-
based advertisement is not completely new. Foursquare mobile application allows users
to explicitly ”check in” at places such as bars and restaurants, and the shops can ad-
vertise accordingly. Similarly there are also automatic proximity-based advertisements
using GPS or bluetooth. For example, some GPS models from Garmin display ads for
the nearby business based on the GPS locations [23]. ShopAlerts by AT&T 4 is another
application along the same line. On the advertiser side, popular stores such as Starbucks
are reported to have attracted significant footfalls via mobile coupons.

3 The process of locating an object by accurately computing the time difference of arrival of a
signal emitted from that object to three or more receivers.

4 http://shopalerts.att.com/sho/att/index.html?ref=portal
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Most of the existing mobile advertising models are On-Demand, however, AdCell
sends the ads via SMS, MMS, or similar methods without any prior notice. Thus to deal
with the non-intrusive delivery challenge, we propose user subscription to advertising
services that deliver only a fixed number of ads per month to its subscribers (as it is the
case in AT&T ShopAlerts). The constraint of delivering limited number of ads to each
customer adds the main algorithmic challenge in the AdCell model (details in Section
1.1). In order to overcome the incentive challenge, the WSP can “pay” users to read
ads and purchase based on them through a reward program in the form of credit for
monthly wireless bill. To begin with, both customers and advertisers should sign-up for
the AdCell-service provided by the WSP (e.g., currently there are 9 chain-companies
participating in ShopAlerts). Customers enrolled for the service should sign an agree-
ment that their location information will be tracked; but solely for the advertisement
purpose. Advertisers (e.g., stores) provide their advertisements and a maximum charge-
able budget to the WSP. The WSP selects proper ads (these, for example, may depend
on time and distance of a customer from a store) and sends them (via SMS) to the cus-
tomers. The WSP charges the advertisers for showing their ads and also for successful
ads. An ad is deemed successful if a customer visits the advertised store. Depending on
the service plan, customers are entitled to receive different number of advertisements
per month. Several logistics need to be employed to improve AdCell experience and
enthuse customers into participation. We provide more details about these logistics in
the full paper.

1.1 AdCell Model & Problem Formulation

In the AdCell model, advertisers bid for individual customers based on their location
and time. The triple (k, `, t) where k is a customer, ` is a neighborhood (location) and
t is a time forms a query and there is a bid amount (possibly zero) associated with
each query for each advertiser. This definition of query allows advertisers to customize
their bids based on customers, neighborhoods and time. We assume a customer can
only be in one neighborhood at any particular time and thus at any time t and for each
customer k, the queries (k, `1, t) and (k, `2, t) are mutually exclusive, for all distinct
l1, l2. Neighborhoods are places of interest such as shopping malls, airports, etc. We
assume that queries are generated at certain times (e.g., every half hour) and only if a
customer stays within a neighborhood for a specified minimum amount of time. The
formal problem definition of AdCell Allocation is as follows:

AdCell Allocation There are m advertisers, n queries and s customers. Advertiser i
has a total budget bi and bids uij for each query j. Furthermore, for each customer k ∈
[s], let Sk denote the queries corresponding to customer k and ck denote the maximum
number of ads which can be sent to customer k. The capacity ck is associated with
customer k and is dictated by the AdCell plan the customer has signed up for. Advertiser
i pays uij if his advertisement is shown for query j and if his budget is not exceeded.
That is, if xij is an indicator variable set to 1, when advertisement for advertiser i is
shown on query j, then advertiser i pays a total amount of min(

∑
j xijuij , bi). The

goal of AdCell Allocation is to specify an advertisement allocation plan such that the
total payment

∑
imin(

∑
j xijuij , bi) is maximized.
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The AdCell problem is a generalization of the budgeted AdWords allocation prob-
lem [4,21] with capacity constraint on each customer and thus is NP-hard. Along with
the offline version of the problem, we also consider its online version where queries
arrive online and a decision to assign a query to an advertiser has to be done right away.
With arbitrary queries/bids and optimizing for the worst case, one cannot obtain any
approximation algorithm with ratio better than 1

n . This follows from the observation
that online AdCell problem also generalizes the secretary problem for which no deter-
ministic or randomized online algorithm can get approximation ratio better than 1

n in
the worst case.5. Therefore, we consider a stochastic setting.

