
Developing Realisability Semantics for Intersection

Types and Expansion Variables

Fairouz Kamareddine∗, Karim Nour†, Vincent Rahli‡and J. B. Wells§

September 21, 2007

Abstract

Expansion was invented at the end of the 1970s for calculating principal

typings for λ-terms in type systems with intersection types. Expansion vari-

ables (E-variables) were invented at the end of the 1990s to simplify and help
mechanize expansion. Recently, E-variables have been further simplified and
generalized to also allow calculating other type operators than just intersec-
tion. There has been much work on denotational semantics for type systems
with intersection types, but none whatsoever before now on type systems with
E-variables. Building a semantics for E-variables turns out to be challenging.
To simplify the problem, we consider only E-variables, and not the correspond-
ing operation of expansion. We develop a realizability semantics where each
use of an E-variable in a type corresponds to an independent level at which
evaluation occurs in the λ-term that is assigned the type. In the λ-term being
evaluated, the only interaction possible between portions at different levels is
that higher level portions can be passed around but never applied to lower
level portions. We apply this semantics to two intersection type systems.
We show these systems are sound, that completeness does not hold for the
first system, and completeness holds for the second system when only one
E-variable is allowed (although it can be used many times and nested). As far
as we know, this is the first study of a denotational semantics of intersection
type systems with E-variables (using realizability or any other approach) and
of the difficulties involved.

∗ULTRA Group (Useful Logics, Types, Rewriting, and their Automation),
http://www.macs.hw.ac.uk/ultra

†Université de Savoie, Campus Scientifique, 73378 Le Bourget du Lac, France, email:
nour@univ-savoie.fr

‡Same address as Kamareddine
§Same address as Kamareddine

1

Contents

1 Introduction 3

2 The pure λIN-calculus 4

3 The types and their realisability semantics 10
3.1 The types . 10
3.2 The realisability semantics . 12

4 The typing systems ⊢1 and ⊢2 14
4.1 The typing rules . 14
4.2 Failure of subject reduction using ⊢1 20
4.3 Subject reduction and expansion using ⊢2 21

5 Soundness of the realisability semantics for ⊢1/⊢2 and examples 25

6 Completeness of ⊢2 with one expansion variable 29

7 Conclusion and future work 33

A Introducing eta reduction 34

B Confluence of ⊲∗
β and ⊲∗

βη 38

C Strong normalization of the type systems ⊢1 and ⊢2 40

D Removing indices from ⊢1 43

E Removing indices from ⊢2 46

2

1 Introduction

Intersection types were developed in the late 1970s to type λ-terms that are unty-
pable with simple types; they do this by providing a kind of finitary type polymor-
phism where the usage of types is listed rather than quantified over. They have been
useful in reasoning about the semantics of the λ-calculus, and have been investi-
gated for use in static program analysis. Coppo, Dezani, and Venneri [4] introduced
the operation of expansion on typings (pairs of a type environment and a result
type) for calculating the possible typings of a term when using intersection types.
Expansion is a crucial part of a procedure for calculating principal typings and
thus helps support compositional type inference. As a simple example, the λ-term
M = (λx.x(λy.yz)) can be assigned the typing Φ1 = 〈(z : a) ⊢ (((a→b)→b)→c)→c〉,
which happens to be its principal typing. The term M can also be assigned the typ-
ing Φ2 = 〈(z : a1⊓a2) ⊢ (((a1→b1)→b1)⊓((a2→b2)→b2)→c)→c〉, and an expansion
operation can obtain Φ2 from Φ1. Because the early definitions of expansion were
complicated, E-variables were introduced in order to make the calculations easier
to mechanize and reason about. For example, in System E [2], the typing Φ1 from
above is replaced by Φ3 = 〈(z : ea) ⊢ (e((a→ b)→ b)→ c)〉, which differs from Φ1

by the insertion of the E-variable e at two places, and Φ2 can be obtained from Φ3

by substituting for e the expansion term E = (a := a1, b := b1) ⊓ (a := a2, b := b2).
Carlier and Wells [3] have surveyed the history of expansion and also E-variables.

Various kinds of denotational semantics have helped in reasoning about the
properties of entire type systems and of specific typed terms. E-variables pose
serious challenges for semantics. Most commonly, a type’s semantics is given as a
set of closed λ-terms with behavior related to the specification given by the type. In
many kinds of semantics, the meaning of a type T is calculated by an expression [T]ν
that takes two parameters, the type T and also a valuation ν that assigns to type
variables the same kind of meanings that are assigned to types. To extend this idea
to types with E-variables, we would need to devise some space of possible meanings
for E-variables. Given that a type e T can be turned by expansion into a new type
S1(T) ⊓ S2(T), where S1 and S2 are arbitrary substitutions (they can be arbitrary
further expansions), and that this can introduce an unbounded number of new
variables (both E-variables and regular type variables), the situation is complicated.

