
42 ; L O G I N : V O L . 3 1 , N O . 4

R Y A N P E T E R S O N ,
V E N U G O P A L A N R A M A S U B R A M A N I A N ,
A N D E M I N G Ü N S I R E R

a practical approach
to peer-to-peer
publish-subscribe
Ryan Peterson is a graduate student in the
Department of Computer Science at Cornell
University. He is interested in distributed systems
and networking.

ryanp@cs.cornell.edu

Venugopalan Ramasubramanian is a graduate
student in the Department of Computer Science at
Cornell University and is currently affiliated with
Microsoft Research, Silicon Valley Lab. His current
research interests lie in applying principled
approaches to build sound yet practical distributed
systems.

rama@microsoft.com

Emin Gün Sirer is an assistant professor of computer
science at Cornell University. He received his Ph.D. in
computer science from the University of Washington.
His recent research includes self-organizing peer-to-
peer systems, reputation systems, and a new operat-
ing system for trusted computing.

egs@cs.cornell.edu

T H E W E B H A S F A I L E D T O F U L F I L L I T S
promise of delivering relevant news and
information in a timely fashion. In fact, it
doesn’t deliver anything on its own at all;
instead, it requires its users to explicitly
poll information sources. Checking for
updates by pointing, clicking, and reloading
Web sites, whether the sites are Slashdot,
news, or online classifieds, is not only slow,
inefficient, and cumbersome for users, but
it places an unnecessary bandwidth bur-
den on content providers. Recent attempts
to automate this process, with the aid of
feed readers, have created more problems
than they have solved. A system that
detects updates to content anywhere on
the Web and delivers it to users via an
asynchronous channel, such as an instant
message, would do much to relieve the bur-
den on users and content providers alike.

Recent years have seen an explosion of online ser-
vices, including countless blogs and frequently
updated news sites. Consequently, sifting through
newly published data for useful and interesting
information has become a daunting task. The Web
is based on a pull-based architecture that forces
users to receive new content by explicit polling,
which adds to the difficulty of discovering new
information. Past efforts to replace the pull-based
paradigm with a push-based publish-subscribe
paradigm have not seen wide-scale adoption in
practice. This is primarily because publish-sub-
scribe systems have required content providers to
make significant changes to their infrastructure
and work flow for publishing information.

Such inefficiencies motivate a notification system
for the Web that alerts users when sites are updat-
ed without any support from content providers.
The increasingly popular Really Simple
Syndication (RSS) standard provides one alterna-
tive. RSS is both a format for publishing content
and a system for detecting published updates.
Content providers publish updates to special
XML-formatted documents called feeds or chan-
nels. Clients subscribe to their favorite RSS feeds
using special feed-reader software, which checks
for updates by periodically polling the feeds and
comparing their contents with the results of the
previous poll. Unfortunately, RSS places a large
burden on content servers: Every client sub-

; LO G I N : AU G U ST 2 0 0 6 A P R AC TI C A L A P P ROAC H TO P E E R-TO - P E E R P U B L I S H -S U B S C R I B E 43

scribed to the same site must poll that site independently and repeatedly.
This has forced content providers to limit client polling rates based on IP
address to save bandwidth. For instance, Slashdot allows a maximum of
two polls per client each hour. Such polling-rate limitations restrict update
detection time to an average of 15 minutes at best. Also, because content
providers limit clients by IP address, RSS is especially impractical to clients
behind NATs since all clients behind the same NAT share an IP address.
For content providers, RSS traffic incurs ongoing costs as it tends to be
“sticky”: Once users subscribe to a site, they are unlikely to unsubscribe
even as their interest in the site diminishes, resulting in wasted bandwidth.
Overall, the automation that RSS provides compounds the problems inher-
ent in a pull-based architecture.

Luckily, the recent emergence of self-organizing overlays, where nodes
arrange themselves to provide a service without a centralized authority or
administrator, provides a starting point for building practical systems that
address the flaws of previous notification systems.

