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Abstract

Type systems were invented in the early 1900s to provide foundations for Math-
ematics where types were used to avoid paradoxes. Type systems have then been
developed and extended throughout the years to serve different purposes such as ef-
ficiency or expressiveness. The A-calculus is used in programming languages, logic,
mathematics, and linguistics. Intersection types are a kind of types used for building
semantic models of the A-calculus and for static analysis of computer programs.

The confluence property was used to prove the A-calculus’ consistency and the
uniqueness of normal forms. Confluence is useful to show that logics are sensibly
designed, and to make equality decision procedures for use in theorem provers.
Some proofs of the A-calculus’ confluence are based on syntactic concepts (reduction
relations and A-term sets) and some on semantic concepts (type interpretations).
Part I of this thesis presents an original syntactic proof that is a simplification of
a semantic proof based on a sound type interpretation w.r.t. an intersection type
system. Our proof can be seen as bridging some semantic and syntactic proofs.

Expansion is an operation on typings (pairs of type environments and result
types) in type systems for the A-calculus. It was introduced to prove that the prin-
cipal typing property (i.e., that every typable term has a strongest typing) holds
in intersection type systems. Expansion variables were introduced to simplify the
expansion mechanism. Part II of this thesis presents a complete realisability se-
mantics w.r.t. an intersection type system with infinitely many expansion variables.
This represents the first study on semantics of expansion. Providing sound (and
complete) realisability semantics allows one to study the algorithmic behaviour of
typed A-terms through their types w.r.t. a type system. We believe such semantics
will cast some light on the not yet well understood expansion operation.

Intersection types were used in a type error slicer for the SML programming
language. Existing compilers for many languages have confusing type error messages.
Type error slicing (TES) helps the programmer by isolating the part of a program
contributing to a type error (a slice). TES was initially done for a tiny toy language
(the A-calculus with polymorphic let-expressions). Extending TES to a full language
is extremely challenging, and for SML we needed a number of innovations. Some
issues would be faced for any language, and some are SML-specific but representative
of the complexity of language-specific issues likely to be faced for other languages.
Part IIT of this thesis solves both kinds of issues and presents an original, simple,
and general constraint system for providing type error slices for ill-typed programs.

We believe TES helps demystify language features known to confuse users.
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Chapter 1

Mathematical definitions and

notations

Natural numbers

Let 7, 7, m,n, p,q be metavariables ranging over N, the set of natural numbers.

Metavariables
If a metavariable v ranges over a class C, then the metavariables v, (where x can

be anything) and the metavariables v, v”| etc., also range over C.

Sets
Let s range over sets. If v ranges over s, then let ¥ range over P(s), the power set

of s.

Disjunction
Let dj(s1, ..., s,) (“disjoint”) hold iff for all 4, j € {1,...,n}, ifi # j then s;Ns; = @.

Let s1 W sy be s1 U s if dj(s1, s2) and undefined otherwise.

Relations

Let (z,y]) be the pair of x and y. If rel is a binary relation (a pair set), let (x rel y)
iff (z,y) € rel, let the inverse of rel be rel™ defined as {(xz,v) | (y,z) € rel}, let
dom(rel) = {x | (x,y) € rel}, let ran(rel) = {y | (z,y) € rel}, let s < rel = {(x,y) €
rel | x € s}, and let s S rel = {(x,y)) € rel | x & s}.

Functions

Let f range over functions (a special case of binary relations), let s — s = {f |
dom(f) C s Aran(f) C s'}, and let 2 — y be an alternative notation for (z,y) used
when writing some functions. Let fi + fo = o U (dom(fy) < fi). Let fiBfs be fi U f
if i Uf is a function and undefined otherwise. If fi,fo € s; — P(sy) then let
hUfy={x— UL |z €dom(fi) Ndom(fy)} Udom(f) < fi Udom(fi) < fo.

Tuples
A tuple ¢ is a function such that dom(¢) C N and if 1 < j € dom(¢) then j —

1 € dom(t). Let t range over tuples. If v ranges over s then let o range over

1
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tuple(s) = {t | ran(t) C s}. We write the tuple {0— xq,...,n—x,} as (xq,...,T,).
Let @ append tuples: (x1,...,2;)Qy1,...,y;) = (T1,..., 2, Y1,...,Y;). Given n
sets S1,...,8p, let s1 X -+ X s, be {{x1,...,2,) | Vi € {1,...,n}. x; € s;}. Note
that sq x « -+ X s, C tuple(s; U---Usy,).

Inference rules
An inference rule is a pair premises/conclusion which states that if the premises are
true then the conclusion must be true as well. In the literature, an inference rule is

often written as follows:
Yyr - Yn
— (1

which means that if y; for all 4 € {1,...,n} are true then z is true. This rule is

named (r). Such a rule is sometimes written as follows:
Myt A ANy, =

In this document we also sometimes write such a rule as follows:
(re <y AN Ay,

The rule name is sometimes omitted in such rules.