Because it is unclear how to devise a space of meanings for expansions and
E-variables, we instead develop a space of meanings for types that is hierarchical
in the sense of having many levels. When assigning meanings to types, we make
each use of E-variables simply change levels. We specifically avoid trying to give
a semantics to the operation of expansion, and instead treat only the E-variables.
Although this idea is not perfect, it seems to go quite far in giving an intuition
for E-variables, namely that each E-variable acts as a kind of capsule that isolates
parts of the λ-term being analyzed by the typing. Parts of the λ-term that are typed
inside the uses of the E-variable-introduction typing rule for a particular E-variable
e can interact with each other, and parts outside e can only pass the parts inside
e around. The E-variable e of course also shows up in the types, and isolates the
portions of the types contributed by the portions of the term inside the relevant
uses of E-variable-introduction.

The semantic approach we use is realisability semantics. Atomic types (e.g., type
variables) are interpreted as sets of λ-terms that are saturated, meaning in this case
that they are closed under β-expansion (i.e., β-reduction in reverse). Arrow and
intersection types are interpreted naturally by function spaces and set intersection.
Realisability allows showing soundness in the sense that the meaning of a type T
contains all closed λ-terms that can be assigned T as their result type. This has
been shown useful for characterizing the behavior of typed λ-terms [12]. One also
wants to show the converse of soundness which is called completeness, i.e., that

3

every closed λ-term in the meaning of T can be assigned T as its result type.
Hindley [8, 9, 10] was the first to study this notion of completeness for a simple

type system and he showed that all the types of that system have the completeness
property. Then, he generalised his completeness proof for an intersection type sys-
tem [7]. Using his completeness theorem for the realisability semantics based on the
sets of λ-terms saturated by βη-equivalence, Hindley has shown that simple types
are uniquely realised by the λ-terms which are typable by these types. However,
Hindley’s result does not hold for his intersection type system and the completeness
theorems were established with the sets of λ-terms saturated by βη-equivalence. In
this paper, our completeness result depends instead only on the weaker requirement
of β-equivalence, and we have managed to make simpler proofs that avoid needing
η-reduction, confluence (a.k.a. Church/Rosser), or strong normalisation (SN) (al-
though we do establish both confluence and SN for both β and βη).

Other work on realizability we have consulted includes that by Labib-Sami [13],
Farkh and Nour [6], and Coquand [5], although none of this work deals with intersec-
tion types or E-variables. Related work on realisability that deals with intersection
types includes that by Kamareddine and Nour [11], which gives a realisability se-
mantics with soundness and completeness for an intersection type system. This
system is quite different from the ones in this paper, because it allows the universal
type ω. We do not currently know how to build a semantics that supports both ω
and E-variables. The method of levels we use in this paper would need to assign ω
to every level, which is impossible. Further work will be needed on this point.

In this paper we study the λI-calculus typed with two representative intersection
type systems. The restriction to λI (where in every (λx.M) the variable x must
appear free in M) is motivated by not knowing how to support the ω type. For
one of these systems, we show that subject reduction and hence completeness do
not hold whereas for the second system, subject reduction holds and completeness
will hold if at most one single E-variable is used. As far as we know, this is the
first study of a denotational semantics of intersection type systems with E-variables
(using realizability or any other approach) and of the difficulties involved.

Section 2 introduces the λIN-calculus, which is the λI-calculus with each vari-
able marked by a natural number degree. Section 3 introduces the syntax and
terminology for types, and also the realisability semantics. Section 4 introduces our
two intersection type systems with E-variables where in one, the syntax of types is
not restricted but in the other it is restricted but then extended with a subtyping
relation. We show that subject reduction (SR) and completeness do not hold for
the first system, and that SR holds for the second system. In section 5 we show
the soundness of the realisability semantics for both systems and give a number of
examples. Section 6 shows completeness does not hold for the second system if more
than one expansion variable is used, but does hold for a restriction of this system
to one single E-variable. This is an important study in the semantics of intersection
type systems with expansion variables since a unique expansion variable can be
used many times and can occur nested. Section 7 concludes. In the appendices we
establish confluence and strong normalisation results as well as results related to
the usual unindexed λI-calculus.

2 The pure λI
N-calculus

In this section we give an indexed version of the λI-calculus where indices (which
range over the set of natural numbers N) help categorise the so-called good terms
(where the degree (or level) of a function is always smaller than that of its ar-
guments). This amounts to having the full λI-calculus at each level (index) and
creating new λI-terms through a mixing recipe.

4

We assume that if a metavariable v ranges over a set S then vi for i ≥ 0 and
v′, v′′, etc. also range over S.