For the online AdCell problem, we assume that each query j arrives with proba-
bility pj . Upon arrival, each query has to be either allocated or discarded right away.
We note that each query encodes a customer id, a location id and a time stamp. Also
associated with each query, there is a probability, and a vector consisting of the bids for
all advertisers for that query. Furthermore, we assume that all queries with different ar-
rival times or from different customers are independent, however queries from the same
customer with the same arrival time are mutually exclusive (i.e., a customer cannot be
in multiple locations at the same time).

1.2 Our Results and Techniques

Here we provide a summary of our results and techniques. We consider both the offline
and online version of the problem. In the offline version, we assume that we know ex-
actly which queries arrive. In the online version, we only know the arrival probabilities
of queries (i.e., p1, · · · , pm).

We can write the AdCell problem as the following random integer program in which
Ij is the indicator random variable which is 1 if query j arrives and 0 otherwise:

maximize.
∑
i

min(
∑
j

Xijuij , bi) (IPBC)

∀j ∈ [n] :
∑
i

Xij ≤ Ij (F )

∀k ∈ [s] :
∑
j∈Sk

∑
i

Xij ≤ ck (C)

Xij ∈ {0, 1}

We will refer to the variant of the problem explained above as IPBC . We also consider
variants in which there are either budget constraints or capacity constraints but not both.
We refer to these variants as IPB and IPC respectively. The above integer program can
be relaxed to obtain a linear program LPBC , where we maximize

∑
i

∑
jXijuij with

the constraints (F ), (C) and additional budget constraint
∑
jXijuij ≤ bi which we

refer to by (B). We relax Xij ∈ {0, 1} to Xij ∈ [0, 1]. We also refer to the variant of

5 The reduction of the secretary problem to AdCell problem is as follows: consider a single
advertiser with large enough budget and a single customer with a capacity of 1. The queries
correspond to secretaries and the bids correspond to the values of the secretaries. So we can
only allocate one query to the advertiser.
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this linear program with only either constraints of type (B) or constraints of type (C)
as LPB and LPC .

In the offline version, for all i ∈ [m] and j ∈ [n], the values of Ij are precisely
known. For the online version, we assume to know the E[Ij ] in advance and we learn
the actual value of Ij online. We note a crucial difference between our model and the
i.i.d model. In i.i.d model the probability of the arrival of a query is independent of the
time, i.e., queries arrive from the same distribution on each time. However, in AdCell
model a query encodes time (in addition to location and customer id), hence we may
have a different distribution on each time. This implies a prophet inequality setting in
which on each time, an onlooker has to decide according to a given value where this
value may come from a different distribution on different times (e.g. see [14,11]).

A summary of our results are shown in Table 1. In the online version, we compare
the expected revenue of our solution with the expected revenue of the optimal offline
algorithm. We should emphasis that we make no assumptions about bid to budget ratios
(e.g., bids could be as large as budgets). In the offline version, our result matches the
known bounds on the integrality gap.

We now briefly describe our main techniques.

Breaking into smaller sub-problems that can be optimally solved using conditional
expectation. Theoretically, ignoring the computational issues, any online stochastic op-
timization problem can be solved optimally using conditional expectation as follows: At
any time a decision needs to be made, compute the total expected objective conditioned
on each possible decision, then chose the one with the highest total expectation. These
conditional expectations can be computed by backward induction, possibly using a dy-
namic program. However for most problems, including the AdCell problem, the size of
this dynamic program is exponential which makes it impractical. We avoid this issue by
using a randomized strategy to break the problem into smaller subproblems such that
each subproblem can be solved by a quadratic dynamic program.

Using an LP to analyze the performance of an optimal online algorithm against
an optimal offline fractional solution. Note that we compare the expected objective
value of our algorithm against the expected objective value of the optimal offline frac-
tional solution. Therefore for each subproblem, even though we use an optimal online
algorithm, we still need to compare its expected objective value against the expected
objective value of the optimal offline solution for that subproblem. Basically, we need
to compare the expected objective of an stochastic online algorithm, which works by

Offline Version Online Version

– A 3
4

-approximation algorithm.

– A 4−ε
4

-approximation algorithm when
∀imaxj uij ≤ εbi.

