Investigations in intersection types:
Confluence, and semantics of expansion

in the A-calculus, and a type error slicing
method

Vincent Rahli

Submitted for the degree of Doctor of Philosophy
Heriot-Watt University

School of Mathematical and Computer Sciences

March 17, 2011

The copyright in this thesis is owned by the authors, where Rahli is either the
sole author, the primary author, or the coauthor with Kamareddine, Wells or Nour.
Where indicated, this thesis incorporates and revises published material whose copy-
right may have been assigned to the publisher. This thesis must be acknowledged
as the source of the quotation from the thesis or any use of information contained

in the thesis.

Abstract

Type systems were invented in the early 1900s to provide foundations for Math-
ematics where types were used to avoid paradoxes. Type systems have then been
developed and extended throughout the years to serve different purposes such as ef-
ficiency or expressiveness. The A-calculus is used in programming languages, logic,
mathematics, and linguistics. Intersection types are a kind of types used for building
semantic models of the A-calculus and for static analysis of computer programs.

The confluence property was used to prove the A-calculus’ consistency and the
uniqueness of normal forms. Confluence is useful to show that logics are sensibly
designed, and to make equality decision procedures for use in theorem provers.
Some proofs of the A-calculus’ confluence are based on syntactic concepts (reduction
relations and A-term sets) and some on semantic concepts (type interpretations).
Part I of this thesis presents an original syntactic proof that is a simplification of
a semantic proof based on a sound type interpretation w.r.t. an intersection type
system. Our proof can be seen as bridging some semantic and syntactic proofs.

Expansion is an operation on typings (pairs of type environments and result
types) in type systems for the A-calculus. It was introduced to prove that the prin-
cipal typing property (i.e., that every typable term has a strongest typing) holds
in intersection type systems. Expansion variables were introduced to simplify the
expansion mechanism. Part II of this thesis presents a complete realisability se-
mantics w.r.t. an intersection type system with infinitely many expansion variables.
This represents the first study on semantics of expansion. Providing sound (and
complete) realisability semantics allows one to study the algorithmic behaviour of
typed A-terms through their types w.r.t. a type system. We believe such semantics
will cast some light on the not yet well understood expansion operation.

Intersection types were used in a type error slicer for the SML programming
language. Existing compilers for many languages have confusing type error messages.
Type error slicing (TES) helps the programmer by isolating the part of a program
contributing to a type error (a slice). TES was initially done for a tiny toy language
(the A-calculus with polymorphic let-expressions). Extending TES to a full language
is extremely challenging, and for SML we needed a number of innovations. Some
issues would be faced for any language, and some are SML-specific but representative
of the complexity of language-specific issues likely to be faced for other languages.
Part IIT of this thesis solves both kinds of issues and presents an original, simple,
and general constraint system for providing type error slices for ill-typed programs.

We believe TES helps demystify language features known to confuse users.

Acknowledgments

[would like to thank both Professor Fairouz Kamareddine and Doctor Joe Wells for
supervising my PhD studies within the ULTRA group. I would like to thank them
for their patience, comments and guidance, and more generally for all they taught
me throughout the years of my studies. Also, I would like to thank them for their
support inside as well as outside university.

I would like to thank Doctor Karim Nour for his collaboration on the semantics
of expansion project. I would like to thank Doctor Virgile Mogbil for supervising
my master dissertation and for his help in searching for a PhD position. I would like
to thank Professor Mariangiola Dezani-Ciancaglini for accepting to be my external
examiner and Doctor Greg Michaelson for accepting to be my internal examiner.

[would like to thank Laétitia for her support, her understanding, for sharing my
life and making each day of my life a bliss. I would like to thank my parents and
my sister for their continuous support and encouragements, for always being there
for me at any time. I would like to thank Catherine, Karine, Sophie, and Arnaud
for their support throughout the years of my PhD studies and for their infallible
friendship. I would like to thank all the members of the ULTRA group, Daniel,
Jan, Robert, Manuel, Krzysztof, Christoph, Serguei, and Sébastien for all that we
shared inside and outside university. I would like to thank all the members of the
type error slicing projects, and especially John, Mark, and Scott for making of our
shared office a great place to work. I would also like to thank them for all our chess
and go games. I would like to thank my hockey teammates and especially Mike and
Ham. I would not have survived without our weekly trainings. Finally, I would like

to thank any other people I may have forgotten in these acknowledgements.