Definition 1 1. Let V be a denumerably infinite set of variables. The set of
terms M, the set of good terms M ⊂ M, the set of free variables FV (M) of
a term in M ∈ M, the degree d(M) of a term M and the joinability M ⋄N
of terms M and N are defined by simultaneous induction:

• If x ∈ V and n ∈ N, then xn ∈ M∩M, FV (xn) = {xn}, and d(xn) = n.

• If M, N ∈M such that M ⋄N (see below), then

– (M N) ∈ M, FV ((M N)) = FV (M) ∪ FV (N) and
d((M N)) = min(d(M), d(N)) (where min is the minimum)

– If M ∈ M, N ∈M and d(M) ≤ d(N) then (M N) ∈M.

• If M ∈M and xn ∈ FV (M), then

– (λxn.M) ∈M, FV ((λxn.M)) = FV (M) \ {xn}, and
d(λxn.M1) = d(M1).

– If M ∈ M then λxn.M ∈ M.

2. • Let M, N ∈M. We say that M and N are joinable and write M ⋄N iff
∀x ∈ V, if xm ∈ FV (M) and xn ∈ FV (N), then m = n.

• If X ⊆M such that ∀M, N ∈ X , M ⋄N , we write, ⋄X .

• If X ⊆M and M ∈M such that ∀N ∈ X , M ⋄N , we write, M ⋄ X .

The ⋄ property ensures that in any term M , variables have unique degrees.

We assume the usual definition ([1, 12]) of subterms and the usual conven-
tion for parentheses and their omittance. Note that every subterm of M ∈M
(resp. M) is also in M (resp. M). We let x, y, z, etc. range over V and
M, N, P, M1, M2, . . . range over M and use = for syntactic equality.

3. For each n ∈ N, we let:
Mn = {M ∈ M / d(M) = n} M>n =M≥n+1

M≥n = {M ∈M / d(M) ≥ n} Mn = M ∩Mn

4. The usual substitution M [xm := N] of N ∈ M for all free occurrences of
xm in M ∈ M only matters when M ⋄ N . For n ≥ 0, M [(xni

i := Ni)1≤i≤n]
(or simply M [(xni

i := Ni)n]), the simultaneous substitution of Ni for all free
occurrences of xni

i in M only matters when ⋄X where X = {M} ∪ {Ni/1 ≤
i ≤ n} ⊆ M. Hence we restrict substitution accordingly to incorporate the ⋄
condition. With X as above, M [(xni

i := Ni)n] is only defined when ⋄X . We
write M [(xni

i := Ni)1≤i≤1] as M [xn1

1 := N1] obviously.

5. On M, we take terms modulo α-conversion given by:

λxn.M = λyn.(M [xn := yn])where ∀m, ym 6∈ FV (M)

Note here that yn ⋄M and hence, M [xn := yn] ∈ M and since xn ∈ FV (M)
then yn ∈ FV (M [xn := yn]). Hence, if λxn.M ∈ M, yn 6∈ FV (M) and
yn ⋄M then λyn.(M [xn := yn]) ∈M. Note also that:

If x 6= y, then ∀ i, j ∈ N, xi 6= yj. Moreover, xi = xj iff i = j.

We use the Barendregt convention (BC) where the names of bound variables
differ from the free ones and where we rewrite terms so that not both λxn and
λxm co-occur when n 6= m. BC ensures that:
• If M [(xni

i := Ni)n] ∈M then ∀mi, ∀1 ≤ i ≤ n, λxmi

i does not occur in M .
• If M, N ∈ M, M ⋄ N and xn ∈ FV (M) then ∀m, λxm does not occur in
N .

5

The next lemma states when an application or an abstraction term is good.

Lemma 2 1. (M is good and xn ∈ FV (M)) iff λxn.M is good.

2. (M1 and M2 are good, M1 ⋄M2 and d(M1) ≤ d(M2)) iff M1M2 is good.

Proof The only if direction is by definition. The if direction, for each of 1. and
2. is by cases on the derivation λxn.M is good respectively M1M2 is good. �

Since only joinable terms matter, the next lemma states results about ⋄.

Lemma 3 1. On M, ⋄ is reflexive and symmetric but not transitive.

2. Let M, N, M ′, N ′ ∈ M such that M ′ is a subterm of M and N ′ is a subterm
of N . If M ⋄N , then M ′ ⋄N ′.

3. (a) Let M, (N1N2) ∈M. We have M ⋄ {N1, N2} iff M ⋄ (N1N2).

(b) Let M, λxn.N ∈ M. We have M ⋄N , iff M ⋄ (λxn.N).

(c) Let M, N [(xni

i := Ni)p] ∈ M and X = {N} ∪ {Ni/1 ≤ i ≤ p} ⊂M.

• If M ⋄ X , then M ⋄N [(xni

i := Ni)p].