– A
(
1
2
− 1

e

)
-approximation algorithm.

– A
(
1− 1

e

)
-approximation algorithm with

only budget constraints.

– A 1
2

-approximation algorithm with only
capacity constraints.

Table 1. Summary of Our Results
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maximizing conditional expectation at each step, against the expected objective value
of its optimal offline solution. To do this, we create a minimization linear program that
encodes the dynamic program and whose optimal objective is the minimum ratio of the
expected objective value of the online algorithm to the expected objective value of the
optimal offline solution. We then prove a lower bound of 1

2 on the objective value of
this linear program by constructing a feasible solution for its dual obtaining an objective
value of 1

2 .

Rounding method of [20] and handling hard capacities. Handling “hard capacities”,
those that cannot be violated, is generally tricky in various settings including facility
location and many covering problems [5,8,19]. The AdCell problem is a generalization
of the budgeted AdWords allocation problem with hard capacities on queries involving
each customer. Our essential idea is to iteratively round the fractional LP solution to
an integral one based on the current LP structure. The algorithm uses the rounding
technique of [20] and is significantly harder than its uncapacitated version.

Due to the interest of the space we differ the omitted proofs to the full paper.

2 Related Work

Online advertising alongside search results is a multi-billion dollar business [15] and is
a major source of revenue for search engines like Google, Yahoo and Bing. A related
ad allocation problem is the AdWords assignment problem [18] that was motivated by
sponsored search auctions. When modeled as an online bipartite assignment problem,
each edge has a weight, and there is a budget on each advertiser representing the upper
bound on the total weight of edges that might be assigned to it. In the offline setting,
this problem is NP-Hard, and several approximations have been proposed [3,2,4,21].
For the online setting, it is typical to assume that edge weights (i.e., bids) are much
smaller than the budgets, in which case there exists a (1 − 1/e)-competitive online
algorithm [18]. Recently, Devanur and Hayes [6] improved the competitive ratio to
(1− ε) in the stochastic case where the sequence of arrivals is a random permutation.

Another related problem is the online bipartite matching problem which is intro-
duced by Karp, Vazirani, and Vazirani [13]. They proved that a simple randomized on-
line algorithm achieves a (1−1/e)-competitive ratio and this factor is the best possible.
Online bipartite matching has been considered under stochastic assumptions in [9,7,17],
where improvements over (1− 1/e) approximation factor have been shown. The most
recent of of them is the work of Manshadi et al. [17] that presents an online algorithm
with a competitive ratio of 0.702. They also show that no online algorithm can achieve
a competitive ratio better than 0.823. More recently, Mahdian et al.[16] and Mehta et
al.[12] improved the competitive ratio to 0.696 for unknown distributions.

3 Online Setting

In this section, we present three online algorithms for the three variants of the problem
mentioned in the pervious section (i.e., IPB , IPC and IPBC).
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First, we present the following lemma which provides a means of computing an
upper bound on the expected revenue of any algorithm (both online and offline) for the
AdCell problem.

Lemma 1 (Expectation Linear Program). Consider a general random linear pro-
gram in which b is a vector of random variables:

(Random LP)

maximize. cTx

s.t. Ax ≤ b; x ≥ 0

Let OPT (b) denote the optimal value of this program as a function of the random
variables. Now consider the following linear program:

(Expectation LP)

maximize. cTx

s.t. Ax ≤ E[b]; x ≥ 0

We refer to this as the “Expectation Linear Program” corresponding to the “Random
Linear Program”. Let OPT denote the optimal value value of this program. Assuming
that the original linear program is feasible for all possible draws of the random vari-
ables, it always holds that E[OPT (b)] ≤ OPT .

Proof. Let x∗(b) denote the optimal assignment as a function of b. Since the random LP
is feasible for all realizations of b, we have Ax∗(b) ≤ b. Taking the expectation from
both sides, we get AE[x∗(b)] ≤ E[b]. So, by setting x = E[x∗(b)] we get a feasible
solution for the expectation LP. Furthermore, the objective value resulting from this
assignment is equal to the expected optimal value of the random LP. The optimal value
of the expectation LP might however be higher so its optimal value is an upper bound
on the expected optimal value of random LP.