Contents

1 Mathematical definitions and notations 1
2 Introduction 3
2.1 History of the A-calculus 3
2.2 Structure of this Chapter 5
2.3 The untyped A-calculus and some of its variants 5
2.3.1 Setsofterms 5

2.3.2 Reduction relations L 7

2.3.3 Important A\-calculi 8

2.3.4 Residuals, developments, confluence and normalisation 8

2.4 Some notable typed A-calculi 0L 9
2.4.1 The simply typed A-calculus 9

2.4.2 Intersection type systems 10

2.4.3 ML-like programming languages 13

2.5 Some methods of reasoning involving A-calculi 14
2.5.1 Realisability o 14

2.5.2 Reducibility 15

2.6 Contributions and structure of this thesis 16

I A new proof method of the confluence of the A-calculus 18
3 The confluence property and its main proofs 19
3.1 Confluence 19

3.2 Consistency 19
3.3 1936: Church and Rosser [24] 21
3.4 1972: Tait and Martin-Lof [102, 5, 131] 22
3.5 1978: Hindley [68] 23
3.6 1985: Koletsos [93] 23
3.7 1988: Shankar [122] 25
3.8 1989: Takahashi [131] 25
3.9 2001: Ghilezan and Kuncak [48] 25

Contents

3.10 2007: Koletsos and Stavrinos [94] 27
3.11 2007: Kamareddine, Rahli and Wells [85] 27
3.12 2008: Kamareddine and Rahli [84] 28
3.13 Summary of the proof methods of the Church-Rosser property 29

4 From a semantic proof to a syntactic one 31
4.1 Saturation, variable, abstraction properties 31
4.2 Pseudo Development Definitions 32
4.3 A simple Church-Rosser proof for G-reduction 36
4.4 A simple Church-Rosser proof for fn-reduction. 39

5 Comparisons and conclusions 42
5.1 Ghilezan and Kuncak’s method [48] 42
5.1.1 Highlighting of Ghilezan and Kuncak’s method 42

5.1.2 Ghilezan and Kuncak’s simple and sufficient notion of devel-
opments e e 43

5.1.3 Comparison of Ghilezan and Kuncak’s method with other

methods 44

5.2 Ourmethod 45
5.2.1 Highlighting of our method 45
5.2.2 Comparison with Ghilezan and Kuncak’s developments 46
5.2.3 Conclusions on our method 46

5.3 Comparison with Tait and Martin-Lof’s method 47

II Complete semantics of intersection type systems with

expansion variables 49
6 Introduction 50
6.1 Expansion 50
6.1.1 Introduction of the expansion mechanism 50

6.1.2 Expansion variableso 50

6.2 Type interpretation L o1
6.2.1 Designing a space of meanings for expansion variables 51

6.2.2 Our semantic approach 51

6.2.3 Completeness results 52

6.2.4 Similar approaches to type interpretation 52

6.3 Towards a semantics of expansion 52

6.4 Roadmap 54

ii

Contents

7 The A" and *" calculi and associated type systems

8

7.1
7.2
7.3
7.4

The syntax of the indexed A-calculi
The types of the indexed calculi
The type systems F; and 5 for A\IN and 5 for A

Subject reduction and expansion properties of our type systems

7.4.1 Subject reduction and expansion properties for F; and F5 . . .

7.4.2 Subject reduction and expansion properties for F3

Realisability semantics and their completeness

8.1
8.2

8.3

Realisability
Completeness challenges in \XIN

8.2.1 Completeness for - fails

8.2.2 Completeness for -5 fails with more than one E-variable

8.2.3 Completeness for 5 with only one E-variable

Completeness for X

9 Conclusion and future work

IIT A constraint system for a type error slicer

10 Introduction

10.1 Background of type error slicing

10.2 Type error slicing
10.3 Contributions

10.4 Key motivating examples

10.1.1 Moving the error spot

10.1.2 Other improved error reporting systems

10.4.1 Conditionals, pattern matching, records
10.4.2 Datatypes, pattern matching, type functions

10.4.3 Chained opens and nested structures

11 Technical design of Core-TES

11.1 TES’ overall algorithm
11.2 External syntax
11.3 Constraint syntax
11.3.1 Terms o . o
11.3.2 “Atomic” syntactic forms
11.3.3 Freshness
11.3.4 Syntactic sugar

11.4 Semantics of constraint/environments

11.4.1 Renamings, unifiers, and substitutions

iii

56
56
61
65
69
69
71

73
73
76
7
7
7
80

84

87

88
88
88
89
89
90
91
92
93
94

Contents

11.4.2 Shadowing and constraint solving context application 102
11.4.3 Semanticrules. 103

11.5 Constraint generation 106
11.5.1 Algorithm 106
11.5.2 Shape of the generated environments 107
11.5.3 Complexity of constraint generation 108
11.5.4 Discussion of some constraint generation rules 108
11.5.5 Constraints generated for example (EX1) 110