4. Let M1[(x
ni

i := Ni)p] ∈ M, M2[(x
ni

i := Ni)p] ∈ M and X = {M1, M2} ∪
{Ni/1 ≤ i ≤ p}. We have: If ⋄X then M1[(x

ni

i := Ni)p] ⋄M2[(x
ni

i := Ni)p].

5. Let M ∈M. We have: d(M) = min(n ∈ N / xn occurs in M).

6. Let X = {M} ∪ {Ni/1 ≤ i ≤ p} ⊂ M. We have:

(a) ⋄X iff M [(xni

i := Ni)p] ∈M.

(b) If ⋄X and ∀ 1 ≤ i ≤ p, d(Ni) = ni, then
d(M [(xni

i := Ni)p]) = d(M).

7. Let M, N, P ∈M. If ⋄{M, N, P}, y 6= x and xn 6∈ FV (P), then
M [xn := N][ym := P] = M [ym := P][xn := N [ym := P]].

8. Let M, N, P ∈M. If M ⋄ P and FV (M) = FV (N) then N ⋄ P .

9. Let M, N ∈M where d(N) = n and xn ∈ FV (M). We have:
M [xn := N] is good iff M and N are good and M ⋄N .

Proof

1. For reflexivity, we show by induction on M ∈ M that if xn, xm ∈ FV (M),
then n = m. Symmetry is by definition of ⋄. For failure of transitivity take
z2, y1 and z3.

2. Let xm ∈ FV (M ′) and xn ∈ FV (N ′). If xm ∈ FV (M) and xn ∈ FV (N) use
M ⋄N . The cases a) xm ∈ FV (M) and λxn occurs in N and b) λxm occurs
in M and xn ∈ FV (N) are not possible by BC. Finally, if λxm occurs in M
and λxn occurs in N , then by BC, n = m.

3. Simple check of the ⋄ condition using 2.

4. By 3c, M1 ⋄M2[(x
ni

i := Ni)p] and Nj ⋄M2[(x
ni

i := Ni)p] ∀ 1 ≤ j ≤ p, and, by
3c again, M1[(x

ni

i := Ni)p] ⋄M2[(x
ni

i := Ni)p].

5. By induction on M .

6. 6a is by definition of substitution. 6b is by induction on M .

7. By induction on M using 3c and 6a.

6

8. If xn ∈ FV (N) = FV (M) and xp ∈ FV (P) then since M ⋄ P , n = p.

9. By induction on M .

– By definition of substitution, xn[xn := N] is good iff xn and N are good
and xn ⋄N .

– (λym.M ′)[xn := N] is good ⇔ λym.M ′[xn := N] is good and ym ∈
FV (M ′)\FV (N) (since λym.M ′ ∈M using BC)⇔lemma 2 M ′[xn := N]
is good, ym ∈ FV (M ′[xn := N]) and ym ∈ FV (M ′) \ FV (N) ⇔IH M ′

and N are good, M ′ ⋄N , ym ∈ FV (M ′[xn := N]) and ym ∈ FV (M ′) \
FV (N) ⇔3b&lemma 2 λym.M ′ and N are good and λym.M ′ ⋄N .

– (M1M2)[x
n := N] is good ⇔ M1[x

n := N]M2[x
n := N] is good and

⋄{M1, M2, N} (since (M1M2)[x
n := N] ∈M)⇔6b&lemma 2 M1[x

n := N]
and M2[x

n := N] are good, M1[x
n := N] ⋄M2[x

n := N], ⋄{M1, M2, N}
and d(M1) = d(M1[x

n := N]) ≤ d(M2[x
n := N]) = d(M2)⇔

IH M1, M2

and N are good, ⋄{M1, M2, N} and d(M1) ≤ d(M2) ⇔3a&lemma 2 M1,
M2 and N are good and (M1M2) ⋄N .

�

Now we define the beta reduction relation on the λIN-calculus.

Definition 4 1. A relation R on M is compatible iff for all M, N, P ∈M:

• If MRN and xn ∈ FV (M) ∩ FV (N), then (λxn.M)R(λxn.N).

• If MRN , M ⋄ P and N ⋄ P , then (MP)R(NP) and (PM)R(PN).

2. The reduction relation ⊲β on M is defined as the least compatible relation
closed under the rule: (λxn.M)N ⊲β M [xn := N] if d(N) = n.

3. We denote by ⊲∗
β the reflexive and transitive closure of ⊲β. We also denote

by ≃β the equivalence relation induced by ⊲∗
β.

The next lemma shows that beta reduction is well defined on the λIN-calculus.

Lemma 5 ⊲β is a well defined relation on M. I.e., if M ∈M and M ⊲β N then
N ∈M. Hence, ⊲∗

β is also a well defined relation on M.