Chapter 2

Introduction

2.1 History of the A-calculus

In the nineteenth century, due to the lack of precision of natural languages and the
discovery of some controversial results in analysis [79], mathematicians and logicians
became interested in a more precise formalisation of Mathematics. Frege [138, 79
was the first to set solid logic foundations. He, among other things, presented a
formalisation of the concept of a function. The development of formal systems by
Frege and his contemporaries led to the discovery of some paradoxes. The paradox in
Frege’s work, found by Russell [121], was due to the problem of self-reference. This
problem is inherent to the fact that any function can be applied to any function (in
particular to itself). In order to solve this problem, Russell [121] defined a theory
of types where types are used to restrict the application of functions.

One of the great achievements in the movement led by Frege, Russell, Curry, etc.,
aiming at the formalisation of Mathematics has been the design of the M-calculus® by
Church [21]. In 1932, Church [21] introduced a system for “the foundation of formal
logic”, which was a formal system for logic and functions. The set of terms of this
system was defined as a superset of the set of terms of the Al-calculus. In addition,
Church introduced two sets of postulates. The first one called “rules of procedure”
allowed, among other things, dealing with conversion of A-terms (these rules are
presented in Sec. 3.2). The second set contained the “formal postulates” which were
logical axioms. However, this system and some of its subsystems turned out to
be inconsistent as shown by Kleene and Rosser [91]. Nevertheless, the subsystem
dealing only with functions turned out to be a “successful model for computable
functions” [5]: the actual A-calculus is a generalisation of this earlier system.

This earlier system led to the actual A-calculus. Church defined the computable
functions as the A-definable ones. Also, it turned out that the set of computable

functions defined by Turing via his machines is equivalent to the set of A-definable

'Barendregt [5], Rosser [120], and Cardone and Hindley [18] provide extensive introductions to
the A-calculus.
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functions [136] and also to Godel’s recursive functions [51]. These proposals are
nowadays often referred as Church-Turing’s thesis or as Church’s thesis. As ex-
plained by Kleene [90], it is called a thesis and not a theorem because “it proposes
to identify a somewhat vague intuitive concept with a concept phrased in exact
mathematical terms, and thus is not susceptible of proof”.

As Barendregt stresses in the introduction of his book [5], this theory presents
functions as rules, and not as sets of pairs, in order to deal with their computational
aspects. As explained by Kamareddine, Laan, Nederpelt [79], the A-calculus turned
out to be a generalisation of the definition of functions given, e.g., by Russell [144]
(“propositional functions”). The A-calculus is nowadays used in programming lan-
guages, logic, mathematics, and linguistics.

The A-calculus allows one to compute thanks to rules often referred to as re-
duction or conversion rules. These rules were extensively studied and one of the
main result was the proof of the confluence of (-reduction [24] which is the main
computation rule of the A-calculus. Confluence is the property that was originally
used to prove, among other things, the consistency the A-calculus (the theory built
upon [-reduction and a-conversion) because it allows one to prove that there ex-
ists at least two closed different A-terms. Confluence is sometimes referred to as
the Church-Rosser property. It was also originally used to prove the uniqueness of
normal forms [24].

In the early 1940s, Church added simple types, which are the types built upon
ground types and the arrow type constructor, to the A-calculus in a system with
logical axioms to deal with logic and functions [23]. Church’s approach was to
directly annotate A-terms: type-free A-terms are replaced by typed A-terms. Curry
followed another approach. He considered the combinatory logic [31] which is a type-
free calculus that can be regarded as a variant of the A-calculus. His type system
associates types with type-free terms via a typing relation [30, 31]. As explained by
Barendregt [6], these two “approaches to typed lambda calculus correspond to two
paradigms in programming”. In a system a la Curry, given a type-free A\-term, if a
type can be associated with the term w.r.t. the typing relation of the system then
a type inference algorithm can infer a type for the term. It is also the case for ML-
like programming languages such as SML [106, 107] or for Haskell-like programming
languages [77].

Since the introduction of these systems by Church and Curry, various type sys-
tems for the A-calculus have been developed and extended to serve different purposes
such as efficiency or expressiveness. For example, the type systems of the A-cube [6]
allow one to express concepts such as polymorphism (which means that terms can
have more than one type), type constructors (e.g., SML datatypes), dependent types
(which means that types are depending on terms). There are several advantages of

having a notion of types in a programming language. For example, they allow:
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checking static correctness, e.g., find type inconsistencies; efficient implementations
by generating information used for optimisations at compilation, e.g., “the type of
a data determines its memory size and layout” [100]; modularity, e.g., thanks to
signatures in SML or interfaces in Java.