11.6 Constraint solvingo 111
11.6.1 Syntax 111
11.6.2 Building of constraint terms 111
11.6.3 Environment extraction 112
11.6.4 Polymorphic environments 112
11.6.5 Algorithm 114
11.6.6 Shape of the environments generated during constraint solving 114
11.6.7 Improved generation of polymorphic environments 116
11.6.8 Solving of the constraint generated for example (EX1) 117

11.7 Minimisation and enumeration 119
11.7.1 Extraction of environment labels 119
11.7.2 Constraint filtering 119
11.7.3 Why is minimisation necessary? 121
11.7.4 Minimisation algorithm 122
11.7.5 Enumeration algorithm 122
11.7.6 Minimisation and binding discarding 124
11.7.7 Discussion of the search space used by our enumerator 126
11.7.8 Enumerating all the errors in example (EX1) 128

11.8 Slicing 129
11.8.1 Dot terms 129
11.8.2 Remark about the constraint generation rules for dot terms . . 130
11.8.3 Alternative definition of the labelled external syntax 130
11.8.4 Tidying 132
11.8.5 Algorithm 133
11.8.6 Generating type error slices for example (EX1) 133

11.9 Minimality 134
11.10Design principleso 135
12 Related work 139
12.1 Related work on constraint systems 139
12.1.1 Constraint based type inference algorithm 139
12.1.2 Constrained types 143

v

Contents

12.1.3 Comparison with Haack and Wells’ constraint system 143
12.1.4 Comparison with Hage and Heeren’s constraint system 145
12.1.5 Comparison with Miiller’s constraint system 147

12.1.6 Comparison with Gustavsson and Svenningsson’s constraint

system ..o 149

12.1.7 Comparison with Pottier and Rémy’s let-constraints 150

12.2 Related work on presenting type errors and types 154
12.2.1 Methods making use of slices 154
12.2.2 Significant non-slicing type explanation methods 157

13 Case studies 159
13.1 Modification of user data types using TES 159
13.2 Adding a new parameter to a function 162
14 More TES features to handle more of SML 166
14.1 Identifier statuses 166
14.1.1 External syntax 167
14.1.2 Constraint syntax 168
14.1.3 Constraint generation 170
14.1.4 Constraint solvingo L. 171
14.1.5 Constraint filtering (Minimisation and enumeration) 174
14.1.6 Slicing 174

14.2 Local declarations 175
14.2.1 External syntax L. 175
14.2.2 Constraint syntax 176
14.2.3 Constraint generation L. 176
14.2.4 Constraint solving L. 177
14.2.5 Constraint filtering (Minimisation and enumeration) 177
14.2.6 Slicing 177
14.2.7 Minimalityo 178

14.3 Type declarations 178
14.3.1 External syntax 178
14.3.2 Constraint syntax 179
14.3.3 Constraint generation L. 180
14.3.4 Constraint solving 181
14.3.5 Slicing 184

14.4 Non-recursive value declarations 184
14.4.1 External syntax 185
14.4.2 Constraint syntax L. 186
14.4.3 Constraint generation 186
14.4.4 Slicing 186

Contents

14.5 Value polymorphism restriction 186
14.5.1 External syntax 187
14.5.2 Constraint syntax 188
14.5.3 Constraint generation 188
14.5.4 Constraint solving 188
14.5.5 Constraint filtering 0L 190

14.6 Type annotationso 190
14.6.1 External syntax 190
14.6.2 Constraint syntaxo 192
14.6.3 Constraint generation 193
14.6.4 Constraint solving 194
14.6.5 Constraint filtering (Minimisation and enumeration) 195
14.6.6 Slicing 195

14.7 Signatures 195
14.7.1 External syntax 196
14.7.2 Constraint syntaxo 197
14.7.3 Constraint generation L. 201
14.7.4 Constraint solving 203
14.7.5 Constraint filtering (Minimisation and enumeration) 207
14.7.6 Slicing 208

14.8 Reporting unmatched errors 208
14.8.1 Constraint syntax 209
14.8.2 Constraint solving 209
14.8.3 Constraint filtering (Minimisation and enumeration) 210
14.8.4 Slicing 211

14.9 Functors 212
14.9.1 External syntax oL 212
14.9.2 Constraint syntax 215
14.9.3 Constraint generation L. 218
14.9.4 Constraint solvingo L. 218
14.9.5 Constraint filtering (Minimisation and enumeration) 227
14.9.6 Slicing 227