Proof By induction on M⊲βN . We only treat the basic case. Let (λxn.M1)M2⊲β

M1[x
n := M2] where d(M2) = n. By Lemmas 3.2 and 3.6a, M1[x

n := M2] ∈ M
and M1 ⋄M2. We show by induction on M ⊲∗

β N that if M ∈ M and M ⊲∗
β N then

N ∈M. �

The next lemma shows that the beta reduction relations preserves the free vari-
ables, degrees and goodness of terms.

Lemma 6 Let M, N ∈M such that M ⊲∗
β N . We have:

1. FV (M) = FV (N) and d(M) = d(N).

2. M is good iff N is good.

Proof 1. By induction on the derivation of M⊲∗
β N . We only treat the following:

• Assume (λxn.M1)M2 ⊲β M1[x
n := M2] where d(M2) = n. Since d(M2) =

n, then, by Lemmas 3.6b, d(M1[x
n := M2]) = d(M1) = d(λxn.M1) =

d((λxn.M1)M2). Also, FV ((λxn.M1)M2) = (FV (M1) \ {xn}) ∪ FV (M2) =
FV (M1[x

n := M2]).

2. By induction on the length of the derivation M ⊲∗
β N .

• If the length of the derivation is 0, nothing to prove.

7

• Case M ⊲β N . We do the proof by induction on the derivation of M ⊲β N .

– Let M = (λxn.M1)M2⊲β M1[x
n := M2] = N with d(M2) = n. M ∈M,

so xn ∈ FV (M1) and (λxn.M1)⋄M2. Since (λxn.M1)⋄M2, by lemma 3,
M1 ⋄M2.

∗ Assume N is good. By lemma 3.9, M1 and M2 are good. Since
M1 is good and xn ∈ FV (M1), by definition λxn.M1 is good. Since
xn ∈ FV (M1), by lemma 3.5, d(M1) ≤ n, so d(λxn.M1) = d(M1) ≤
n = d(M2). So, by definition M is good.

∗ Assume M is good. Then, by lemma 2, λxn.M1 and M2 are good,
and d(λxn.M1) ≤ d(M2). Since (λxn.M1) ⋄ M2, by lemma 3.2,
M1 ⋄M2. By lemma 2 and since λxn.M1 is good, M1 is good. Since
M1 and M2 are good, xn ∈ FV (M1) and d(M2) = n, by lemma 3.9,
N is good.

– Let M = PQ⊲β PQ′ = N and Q⊲β Q′, P ⋄Q and P ⋄Q′. Since Q⊲β Q′,
by lemma 6.1, d(Q) = d(Q′).

∗ If N is good, then by lemma 2, P and Q′ are good and d(P) ≤
d(Q′). Hence, d(P) ≤ d(Q). Moreover, by IH, Q is good. Hence, by
definition, M is good.

∗ If M is good then by lemma 2, P and Q are good and d(P) ≤ d(Q).
Hence, d(P) ≤ d(Q′). Moreover, by IH, Q′ is good. Hence, by
definition, N is good.

– Let M = PQ⊲β P ′Q = N and P ⊲β P ′, P ⋄Q and P ′ ⋄Q. The proof is
similar to the previous item.

– Let M = λym.M ′ ⊲β λym.N ′ = N , ym ∈ FV (M ′) ∩ FV (N ′), and
M ′ ⊲β N ′.

∗ If N is good, then by lemma 2, N ′ is good and by IH, M ′ is good.
Hence, by definition, M is good.

∗ If M is good then by lemma 2, M ′ is good and by IH, N ′ is good.
Hence, by definition, N is good.

• Case M ⊲β N1 ⊲
∗
β N use IH.

�

The next definition turns terms of degree n into terms of higher degrees and
also, if n > 0, they can be turned into terms of lower degrees.

Definition 7 1. We define + :M 7→M and − :M>0 7→ M by:

(xn)+ = xn+1 (xn)− = xn−1

(M1 M2)
+ = M+

1 M+
2 (M1 M2)

− = M−
1 M−

2

(λxn.M)+ = λxn+1.M+ (λxn.M)− = λxn−1.M−

2. Let X ⊆ M. If ∀M ∈ X , d(M) > 0, we write d(X) > 0. We define:
X+ = {M+ / M ∈ X} If d(X) > 0, X− = {M− / M ∈ X}.

3. If d(M) ≥ n > 0, we write M−n for (. . . (M

n
︷ ︸︸ ︷
−)− . . .−)−.

It is easy to show that M−n is well defined.

The next lemma shows that the lifting of a term to higher or lower degrees, is a
well behaved operation with respect to all that matters (free variables, reduction,
joinability, substitution, etc.).

Lemma 8 Let ≻∈ {⊲,⊲∗}, p ≥ 0 and M, N, N1, N2, . . . , Np ∈M.