As we will see next, not only does the expectation LP provide an upper bound
on the expected revenue, it also leads to a good approximate algorithm for the online
allocation as we explain in the following online allocation algorithm. We adopt the
notation of using an overline to denote the expectation linear program corresponding to
a random linear program (e.g. LPBC for LPBC). Next we present an online algorithm
for the variant of the problem in which there are only budget constrains but not capacity
constraints.

Algorithm 1 (STOCHASTIC ONLINE ALLOCATOR FOR IPB )

– Compute an optimal assignment for the corresponding expectation LP (i.e. LPB).
Let x∗ij denote this assignment. Note that x∗ij might be a fractional assignment.

– If query j arrives, for each i ∈ [m] allocate the query to advertiser i with proba-
bility

x∗
ij

pj
.



8 S. Alaei, M.T. Hajiaghayi, V. Liaghat, D. Pei and B. Saha

Theorem 1. The expected revenue of 1 is at least 1 − 1
e of the optimal value of the

expectation LP (i.e., LPB) which implies that the expected revenue of 1 it is at least
1− 1

e of the expected revenue of the optimal offline allocation too. Note that this result
holds even if uij’s are not small compared to bi. Furthermore, this result holds even
if we relax the independence requirement in the original problem and require negative
correlation instead.

Note that allowing negative correlation instead of independence makes the above
model much more general than it may seem at first. For example, suppose there is a
query that may arrive at several different times but may only arrive at most once or only
a limited number of times, we can model this by creating a new query for each possible
instance of the original query. These new copies are however negatively correlated.

Remark 1. It is worth mentioning that there is an integrality gap of 1 − 1
e between the

optimal value of the integral allocation and the optimal value of the expectation LP. So
the lower bound of Theorem 1 is tight. To see this, consider a single advertiser and n
queries. Suppose pj = 1

n and u1j = 1 for all j. The optimal value of LPB is 1 but even
the expected optimal revenue of the offline optimal allocation is 1 − 1

e when n → ∞
because with probability (1− 1

n )
n no query arrives.

To prove Theorem 1, we use the following theorem:

Theorem 2. Let C be an arbitrary positive number and let X1, · · · ,Xn be inde-
pendent random variables (or negatively correlated) such that Xi ∈ [0, C]. Let
µ = E[

∑
iXi]. Then:

E[min(
∑
iXi, C)] ≥ (1− 1

eµ/C
)C

Furthermore, if µ ≤ C then the right hand side is at least (1− 1
e )µ.

Proof (Theorem 1). We apply Theorem 2 to each advertiser i separately. From the per-
spective of advertiser i, each query is allocated to her with probability x∗ij and by con-
straint (B) we can argue that have µ =

∑
j x
∗
ijuij ≤ bi = C so µ ≤ C and by Theo-

rem 2, the expected revenue from advertiser i is at least (1− 1
e )(

∑
j x
∗
ijuij). Therefore,

overall, we achieve at least 1 − 1
e of the optimal value of the expectation LP and that

completes the proof.

Next we present an online algorithm for the variant of the problem in which there
are only capacity constrains but not budget constraints.

Algorithm 2 (STOCHASTIC ONLINE ALLOCATOR FOR IPC )

– Compute an optimal assignment for the corresponding expectation LP (i.e. LPC).
Let x∗ij denote this assignment. Note that x∗ij might be a fractional assignment.

– Partition the items to sets T1, · · · , Tu in increasing order of their arrival time and
such that all of the items in the same set have the same arrival time.

– For each k ∈ [s], t ∈ [u], r ∈ [ck], let Erk,t denote the expected revenue of the
algorithm from queries in Sk (i.e., associated with customer k) that arrive at or
after Tt and assuming that the remaining capacity of customer k is r. We formally
define Erk,t later.
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– If query j arrives then choose one of the advertisers at random with advertiser i
chosen with a probability of

x∗
ij

pj
. Let k and Tt be respectively the customer and

the partition which query j belongs to. Also, let r be the remaining capacity of
customer k (i.e. r is ck minus the number of queries from customer k that have
been allocated so far). If uij+Er−1k,t+1 ≥ Erk,t+1 then allocate query j to advertiser
i otherwise discard query j.