Let us mention that there is a strong connection between type theory and proof
theory known as the Curry-Howard isomorphism [76, 123]|. This isomorphism allows
one to consider, e.g., simple types as propositions. As a matter of fact, there is a
correspondence between the minimal propositional logic and the simply typed A-
calculus (other such correspondences exit). The Curry-Howard isomorphism is often

referred to as the proofs-as-programs, formulae-as-types correspondence.

2.2 Structure of this Chapter

The rest of this introduction is structured as follows. Sec. 2.3 introduces the untyped
A-calculus and some of its variants: the Al-calculus and the An-calculus. We also
introduce properties of A-calculi such as the confluence property. Sec. 2.4 presents
notable typed A-calculi: the simply typed A-calculus, some intersection type systems,
and the Hindley-Milner type system. Sec. 2.5 presents two methods of reasoning
involving A-calculi (or similar functional systems): realisability and reducibility.
Finally, Sec. 2.6, summarises the contributions of the present thesis as well as its

structure.

2.3 The untyped A-calculus and some of its vari-

ants

The A-calculus and its variants are defined on term sets and reduction relations.
First, Sec. 2.3.1 presents various term sets and Sec. 2.3.2 some reduction relations.
Then, Sec. 2.3.3 introduces different A-calculi of interest based on these terms sets
and reduction relations. Finally, Sec. 2.3.4 presents properties of A-calculi such as

confluence and normalisation.

2.3.1 Sets of terms

Let z, y, z range over Var, a countable infinite set of term variables (or just variables).

The set of terms of the A-calculus is defined as follows:
M,N,P.Q,ReAN:=x| (Ax.M)| (MN)

We assume the usual convention for parentheses and omit them when no confusion
arises. In particular, we write M M - - - M, instead of (- -- (M My)My) - -+ M,,_1) M,
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let el be a binary relation on A.

M rel N My rel My M,y rel My
M rel M (refl) N rel M (sym) M rel My (tr)
P rel Q Q rel Q) P rel P'
NP el A ) Qe pg 2PV PO rel PO (2PP2)

Figure 2.1 Closure rules

We call a term of the form (Az.M) a A-abstraction (or just abstraction) and a term
of the form MN an application.
We write fv(M) for the set of the free variables occurring in M. The function fv

is defined as follows:

fv(z) ={z}
fv(Ae. M) =fv(M) \ {z}
fv(MN) =fv(M)Ufv(N)

We say that a term is closed if no free variable occurs in it, i.e., M is closed iff
fv(M) = @. Let closed(M) be true iff M is closed.

Fig. 2.1 present some closure rules in A: rule (refl) is the reflexive closure rule
(w.r.t. A), rule (sym) is the symmetric closure rule, rule (tr) is the transitive closure
rule, and rules (abs), (app1), and (app,) are the compatible closure rules.

The a-conversion is the symmetric, reflexive (w.r.t. A), transitive, and compati-

ble closure of the following rule (for readability issues, we define substitution below):
Ax. M =, \y.M|x = y], where y does not occur in M

We take terms modulo a-conversion.
The substitution of the free occurrences of a = by N in M, denoted M[z := NJ,

is defined by recursion on M as follows:

zly = M] - {f | i)ft}xlejwyise
(Ax.N)[y := M] =X z.Nz = z]ly := M], if z € fv(Az.N) U fv(y) U fv(M)
(NlNg)[y = M] :Nl[y = M]Ng[y = M]

We let M[zy := Ny,...,z, := N,| be the simultaneous substitution of N; for all
free occurrences of z; in M for i € {1,...,n}.

The term set A7, which is a subset of A, is defined as follows: for each x € Var,
zisin Ay, if x € fv(M) and M € A; then (Ax.M) is in A; and if M, N € A; then
(MN) is in Aj.
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2.3.2 Reduction relations

The [-reduction, i.e., the binary relation —g, is the main evaluation process of the

A-calculus. It is defined as the compatible closure of the following rule:
(B) : Ae.M)N —3 M|z := N]

The (3I-reduction, i.e., the binary relation — gy, is a restriction of the S-reduction

defined as the compatible closure of the following rule:
(BI) : (A\x.M)N —pr M[z := N|, where x € fv(M)

The h-reduction, i.e., the binary relation —, is also a restriction of the (-
reduction defined as the least relation closed by rule (app,) (defined in Fig. 2.1) and
the following rule:

(h) : Ae.M)N —p, M|z := N|

This reduction is called the weak head reduction.
The n-reduction, i.e., the binary relation —,, is defined as the compatible closure

of the following rule:
(n) : Ae. Mz —, M, where z ¢ fv(M)

This reduction expresses the concept of extensionality in the A-calculus (see Baren-
dregt’s book [5]). The idea behind the n-reduction is that Az.Mz where x & fv(M)
and M are computationally equivalent in the sense that they compute the same
result when applied to the same argument.