1. (a) d(M+) = d(M)+1, (M+)− = M and xn ∈ FV (M+) iff xn−1 ∈ FV (M).

8

(b) If d(M) > 0, then M− ∈ M, d(M−) = d(M) − 1, (M−)+ = M and
xn ∈ FV (M−) iff xn+1 ∈ FV (M).

(c) Let X ⊂M. Then,

i. ⋄X iff ⋄X+.

ii. If d(X) > 0 then ⋄X iff ⋄X−.

iii. M ∈ X+ iff (M− ∈ X and d(M) > 0).

(d) M is good iff M+ is good.

(e) If d(M) > 0 then M is good iff M− is good.

2. Let X = {M} ∪ {Ni/1 ≤ i ≤ p} ⊂ M.
If ⋄X , then (M [(xni

i := Ni)p])
+ = M+[(xni+1

i := N+
i)p].

3. If d(M), d(N) > 0, and M ⋄N , then (M [xn+1 := N])− = M−[xn := N−].

4. If M ≻β N , then M+ ≻β N+.

5. If d(M) > 0 and M ≻β N , then M− ≻β N−.

6. If M ≻β N+, then M− ≻β N .

7. If M+ ≻β N , then M ≻β N−.

8. Let P ∈M. If M ≻β N , P ≻β Q and M ⋄ P , then N ⋄Q.

9. If M ≻β N , M ⋄ P and d(P) = n, then M [xn := P] ≻β N [xn := P].

10. If N ≻β P and M ⋄N , then M [xn := N]⊲∗
β M [xn := P].

11. If M ⊲∗
β N , P ⊲∗

β P ′, M ⋄P and d(P) = n, then M [xn := P]⊲∗
β N [xn := P ′].

Proof

1. 1a and 1b are by induction on M . For 1(c)i use 1a. For 1(c)ii use 1b. As
to 1(c)iii, if M ∈ X+, then M = P+ where P ∈ X and by 1a, d(M) =
d(P) + 1 > 0 and M− = (P+)− = P . Hence, M− ∈ X and d(M) > 0.
On the other hand, if M− ∈ X and d(M) > 0 then by 1b, M = P+ and
(M−)+ = M ∈ X+. Moreover, 1d is by induction on M using 1a, 1(c)i and
lemma 2. Finally, for 1e, by 1b and 1d, M = (M−)+ ∈M⇔M− ∈ M.

2. By induction on M (by 1(c)i and lemma 3.6, we have M [(xni

i := Ni)p] ∈ M
and M+[(xni+1

i := N+
i)p] ∈ M).

3. By induction on M (by 1(c)ii and lemma 3.6, we have M [xn+1 := N] ∈ M
and M−[xn := N−] ∈M).

4. The case ≻= ⊲ is by induction on M ⊲β N using 1. and 2., case ⊲∗
β is by

induction on the length of M ⊲∗
β N using the result for case ⊲β.

5. Similar to 4.

6. By lemma 6.1, 1a and 5, M− ≻ N .

7. Similar to 6.

8. Note that, by lemma 6.1, FV (M) = FV (N) and FV (P) = FV (Q).

9. Case ≻= ⊲ is by induction on M using lemmas 3.6b and 3.7. Case ⊲∗
β is by

induction on the length of M ⊲∗
β N using the result for case ⊲β.

10. Case ≻= ⊲ is by induction on M . Case ⊲∗
β is by induction on the length of

M ⊲∗
β N using the result for case ⊲β .

11. Use 9 and 10. �

9

Normal forms are defined as usual.

Definition 9 1. We say that M ∈ M is in β-normal form (or simply is in
normal form) if there is no N ∈M such that M ⊲β N .

2. We say that M ∈ M is β-normalising (or simply normalising) if there is an
N ∈ M such that M ⊲∗

β N and N is in normal form.

Next we give a lemma that will be used in the rest of the article.

Lemma 10 1. If M [yn := xn]⊲β N then M ⊲β N ′ where N = N ′[yn := xn].

2. If M [yn := xn] has a β-normal form then M has a β-normal form.

3. Let k ≥ 1. If Mxn1

1 ...xnk

k is normalizing, then M is normalizing.

4. Let k ≥ 1, 1 ≤ i ≤ k, l ≥ 0, xni

i N1...Nl be in normal form and M be
closed. If Mxn1

1 ...xnk

k ⊲
∗
β xni

i N1...Nl, then for some m ≥ i and n ≤ l, M ⊲∗
β

λxn1

1λxnm
m .xni

i M1...Mn where n+k = m+ l, Mj ≃β Nj for every 1 ≤ j ≤ n
and Nn+j ≃β x

nm+j

m+j for every 1 ≤ j ≤ k −m.