We can now define Erk,t recursively as follows:

Erk,t =
∑
j∈Tt

∑
i∈[m]

x∗ij max(uij + Er−1k,t+1, E
r
k,t+1)

+ (1−
∑
j∈Tt

∑
i∈[m]

x∗ij)E
r
k,t+1 (EXPk)

Also define E0
k,t = 0 and Erk,u+1 = 0. Note that we can efficiently compute Erk,t using

dynamic programming.

The main difference between 1 and 2 is that in the former whenever we choose an
advertiser at random, we always allocate the query to that advertiser (assuming they
have enough budget). However, in the latter, we run a dynamic program for each cus-
tomer k and once an advertiser is picked at random, the query is allocated to this adver-
tiser only if doing so increases the expected revenue associated with customer k.

Theorem 3. The expected revenue of 2 is at least 1
2 of the optimal value of the expec-

tation LP (i.e., LPC) which implies that the expected revenue of 2 it is at least 1
2 of the

expected revenue of the optimal offline allocation for IPC too.

Remark 2. The approximation ratio of 2 is tight. There is no online algorithm that can
achieve in expectation better than 1

2 of the revenue of the optimal offline allocation
without making further assumptions. We show this by providing a simple example.
Consider an advertiser with a large enough budget and a single customer with a capacity
of 1 and two queries. The queries arrive independently with probabilities p1 = 1−ε and
p2 = ε with the first query having an earlier arrival time. The advertiser has submitted
the bids b11 = 1 and b12 = 1−ε

ε . Observe that no online algorithm can get a revenue
better than (1−ε)×1+ε2 1−ε

ε ≈ 1 in expectation because at the time query 1 arrives, the
online algorithm does not know whether or not the second query is going to arrive and
the expected revenue from the second query is just 1− ε. However, the optimal offline
solution would allocate the second query if it arrives and otherwise would allocate the
first query so its revenue is ε 1−εε + (1− ε)2 × 1 ≈ 2 in expectation.

Next, we show that an algorithm similar to the previous one can be used when there
are both budget constraints and capacity constraints.

Algorithm 3 (STOCHASTIC ONLINE ALLOCATOR FOR IPBC )
Run the same algorithm as in 2 except that now x∗ij is a fractional solution of LPBC
instead of LPC .
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Theorem 4. The expected revenue of 3 is at least 1
2 −

1
e of the optimal value of the

expectation LP (i.e., LPBC) which implies that the expected revenue of 3 it is at least
1
2 −

1
e of the expected revenue of the optimal offline allocation too.

We prove the last two theorems by defining a simple stochastic uniform knapsack
problem which will be used as a building block in our analysis. Due to the interest of
the space we have moved the proofs to the full paper.

4 Offline Setting

In the offline setting, we explicitly know all the queries, that is all the customers, loca-
tions, items triplets on which advertisers put their bids. We want to obtain an allocation
of advertisers to queries such that the total payment obtained from all the advertisers is
maximized. Each advertiser pays an amount equal to the minimum of his budget and
the total bid value on all the queries assigned to him. Since, the problem is NP-Hard,
we can only obtain an approximation algorithm achieving revenue close to the optimal.
The fractional optimal solution of LPBC (with explicit values for Ij , j ∈ [n]) acts as
an upper bound on the optimal revenue. We round the fractional optimal solution to a
nearby integer solution and establish the following bound.

Theorem 5. Given a fractional optimal solution for LPBC , we can obtain an integral
solution for AdCell with budget and capacity constraints that obtains at least a profit of
4−maxi

ui,max
bi

4 of the profit obtained by optimal fractional allocation and maintains all
the capacity constraints exactly.

We note that this approximation ratio is best possible using the considered LP re-
laxation due to an integrality gap example from [4]. The problem considered in [4] is
an uncapacitated version of the AdCell problem, that is there is no capacity constraint
(C) on the customers. Capacity constraint restricts how many queries/advertisements
can be assigned to each customer. We can represent all the queries associated with each
customer as a set; these sets are therefore disjoint and has integer hard capacities asso-
ciated with them. Our approximation ratio matches the best known bound from [4,21]
for the uncapacitated case. For space limitation, most of the details have been moved
to the full paper. Here, we give a high-level description of the algorithm. Our algorithm
is based on applying the rounding technique of [20] through several iterations. The es-
sential idea of the proposed rounding is to apply a procedure called Rand-move to the
variables of a suitably chosen subset of constraints from the original linear program.
These sub-system must be underdetermined to ensure that the rounding proceeds with-
out violating any constraint and at least one variable becomes integral. The trick lies
on choosing a proper sub-system at each step of rounding, which again depends on a
detailed case analysis of the LP structure.