We have built and deployed a peer-to-peer publish-subscribe system for
the Web called Corona [2] that uses cooperative polling and intelligent
allocation of available resources to efficiently discover new information on
the Web and push it to users. Corona enables clients to subscribe to Web
sites called channels, monitors these information sources, and quickly dis-
seminates any detected updates to clients interested in those channels. The
central tradeoff in any such system revolves around the most limited
resource: bandwidth limits imposed by the physical link capacities on the
polling client side, the physical bandwidth limits on the server side, and
the bandwidth limits stemming from the polling limits set forth by the
content providers. Corona uses mathematical optimization to achieve the
best possible update performance given the bandwidth available to the sys-
tem. It does this by setting up a constrained optimization problem of maxi-
mizing a performance function while a cost function does not exceed a
given limit. In one incarnation, used in our current deployment, it can
minimize average update detection time for all subscriptions while guaran-
teeing that content providers never see any more requests than they would
allow if the clients polled the servers directly. Thus, Corona does not
require content providers to make any changes to their systems.

Corona can be accessed conveniently through instant messengers. Clients
subscribe to channels by simply registering a screen name with one of sev-
eral popular instant messaging systems we support [1]. When Corona dis-
covers new updates for a subscribed channel, it pushes the updates to users
as concise instant messages showing the updated portions of the Web site.

F I G U R E 1 : T H E C O R O N A N E T W O R K . A R R O W S
D E N O T E P E R I O D I C P O L L I N G .

44 ; L O G I N : V O L . 3 1 , N O . 4

Corona is structured as a logical ring of nodes in an overlay network. We
built Corona on top of Pastry [3] but any structured overlay that has a uni-
form distribution of nodes is sufficient. Corona sits between users, who
submit subscriptions into the system and await updates, and content
providers, which post the updates that Corona detects. Figure 1 depicts
Corona’s internal structure and how it polls content servers. The solid
black dots represent the system’s nodes, each of which is mapped to a
unique location on the ring. Each channel has a designated home node,
derived from a hash of the channel’s URL. The home node for a channel is
responsible for periodically polling the channel for updates and delegating
neighbors to poll the channel as well if doing so would improve perform-
ance according to the system’s performance goals. The notion of a group of
adjacent nodes polling the same channel is captured formally by using
polling levels, shown as shaded regions in the figure. We say that a channel
has a polling level of 0 if only its home node polls the channel. A polling
level of 1 means that all nodes within a one-hop neighborhood of the
channel’s home node poll the channel. Therefore, the number of nodes
polling a channel increases exponentially as the channel’s level increases.
Nodes polling for the same channel share updates with each other and
instant message new updates to subscribers.

The challenge here is to determine the best polling levels for the channels,
each of which has a different number of subscribers, feed size, and update
rate. Corona accomplishes this using a novel optimization framework,
which assigns polling levels based on informed tradeoffs between network
bandwidth and update detection time. Corona uses this to achieve specific
performance goals, subject to given resource constraints. If network band-
width and server load were not issues at all, the optimal solution would
simply be to assign each channel the maximum polling level, so every
node would poll for every subscription. However, network bandwidth is a
concern in the Internet, and, as we have discussed, content providers limit
polling to prevent clients from inundating them with requests. When
assigning polling levels to channels, intuitively one should give more pop-
ular channels higher polling levels. That is, if there are many subscriptions
for a particular channel, there should be more nodes polling it so that
updates are detected more quickly. A channel with only one or two sub-
scribers, in contrast, should only be polled by a couple nodes since there
are fewer clients that benefit from updates to that channel. Similar trade-
offs hold for the channel size and update rates, which complicate the
process of determining the exact optimal solution and render it NP-hard,
which means that finding the optimal solution takes exponential time.
Corona sets up this tradeoff as an optimization problem that describes the
performance goals and constraints, then solves for the polling level of each
channel using an approximate search algorithm. The algorithm runs in a
matter of seconds to find a solution that is within one channel per node of
the optimal solution [2].

Since there is no central authority in Corona, the system uses a completely
distributed approach to assigning polling levels to channels. Each node
solves the optimization problem locally and uses the results to decide the
polling level of each channel it is currently polling. If the polling level of a
channel changes, it notifies the nodes at the next higher polling level.
Since each node uses only local information in its optimizing computation,
Corona employs a mechanism that occasionally aggregates information
from multiple nodes so that each node has an approximate system-wide
perspective.

; LO G I N : AU G U ST 2 0 0 6 A P R AC TI C A L A P P ROAC H TO P E E R-TO - P E E R P U B L I S H -S U B S C R I B E 45

By assigning different polling levels to each channel, Corona can achieve a
variety of different performance goals. We have already described one per-
formance goal for Corona, that is, to minimize average update detection
time across all subscriptions while ensuring that content servers do not see
an increase in bandwidth consumption as clients opt to use Corona instead
of legacy RSS. We call this performance goal Corona Lite. Our experiments
show that this strategy improves detection time by a factor of 20, finding
updates in an average of only 45 seconds after they have been published.
Suppose, however, that it is important to receive prompt updates (say, 30
seconds on average) when a blogger posts a new message. Another per-
formance goal, called Corona Fast, is well suited for this scenario: It guar-
antees that, on average, updates are detected within a specified amount of
time, while minimizing bandwidth consumption.