Proof

1. By induction on M [yn := xn]⊲β N .

2. M [yn := xn]⊲∗
β P where P is in β-normal form. The proof is by induction on

M [yn := xn]⊲∗
β P using 1.

3. By induction on k ≥ 1. We only prove the basic case. The proof is by cases.

– If M xn1

1 ⊲
∗
β M ′ xn1

1 where M ′ xn1

1 is in β-normal form and M⊲∗
β M ′ then

M ′ is in β-normal form and M is β-normalising.

– If M xn1

1 ⊲
∗
β (λyn1 .N)xn1

1 ⊲β N [yn1 := xn1

1]⊲∗
β P where P is in β-normal

form and M⊲∗
βλyn1 .N then by 2, N has a β-normal form and so, λyn1 .N

has a β-normal form. Hence, M has a β-normal form.

4. By 3, M is normalizing, and, since M is closed, its normal form is
λxn1

1λxnm
m .zrM1...Mn for n, m ≥ 0.

Since by theorem 68, xni

i N1...Nl ≃β (λxn1

1λxnm
m .zrM1...Mn)xn1

1 ...xnk

k then
m ≤ k, xni

i N1...Nl ≃β zrM1...Mnx
nm+1

m+1 ...xnk

k . Hence, zr = xni

i , n ≤ l, i ≤ m,
l = n + (k − (m + 1)) + 1 = n + k −m, Mj ≃β Nj for every 1 ≤ j ≤ n and
Nn+j ≃β x

nm+j

m+j for every 1 ≤ j ≤ k −m.
�

3 The types and their realisability semantics

In this section, we introduce the basic sets of types we use in our type systems
and the notions of a degree of a type and of a good type. We also introduce the
realisability semantics where good types can only contain good terms.

3.1 The types

This paper studies two type systems. In the first system, there are no restrictions
on where the arrow occurs. In the second, arrows cannot occur to the left of
intersections or expansions. The next definition introduces these two basic sets of
types and the notions of a degree of a type and of a good type.

Definition 11 (Types, good types, degree of a type)

10

1. Assume two denumerably infinite sets A (of atomic types) and E (of expansion
variables). Let a, b, c, a1, . . . range over A and e range over E.

2. The set of types T is defined by: T ::= A | T → T | T ⊓ T | ET .

3. The set of types U is defined by:

U ::= U ⊓ U | EU | T where T ::= A | U→ T

Note that T ⊆ U ⊆ T and hence, all definitions on T can be used on U.
We let U, V, W, U1, V1, U

′, T, T1, T2, . . . range over T . We let T, T1, T2, T
′, . . .

range over T and U, V, W, U1, V1, U
′, . . . range over U.

We quotient types by taking ⊓ to be commutative (i.e. U1 ⊓ U2 = U2 ⊓ U1),
associative (i.e. U1⊓(U2⊓U3) = (U1⊓U2)⊓U3), idempotent (i.e. U ⊓U = U)
and the distributivity of expansion variables to ⊓ (i.e. e(U1⊓U2) = eU1⊓eU2).

4. We denote eil
. . . ein

by ~ei(l:n) and Un ⊓ Un+1 . . . ⊓ Um by ⊓m
i=nUi (n ≤ m).

5. We define a function d : T 7→ N by (hence d is also defined on U):
• d(a) = 0 • d(U → T) = min(d(U), d(T))
• d(eU) = d(U) + 1 • d(U ⊓ V) = min(d(U), d(V)).

The function d is well defined because: ∀ n, m, k ∈ N,

• min(n, m) = min(m, n).

• min(n, min(m, k)) = min(min(n, m), k) = min(n, m, k).

• min(n, n) = n.

• min(n, m) + 1 = min(n + 1, m + 1).

6. We define the good types on T by (this also defines good types on U):

• If a ∈ A, then a is good.

• If U, T are good and d(U) ≥ d(T), then U → T is good.

• If U, V are good and d(U) = d(V), then U ⊓ V is good.

• If U is good and e ∈ E, then eU is good.

The next lemma states when arrow, intersection and expansion types are good.

Lemma 12 1. On T (hence on U), we have the following:

(a) (U, T are good and d(U) ≥ d(T)) iff U → T is good.

(b) (U, V are good and d(U) = d(V)) iff U ⊓ V is good.

(c) U is good iff eU is good.

2. On U, we have in addition the following:

(a) If T ∈ T, then d(T) = 0.

(b) If d(U) = n then U = ⊓k
i=1~ei(1:n)Vi where k ≥ 1 and ∃i.Vi ∈ T.

(c) If U is good and d(U) = n, then U = ⊓k
i=1~ei(1:n)Ti where k ≥ 1 and

∀ 1 ≤ i ≤ k, Ti ∈ T.

(d) U and T are good iff U → T is good.