The @n-reduction, denoted —g,, is defined as the relation: —g U —,,.

For r € {3,531, h,n}, the term on the left-hand-side of the rule (r) is called a
r-redex (or just redex when no ambiguity arises) and the one on the right-hand-side
is called r-contractum (or just contractum when no ambiguity arises). Note that
BI-redexes and h-redexes are S-redexes. A fn-redex is either a S-redex or an n-redex
(and similarly for 8n-contractums).

Note that the relation —gs; is a subset of the relation —g. Let r € {3, 51, h}.
If (A\e.M)N —, Mz := N| and = € fv(M) then (Ax.M)N is called a I-redex,
otherwise it is called a K-redex. Therefore, $1-redexes are all I-redexes.

Let r € {3, BI, h,n, Bn}. We define the equivalence relation =, as the symmetric,

reflexive (w.r.t. A) and transitive closure of the following rule:
M= N if M-—,N

We use —* to denote the reflexive (w.r.t. A) and transitive closure (rules (refl)
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and (tr) as defined in Fig. 2.1) of —,. If M —* N then we say that M reduces to
N or that there is a r-reduction from M to N. Also, N is called a reduct of M. If
the r-reduction from M to N is in k steps, i.e., if there exists M, ..., My such that
M —, My —, -+ —, My and M = N, we write M —* N. A term (Az.M')N" is a
direct r-reduct of (Ax.M)N iff M —* M’ and N —7 N'.

2.3.3 Important \-calculi

The theory X consists of the equations M = N between A-terms such that M = N.

The Al-calculus is defined in different ways in the literature. It is defined by
Church [21] on the term set A and the reduction relation — g% It is defined by
Barendregt [5] on the term set A; and the reduction — ;3. We could also consider the
term set A; and the reduction — 3. The three corresponding theories are equivalent,
and are all called AI.

The An-calculus is defined on the term set A and the — g, reduction relation. The
corresponding theory is called An. This theory is built upon the A-terms and the
equivalence relation stemming from the 8n-reduction, i.e., the relation =g,. When
considering the fn-reduction without ambiguity, we sometimes write A-calculus in-

stead of An-calculus.

2.3.4 Residuals, developments, confluence and normalisa-
tion

A B-residual of a -redex is an occurrence of the propagation of the redex through
a (-reduction (it is defined, e.g, by Barendregt [5, Def. 11.2.4]). For instance
the two occurrences of (Az.x)y in ((Az.x)y)((Az.x)y) are residuals of the redex
(Az.z)((Ax.z)y) in (Az.zz)((Az.z)((Az.x)y)) w.r.t. the following reduction:

(Az.zr)(Ar.2)(Ar.2)y)) = Azar)(Ar.2)y) —5 (Az.2)y)(Az.2)y)

Although, to the best of our knowledge the definition of (-residuals is a well
established concept, it does not seem to be the case for fgn-residuals. Different
definitions can be found in the literature: the gn-residuals as defined by Curry and
Feys [31] or the A-residuals as defined by Klop [92].

A development is the reduction of an initial set of redexes in a term and of its
residuals w.r.t. the reduction. A development is said to be complete if all the redexes
of the initial set of redexes and their residuals have been reduced.

The confluence property is detailed below in Sec. 3. Let us mention here that it

is a property satisfied by the A-calculus (w.r.t. the S-reduction) which states that if

2Church [21] defines abstractions as follows: “if x is a variable and M is well-formed then A\x[M]
is well-formed”.

3Barendregt [5] defines the theory AI as follows: “The theory AI (“the AI-calculus”) consists
of equations between AI-terms provable by the axioms and rules of A restricted to Aj.”

8
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a term reduces to two different terms then these two terms can reduce to the same
term, i.e., for each M, if M; —% My and M, —% Ms; then there exists M, such
that My —% M, and Mz —7 M. Developments have often been used to prove the
confluence of the A-calculus. The confluence of the A-calculus was first proved by
Church and Rosser in 1936 [24]. Therefore, this property is often referred to as the
the Church-Rosser property and will sometimes be abbreviated as CR in this thesis.

A term is a normal form if it cannot be reduced further. Normal forms w.r.t.
the (-reduction are of the following form: A\zq....Ax,,.yM; ... M, where n,m > 0
and where each M; is a normal form. We say that a term M is weakly normalisable
(abbreviated as WN) if there exists a reduction from M to a normal form. We
say that a term M is strongly normalisable (abbreviated as SN) if each reduction
starting from M terminates in a normal form. The strong normalisation property is
sometimes referred to in the literature as the termination property. The confluence

of the A-calculus was originally used t