The traditional approach for allocating resources in a publish-subscribe
notification system is to use heuristics tailored to specific performance
metrics. One such system is FeedTree [4]. Like Corona, FeedTree is a com-
pletely decentralized system for detecting Web updates, taking advantage
of cooperative polling among nodes to reduce update detection time.
However, FeedTree uses heuristics instead of analytical models to assign
each channel to the optimal number of polling nodes, so it cannot guaran-
tee that it gets updates to subscribers as quickly as possible.

F I G U R E 2 : C O R O N A V E R S U S H E U R I S T I C S

An intuitive heuristic-based strategy for polling nodes for updates is to poll
each channel with a number of nodes proportional to the popularity of the
channel, that is, the number of subscriptions. This strategy represents the
scenario where all the clients interested in a channel cooperate and share
updates. An alternative heuristic, which gives more weight to the more
unpopular channels, is to set the number of nodes per channel proportion-
al to the square root of channel popularity. We compared these heuristics
to legacy RSS systems and Corona to determine their effectiveness in
detecting updates. The results are summarized in Figure 2. Using a typical
polling period of 30 minutes, legacy RSS discovers new updates an average
of 15 minutes after they have been published. We find that both heuristics
improve detection time almost three-fold compared to legacy RSS. In con-
trast, treating the problem formally as a mathematical optimization prob-
lem enables Corona Lite to provide more than an order of magnitude
increase in performance, using the same amount of bandwidth as naive
RSS and heuristic methods. (Corona Fast uses slightly more bandwidth for
even better update detection latency, as its optimization goal is to guaran-
tee a targeted update latency without limiting its bandwidth consumption.)
Overall, heuristic approaches, although easy to devise, tend to be tailored
to specific scenarios or benchmarks, do not perform well for nontrivial
problems, and ultimately do not provide any guarantees.

46 ; L O G I N : V O L . 3 1 , N O . 4

Corona is a practical publish-subscribe system for the Web that solves the
problems posed by RSS and current publish-subscribe systems. It polls on
the user’s behalf, intelligently allocating resources to achieve performance
goals, instead of requiring clients to repeatedly poll content servers direct-
ly. Corona provides strong performance guarantees, ensuring that sub-
scribers receive up-to-the-minute information from their favorite Web sites
without introducing yet more unnecessary traffic into the Internet.

More importantly, Corona exemplifies a new method for building decen-
tralized Internet services. We have shown that a rigorous approach to dis-
tributed system design where performance goals and cost metrics are
expressed formally can yield practical high-performance systems that vastly
outperform heuristics commonly encountered in system design today. We
believe that as systems become more complex and difficult to reason about,
heuristics are unlikely to be successful in substantially improving system
performance, and using mathematical optimization can yield more efficient
systems with better resource utilization.

R E F E R E N C E S

[1] Corona: http://www.cs.cornell.edu/people/egs/beehive/corona/, May
2006.

[2] V. Ramasubramanian, R. Peterson, and E. G. Sirer, “Corona: A High Per-
formance Publish-Subscribe System for the World Wide Web,” in Proceed-
ings of the 3rd Symposium on Networked Systems Design and Implementation
(NSDI ’06) (Berkeley, CA: USENIX, 2006).

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location and Routing for Large-scale Peer-to-Peer Systems,” in Proceedings
of IFIP/ACM International Conference on Distributed Systems Platforms (Hei-
delberg, Germany, 2001).

[4] D. Sandler, A. Mislove, A. Post, and P. Druschel, “FeedTree: Sharing Web
Micronews with Peer-to-Peer Event Notification,” in Proceedings of the 4th
International Workshop on Peer-to-Peer Systems (Ithaca, NY, 2005).

USENIX Membership Updates
Membership renewal information, notices, and receipts are now being sent to you electronically.

Remember to print your electronic receipt, if you need one, when you receive the confirmation

email.

You can update your record and change your mailing preferences online at any time.

See http://www.usenix.org/membership.

You are welcome to print your membership card online as well.

The online cards have a new design with updated logos—all you have to do is print!