14.10Arity clash errors 227
14.10.1 External syntax L. 228
14.10.2 Constraint syntax 229
14.10.3 Constraint generation 229
14.10.4 Constraint solving 232
14.10.58licing 234

vi

Contents

15 Extensions for better error handling

15.1 Merged minimal type error slices
15.1.1 Records
15.1.2 Signatures

15.2 End points

16 Some of TES’ properties

16.1 Compositionality

16.1.1 Status of the compositionality of our TES

16.1.2 Future work on compositionality
16.2 Satisfiability of Yang et al.’s criteria

17 Implementation discussion

17.1 Other implemented features

17.1.1 Syntax errors

17.1.2 Datatype replications
17.1.3 Exceptions
17.1.4 Long identifiers
17.2 Performance
17.3 User interface
17.4 The Standard ML basis library

18 Future work

18.1 Examples exhibiting the desire for even more type error reports

18.1.1 An example involving structures and signatures

18.1.2 An example involving datatype constructors

18.1.3 An example involving type annotations

18.2 Missing features
18.3 Overloading
18.3.1 Status of TES’ handling of overloading

18.3.2 An issue in handling overloading

18.4 Tracking programming errors using TES

18.5 Combining TES with suggestions to repair type errors

18.6 Proving the correctness of TES

A Proofs of Part I

A.1 From a semantic proof to a syntactic one (Ch. 4)

Al1
A1.2
A13
Al4

Saturation, variable, abstraction properties (Sec. 4.1)
Pseudo Development Definitions (Sec 4.2)
A simple Church-Rosser proof for f-reduction (Sec. 4.3) . .
A simple Church-Rosser proof for fn-reduction (Sec. 4.4) . . .

vii

237
237
237
237
239

244
244
244
246
247

249
249
249
250
250
251
252
252
253

254

. 254

254
254
255
255
256
256
257
258
258
258

259
259
259
264

. 267

272

Contents

A.2 Comparisons and conclusions (Sec. 5) 278

B Proofs of Part 11 281
B.1 The AIN and A*" calculi and associated type systems (Ch. 7) 281
B.1.1 The syntax of the indexed A-calculi (Sec. 7.1) 281

B.1.2 Confluence of —j and —5, oL 291

B.1.3 The types of the indexed calculi (Sec. 7.2) 295

B.1.4 The type systems k- and b5 for AIN and k3 for A“¥ (Sec. 7.3) 296

B.1.5 Subject reduction and expansion properties of our type sys-

tems (Sec. 7.4) 312

B.2 Realisability semantics and their completeness (Ch. 8). 332
B.2.1 Realisability (Sec. 8.1) 332
B.2.2 Completeness challenges in A\I™ (Sec. 8.2) 340
B.2.3 Completeness for A“ (Sec. 8.3) 345

B.3 Embedding of a system close to CDV in our type system 3. 351

viii

List of Figures

2.1

3.1

5.1

7.1
7.2

10.1
10.2
10.3

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18

12.1

Closurerules 6
The method of Ghilezan and Kuncak for the confluence of —; . . . 26
Our method for the confluence of —; 45
Typing rules / Subtyping rules for by and o 65
Typing rules / Subtyping rules for b3 66
Conditionals, pattern matching, tuples (testcase 121) 92
Datatypes, pattern matching, type functions (testcase 114) 93
Chained opens and nested structures (testcase 450) 94
Interaction between the different modules of our TES 97
External labelled syntax 98
Syntax of constraint terms L. 99
Renamings, unifiers, and substitutions 101
Semantics of the constraint/environments, ignoring dependencies . . 103

Semantics of the constraint/environments, considering dependencies 105

Constraint generation rules 107
Syntactic forms used by the constraint solver 111
Monomorphic to polymorphic environment 112
Constraint solver 115
Constraint filtering o 119
Minimisation and enumeration algorithms 123
Variants of our enumeration algorithm 128
Extension of our syntax and constraint generator to “dot” terms . . 130
Labelled abstract syntax trees 131
From terms to treeso 131
Slicing algorithm 133
Result of applying toTree to strdecgx 134
Derivation using Miiller’s type inference algorithm 149

1X

List of Figures

13.1
13.2

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15

14.16
14.17

14.18
14.19
14.20
14.21
14.22

14.23
14.24

14.25

14.26

14.27

14.28

14.29
14.30

Using TES to modify user data types 160
Using TES to add a parameter to a function 163
Constraint generation rules to handle identifier statuses 171
Monomorphic to polymorphic environment function 172
Constraint solving rules to handle identifier statuses 173
Extension of toTree to deal with identifier status 175
Slicing algorithm rule to handle identifier status 175
Constraint generation rule for local declarations 177
Constraint solving rules for local declarations 177
Constraint generation rules for type functions 181
Constraint solving rules for type functions 182
Constraint generation rule for non-recursive value declarations . . . 186