Let y∗ denote the LP optimal solution. We begin by simplifying the assignment
given by y∗. Consider a bipartite graph G(B, I, E∗) with advertisers B on one side,
queries I on the other side and add an edge (i, j) between a advertiser i and query j, if
y∗i,j ∈ (0, 1). That is, define E∗ = {(i, j)| 1 > y∗i,j > 0}. Our first claim is that y∗ can
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be modified without affecting the optimal fractional value and the constraints such that
G(B, I, E∗) is a forest. The proof follows from Claim 2.1 of [4]; we additionally show
that such assumption of forest structure maintains the capacity constraints.

Lemma 2. Bipartite graph G = (B, I, E∗) induced by the edges E∗ can be converted
to a forest maintaining the optimal objective function value.

Proof. Consider the graph G = (B, I, E∗) and consider one connected component of
it. We will argue for each component separately and similarly.

Cycle Breaking: Suppose there is a cycle in the chosen component. Since G is
bipartite, the cycle has even length. Let the cycle be C = 〈i1, j1, i2, j2, . . . , il, jl, i1〉,
that is consider the cycle to start from a advertiser node. Consider a strictly positive
value α and consider the following update of the y∗ values over the edges in the cycle
C. We add za,b to edge (a, b), where

R1. zi1,j1 = −β
R2. If we are at an query node jt, t ∈ [1, l], then zjt,it+1

= −zit,jt
R3. If we are at a advertiser node it, t ∈ [1, l], then zit,jt = −

bit,jt−1
zjt−1,it

bit,jt

β is chosen such that after the update, all the variables lie in [0, 1] and at least
one variable gets rounded to 0 or 1, thus the cycle is broken. Note that the entire up-
date is a function of zi1,j1 . For any query node, its total contribution in (Assign) con-
straint of LP1 remains unchanged. For any advertiser node, except i1, its contribution
in (Advertiser) constraint and thus in the objective function remains the same. In ad-
dition, since the assign constraints remain unaffected, all the capacity constraints are
satisfied. For advertiser i1, its contribution decreases by zi1,j1bi1,j1 and increases by

zjl,i1bi1,jl = zi1,j1bi1,jl
bi2,j1bi3,j2 ...bil−1,jl−2

bi2,j2bi3,j3 ...bil−1,jl−1
.

If bi1,j1 ≤ bi1,jl
bi2,j1bi3,j2 ...bil−1,jl−2

bi2,j2bi3,j3 ...bil−1,jl−1
, then instead of adding zjl,i1 on the last edge, we

add some c < zjl,i1 such that zi1,j1bi1,j1 = cbi1,jl . Thus, we are able to maintain the
objective function exactly. The assign constraint on the last query jl can only decrease
by this change and hence all the capacity constraints are maintained as well.

Otherwise, bi1,j1 > bi1,jl
bi2,j1bi3,j2 ...bil−1,jl−2

bi2,j2bi3,j3 ...bil−1,jl−1
. In that case, we traverse the cycle in

the reverse order, that is, we start by decreasing on zi1,jl first and proceed similarly.

Once, we have such a forest structure, several cases arise and depending on the
cases, we define a suitable sub-system on which to apply the rounding technique. There
are three major cases.

(i) There is a tree with two leaf advertiser nodes: in that case, we show that ap-
plying our rounding technique only diminishes the objective function by little and all
constraints are maintained.

(ii) No tree contains two leaf advertisers, but there is a tree that contains one leaf
advertiser: we start with a leaf advertiser and construct a path spanning several trees
such that we either end up with a combined path with advertisers on both side or a
query node in one side such that the capacity constraint on the set containing that query
is not met with equality (non-tight constraint). This is the most nontrivial case and a
detailed discussion is given in the full paper.
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(iii) No tree contains any leaf advertiser nodes: in that case we again form a com-
bined path spanning several trees such that the queries on two ends of the combined
path come from sets with non-tight capacity constraints.
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