Constraint generator handling the value polymorphism restriction . 188

Constraint solving rules handling the value polymorphism restriction 189
Constraint generation rules for type annotations 194
Constraint solving rules to handle type annotations 194
Extension of our conversion function from terms to trees to deal

with type annotations and type variable sequences 195
Constraint generation rules for signatures 202
Monomorphic to polymorphic environment function generalising flex-

ible and rigid type variables L. 204
Constraint solving for signature related constraints (1) 205
Constraint solving for signature related constraints (2) 206
Extension of toTree to deal with signatures 208
Constraint solving rules handling unmatched errors 210

Constraint generation rules to handle incomplete structures and sig-

NAtUTES o o e e 212
Constraint generation rules for functors 218
Monomorphic to polymorphic environment function handling inter-

section type schemes oL 219
Recomputation of functors’ bodies 222
Constraint solving rules for functors 224
Extension of our conversion function from terms to trees to deal

with functors 228
Constraint generation rules to handle type constructor with unre-

stricted arityo 230

Constraint solving rules to also handle non-unary type constructor . 233

Constraint generation rules to handle incomplete sequences 234

List of Figures

14.31

15.1
15.2
15.3

17.1

Extension of our conversion function from terms to trees to handle

type and type variable sequences 235
Constraint solving to handle merged unmatched errors 240
Redefinition of some constraint generation rules to handle end points242
Redefining of some constraint solving rules to handle end points . . 242
Highlighting of a SML type error in Emacs 252

xi

Chapter 1

Mathematical definitions and

notations

Natural numbers

Let 7, 7, m,n, p,q be metavariables ranging over N, the set of natural numbers.

Metavariables
If a metavariable v ranges over a class C, then the metavariables v, (where x can

be anything) and the metavariables v, v”| etc., also range over C.

Sets
Let s range over sets. If v ranges over s, then let ¥ range over P(s), the power set

of s.

Disjunction
Let dj(s1, ..., s,) (“disjoint”) hold iff for all 4, j € {1,...,n}, ifi # j then s;Ns; = @.

Let s1 W sy be s1 U s if dj(s1, s2) and undefined otherwise.

Relations

Let (z,y]) be the pair of x and y. If rel is a binary relation (a pair set), let (x rel y)
iff (z,y) € rel, let the inverse of rel be rel™ defined as {(xz,v) | (y,z) € rel}, let
dom(rel) = {x | (x,y) € rel}, let ran(rel) = {y | (z,y) € rel}, let s < rel = {(x,y) €
rel | x € s}, and let s S rel = {(x,y)) € rel | x & s}.

Functions

Let f range over functions (a special case of binary relations), let s — s = {f |
dom(f) C s Aran(f) C s'}, and let 2 — y be an alternative notation for (z,y) used
when writing some functions. Let fi + fo = o U (dom(fy) < fi). Let fiBfs be fi U f
if i Uf is a function and undefined otherwise. If fi,fo € s; — P(sy) then let
hUfy={x— UL |z €dom(fi) Ndom(fy)} Udom(f) < fi Udom(fi) < fo.

Tuples
A tuple ¢ is a function such that dom(¢) C N and if 1 < j € dom(¢) then j —

1 € dom(t). Let t range over tuples. If v ranges over s then let o range over

1

Chapter 1. Mathematical definitions and notations

tuple(s) = {t | ran(t) C s}. We write the tuple {0— xq,...,n—x,} as (xq,...,T,).
Let @ append tuples: (x1,...,2;)Qy1,...,y;) = (T1,..., 2, Y1,...,Y;). Given n
sets S1,...,8p, let s1 X -+ X s, be {{x1,...,2,) | Vi € {1,...,n}. x; € s;}. Note
that sq x « -+ X s, C tuple(s; U---Usy,).

Inference rules
An inference rule is a pair premises/conclusion which states that if the premises are
true then the conclusion must be true as well. In the literature, an inference rule is

often written as follows:
Yyr - Yn
— (1

which means that if y; for all 4 € {1,...,n} are true then z is true. This rule is

named (r). Such a rule is sometimes written as follows:
Myt A ANy, =

In this document we also sometimes write such a rule as follows:
(re <y AN Ay,

The rule name is sometimes omitted in such rules.

Chapter 2

Introduction

2.1 History of the A-calculus

In the nineteenth century, due to the lack of precision of natural languages and the
discovery of some controversial results in analysis [79], mathematicians and logicians
became interested in a more precise formalisation of Mathematics. Frege [138, 79
was the first to set solid logic foundations. He, among other things, presented a
formalisation of the concept of a function. The development of formal systems by
Frege and his contemporaries led to the discovery of some paradoxes. The paradox in
Frege’s work, found by Russell [121], was due to the problem of self-reference. This
problem is inherent to the fact that any function can be applied to any function (in
particular to itself). In order to solve this problem, Russell [121] defined a theory
of types where types are used to restrict the application of functions.

One of the great achievements in the movement led by Frege, Russell, Curry, etc.,
aiming at the formalisation of Mathematics has been the design of the M-calculus® by
Church [21]. In 1932, Church [21] introduced a system for “the foundation of formal
logic”, which was a formal system for logic and functions. The set of terms of this
system was defined as a superset of the set of terms of the Al-calculus. In addition,
Church introduced two sets of postulates. The first one called “rules of procedure”
allowed, among other things, dealing with conversion of A-terms (these rules are
presented in Sec. 3.2). The second set contained the “formal postulates” which were
logical axioms. However, this system and some of its subsystems turned out to
be inconsistent as shown by Kleene and Rosser [91]. Nevertheless, the subsystem
dealing only with functions turned out to be a “successful model for computable
functions” [5]: the actual A-calculus is a generalisation of this earlier system.

This earlier system led to the actual A-calculus. Church defined the computable
functions as the A-definable ones. Also, it turned out that the set of computable

functions defined by Turing via his machines is equivalent to the set of A-definable

'Barendregt [5], Rosser [120], and Cardone and Hindley [18] provide extensive introductions to
the A-calculus.

Chapter 2. Introduction

functions [136] and also to Godel’s recursive functions [51]. These proposals are
nowadays often referred as Church-Turing’s thesis or as Church’s thesis. As ex-
plained by Kleene [90], it is called a thesis and not a theorem because “it proposes
to identify a somewhat vague intuitive concept with a concept phrased in exact
mathematical terms, and thus is not susceptible of proof”.

As Barendregt stresses in the introduction of his book [5], this theory presents
functions as rules, and not as sets of pairs, in order to deal with their computational
aspects. As explained by Kamareddine, Laan, Nederpelt [79], the A-calculus turned
out to be a generalisation of the definition of functions given, e.g., by Russell [144]
(“propositional functions”). The A-calculus is nowadays used in programming lan-
guages, logic, mathematics, and linguistics.

The A-calculus allows one to compute thanks to rules often referred to as re-
duction or conversion rules. These rules were extensively studied and one of the
main result was the proof of the confluence of (-reduction [24] which is the main
computation rule of the A-calculus. Confluence is the property that was originally
used to prove, among other things, the consistency the A-calculus (the theory built
upon [-reduction and a-conversion) because it allows one to prove that there ex-
ists at least two closed different A-terms. Confluence is sometimes referred to as
the Church-Rosser property. It was also originally used to prove the uniqueness of
normal forms [24].

In the early 1940s, Church added simple types, which are the types built upon
ground types and the arrow type constructor, to the A-calculus in a system with
logical axioms to deal with logic and functions [23]. Church’s approach was to
directly annotate A-terms: type-free A-terms are replaced by typed A-terms. Curry
followed another approach. He considered the combinatory logic [31] which is a type-
free calculus that can be regarded as a variant of the A-calculus. His type system
associates types with type-free terms via a typing relation [30, 31]. As explained by
Barendregt [6], these two “approaches to typed lambda calculus correspond to two
paradigms in programming”. In a system a la Curry, given a type-free A\-term, if a
type can be associated with the term w.r.t. the typing relation of the system then
a type inference algorithm can infer a type for the term. It is also the case for ML-
like programming languages such as SML [106, 107] or for Haskell-like programming
languages [77].

Since the introduction of these systems by Church and Curry, various type sys-
tems for the A-calculus have been developed and extended to serve different purposes
such as efficiency or expressiveness. For example, the type systems of the A-cube [6]
allow one to express concepts such as polymorphism (which means that terms can
have more than one type), type constructors (e.g., SML datatypes), dependent types
(which means that types are depending on terms). There are several advantages of

having a notion of types in a programming language. For example, they allow:

Chapter 2. Introduction

checking static correctness, e.g., find type inconsistencies; efficient implementations
by generating information used for optimisations at compilation, e.g., “the type of
a data determines its memory size and layout” [100]; modularity, e.g., thanks to
signatures in SML or interfaces in Java.

Let us mention that there is a strong connection between type theory and proof
theory known as the Curry-Howard isomorphism [76, 123]|. This isomorphism allows
one to consider, e.g., simple types as propositions. As a matter of fact, there is a
correspondence between the minimal propositional logic and the simply typed A-
calculus (other such correspondences exit). The Curry-Howard isomorphism is often

referred to as the proofs-as-programs, formulae-as-types correspondence.

2.2 Structure of this Chapter

The rest of this introduction is structured as follows. Sec. 2.3 introduces the untyped
A-calculus and some of its variants: the Al-calculus and the An-calculus. We also
introduce properties of A-calculi such as the confluence property. Sec. 2.4 presents
notable typed A-calculi: the simply typed A-calculus, some intersection type systems,
and the Hindley-Milner type system. Sec. 2.5 presents two methods of reasoning
involving A-calculi (or similar functional systems): realisability and reducibility.
Finally, Sec. 2.6, summarises the contributions of the present thesis as well as its

structure.

2.3 The untyped A-calculus and some of its vari-

ants

The A-calculus and its variants are defined on term sets and reduction relations.
First, Sec. 2.3.1 presents various term sets and Sec. 2.3.2 some reduction relations.
Then, Sec. 2.3.3 introduces different A-calculi of interest based on these terms sets
and reduction relations. Finally, Sec. 2.3.4 presents properties of A-calculi such as

confluence and normalisation.

2.3.1 Sets of terms

Let z, y, z range over Var, a countable infinite set of term variables (or just variables).

The set of terms of the A-calculus is defined as follows:
M,N,P.Q,ReAN:=x| (Ax.M)| (MN)

We assume the usual convention for parentheses and omit them when no confusion
arises. In particular, we write M M - - - M, instead of (- -- (M My)My) - -+ M,,_1) M,

Chapter 2. Introduction

let el be a binary relation on A.

M rel N My rel My M,y rel My
M rel M (refl) N rel M (sym) M rel My (tr)
P rel Q Q rel Q) P rel P'
NP el A) Qe pg 2PV PO rel PO (2PP2)

Figure 2.1 Closure rules

We call a term of the form (Az.M) a A-abstraction (or just abstraction) and a term
of the form MN an application.
We write fv(M) for the set of the free variables occurring in M. The function fv

is defined as follows:

fv(z) ={z}
fv(Ae. M) =fv(M) \ {z}
fv(MN) =fv(M)Ufv(N)

We say that a term is closed if no free variable occurs in it, i.e., M is closed iff
fv(M) = @. Let closed(M) be true iff M is closed.

Fig. 2.1 present some closure rules in A: rule (refl) is the reflexive closure rule
(w.r.t. A), rule (sym) is the symmetric closure rule, rule (tr) is the transitive closure
rule, and rules (abs), (app1), and (app,) are the compatible closure rules.

The a-conversion is the symmetric, reflexive (w.r.t. A), transitive, and compati-

ble closure of the following rule (for readability issues, we define substitution below):
Ax. M =, \y.M|x = y], where y does not occur in M

We take terms modulo a-conversion.
The substitution of the free occurrences of a = by N in M, denoted M[z := NJ,

is defined by recursion on M as follows:

zly = M] - {f | i)ft}xlejwyise
(Ax.N)[y := M] =X z.Nz = z]ly := M], if z € fv(Az.N) U fv(y) U fv(M)
(NlNg)[y = M] :Nl[y = M]Ng[y = M]

We let M[zy := Ny,...,z, := N,| be the simultaneous substitution of N; for all
free occurrences of z; in M for i € {1,...,n}.

The term set A7, which is a subset of A, is defined as follows: for each x € Var,
zisin Ay, if x € fv(M) and M € A; then (Ax.M) is in A; and if M, N € A; then
(MN) is in Aj.

Chapter 2. Introduction

2.3.2 Reduction relations

The [-reduction, i.e., the binary relation —g, is the main evaluation process of the

A-calculus. It is defined as the compatible closure of the following rule:
(B) : Ae.M)N —3 M|z := N]

The (3I-reduction, i.e., the binary relation — gy, is a restriction of the S-reduction

defined as the compatible closure of the following rule:
(BI) : (A\x.M)N —pr M[z := N|, where x € fv(M)

The h-reduction, i.e., the binary relation —, is also a restriction of the (-
reduction defined as the least relation closed by rule (app,) (defined in Fig. 2.1) and
the following rule:

(h) : Ae.M)N —p, M|z := N|

This reduction is called the weak head reduction.
The n-reduction, i.e., the binary relation —,, is defined as the compatible closure

of the following rule:
(n) : Ae. Mz —, M, where z ¢ fv(M)

This reduction expresses the concept of extensionality in the A-calculus (see Baren-
dregt’s book [5]). The idea behind the n-reduction is that Az.Mz where x & fv(M)
and M are computationally equivalent in the sense that they compute the same
result when applied to the same argument.

The @n-reduction, denoted —g,, is defined as the relation: —g U —,,.

For r € {3,531, h,n}, the term on the left-hand-side of the rule (r) is called a
r-redex (or just redex when no ambiguity arises) and the one on the right-hand-side
is called r-contractum (or just contractum when no ambiguity arises). Note that
BI-redexes and h-redexes are S-redexes. A fn-redex is either a S-redex or an n-redex
(and similarly for 8n-contractums).

Note that the relation —gs; is a subset of the relation —g. Let r € {3, 51, h}.
If (A\e.M)N —, Mz := N| and = € fv(M) then (Ax.M)N is called a I-redex,
otherwise it is called a K-redex. Therefore, $1-redexes are all I-redexes.

Let r € {3, BI, h,n, Bn}. We define the equivalence relation =, as the symmetric,

reflexive (w.r.t. A) and transitive closure of the following rule:
M= N if M-—,N

We use —* to denote the reflexive (w.r.t. A) and transitive closure (rules (refl)

Chapter 2. Introduction

and (tr) as defined in Fig. 2.1) of —,. If M —* N then we say that M reduces to
N or that there is a r-reduction from M to N. Also, N is called a reduct of M. If
the r-reduction from M to N is in k steps, i.e., if there exists M, ..., My such that
M —, My —, -+ —, My and M = N, we write M —* N. A term (Az.M')N" is a
direct r-reduct of (Ax.M)N iff M —* M’ and N —7 N'.

2.3.3 Important \-calculi

The theory X consists of the equations M = N between A-terms such that M = N.

The Al-calculus is defined in different ways in the literature. It is defined by
Church [21] on the term set A and the reduction relation — g% It is defined by
Barendregt [5] on the term set A; and the reduction — ;3. We could also consider the
term set A; and the reduction — 3. The three corresponding theories are equivalent,
and are all called AI.

The An-calculus is defined on the term set A and the — g, reduction relation. The
corresponding theory is called An. This theory is built upon the A-terms and the
equivalence relation stemming from the 8n-reduction, i.e., the relation =g,. When
considering the fn-reduction without ambiguity, we sometimes write A-calculus in-

stead of An-calculus.

2.3.4 Residuals, developments, confluence and normalisa-
tion

A B-residual of a -redex is an occurrence of the propagation of the redex through
a (-reduction (it is defined, e.g, by Barendregt [5, Def. 11.2.4]). For instance
the two occurrences of (Az.x)y in ((Az.x)y)((Az.x)y) are residuals of the redex
(Az.z)((Ax.z)y) in (Az.zz)((Az.z)((Az.x)y)) w.r.t. the following reduction:

(Az.zr)(Ar.2)(Ar.2)y)) = Azar)(Ar.2)y) —5 (Az.2)y)(Az.2)y)

Although, to the best of our knowledge the definition of (-residuals is a well
established concept, it does not seem to be the case for fgn-residuals. Different
definitions can be found in the literature: the gn-residuals as defined by Curry and
Feys [31] or the A-residuals as defined by Klop [92].

A development is the reduction of an initial set of redexes in a term and of its
residuals w.r.t. the reduction. A development is said to be complete if all the redexes
of the initial set of redexes and their residuals have been reduced.

The confluence property is detailed below in Sec. 3. Let us mention here that it

is a property satisfied by the A-calculus (w.r.t. the S-reduction) which states that if

2Church [21] defines abstractions as follows: “if x is a variable and M is well-formed then A\x[M]
is well-formed”.

3Barendregt [5] defines the theory AI as follows: “The theory AI (“the AI-calculus”) consists
of equations between AI-terms provable by the axioms and rules of A restricted to Aj.”

8

Chapter 2. Introduction

a term reduces to two different terms then these two terms can reduce to the same
term, i.e., for each M, if M; —% My and M, —% Ms; then there exists M, such
that My —% M, and Mz —7 M. Developments have often been used to prove the
confluence of the A-calculus. The confluence of the A-calculus was first proved by
Church and Rosser in 1936 [24]. Therefore, this property is often referred to as the
the Church-Rosser property and will sometimes be abbreviated as CR in this thesis.

A term is a normal form if it cannot be reduced further. Normal forms w.r.t.
the (-reduction are of the following form: A\zq....Ax,,.yM; ... M, where n,m > 0
and where each M; is a normal form. We say that a term M is weakly normalisable
(abbreviated as WN) if there exists a reduction from M to a normal form. We
say that a term M is strongly normalisable (abbreviated as SN) if each reduction
starting from M terminates in a normal form. The strong normalisation property is
sometimes referred to in the literature as the termination property. The confluence

of the A-calculus was originally used t