Proof

1. The if direction is by definition. We only do the if direction.
1a. By induction on the derivation of U → T good. 1b. By induction on the
derivation of U ⊓ V good. 1c. By induction on the derivation of eU good.

2. 2a. By induction on T . 2b. By induction on U . 2c. By induction on U . 2d.
If) By 1. Only if) By 2, d(U) ≥ 0 = d(T). Hence, by 1, U → T is good.

�

11

We now give the notion of an environment that will be used in our type systems.

Definition 13 (Environments) 1. A type environment is a set {xni

i : Ui/1 ≤
i ≤ n where n ≥ 0 and ∀1 ≤ i, j ≤ n, if i 6= j then xni

i 6= x
nj

j }. We denote
such environment (call it Γ) by xn1

1 : U1, x
n2

2 : U2, . . . , x
nn
n : Un or simply by

(xni

i : Ui)n and define dom(Γ) = {xni

i /1 ≤ i ≤ n}. We use Γ, ∆, Γ1, . . . to
range over environments and write () for the empty environment.
Of course on T , type environments take variables in V to T . On U, they take
variables in V to U. We say that:

• Γ is good iff , for every 1 ≤ i ≤ k, Ui is good.

• d(Γ) > 0 iff for every 1 ≤ i ≤ k, d(Ui) > 0 and ni > 0.

2. If Γ = (xni

i : Ui)n and xm 6∈ dom(Γ), then we write Γ, xn : U for the type
environment xn1

1 : U1, . . . , x
nn
n : Un, xm : U .

3. Let Γ1 = (xni

i : Ui)n, (y
mj

j : Vj)m and Γ2 = (xni

i : U ′
i)n, (zrk

k : Wk)r. We write

Γ1 ⊓ Γ2 for the type environment (xni

i : Ui ⊓ U ′
i)n, (y

mj

j : Vj)m, (zrk

k : Wk)r.
Note that dom(Γ1 ⊓ Γ2) = dom(Γ1) ∪ dom(Γ2) and that ⊓ is commutative,
associative and idempotent on environments.

4. Let Γ = (xni

i : Ti)n. We let eΓ = (xni+1
i : eTi)n. Note that e(Γ1 ⊓ Γ2) =

eΓ1 ⊓ eΓ2.

5. We say that Γ1 is joinable with Γ2 and write Γ1 ⋄ Γ2 iff
∀x ∈ V, if xm ∈ dom(Γ1) and xn ∈ dom(Γ2), then m = n.

3.2 The realisability semantics

Crucial to a realisability semantics is the notion of a saturated set defined below.

Definition 14 (Saturated sets) Let X ,Y ⊆M.

1. We use P(X) to denote the powerset of X , i.e. {Y / Y ⊆ X}.

2. We let X Y = {M ∈M / M N ∈ Y for all N ∈ X such that M ⋄N}.

3. We say that X is saturated iff whenever M ⊲∗
β N and N ∈ X , then M ∈ X .

4. We say that X ≀ Y iff ∀M ∈ X Y, ∃N ∈ X such that M ⋄N .

The next lemma shows that saturation is closed under intersection, lifting and
arrows. Moreover, the set of good terms of degree n is saturated for every n.

Lemma 15 1. (X ∩ Y)+ = X+ ∩ Y+.

2. If X ,Y are saturated sets, then X ∩ Y is saturated.

3. If X is saturated, then X+ is saturated.

4. If Y is saturated, then, for every set X , X Y is saturated.

5. (a) (X Y)+ ⊆ X+ Y+. (b)If X+ ≀ Y+, then X+ Y+ ⊆ (X Y)+.

6. For every n ∈ N, the set Mn is saturated.

Proof 1. and 2. are easy.

3. If M ⊲∗
β N+ where N ∈ X , then, by lemma 8.6, M = P+ and P ⊲β N . As X

is saturated, P ∈ X and so P+ = M ∈ X+.

12

4. Let M ∈ X Y and N ⊲∗
β M . If P ∈ X such that N ⋄ P , then NP ⊲∗

β MP
and, by lemma 8.8 M ⋄ P . Since (M P) ∈ Y and Y is saturated, (N P) ∈ Y.
Hence, N ∈ X Y.

5. (a) Let M ∈ (X Y)+, then M = N+ and N ∈ X Y. If P ∈ X+ such that
M ⋄P , then P = Q+, Q ∈ X and MP = N+Q+ = (NQ)+. By lemma 8.1(c)i,
N ⋄Q and hence NQ ∈ Y and MP ∈ Y+. Thus M ∈ X+ Y+.

(b) let M ∈ X+
 Y+. There is N ∈ X+ such that M ⋄N . We have MN ∈

Y+, then MN = P+ where P ∈ Y. Hence, M = M+
1 . Let N1 ∈ X such that

M1 ⋄N1. By lemma 8.1(c)i, M ⋄N+
1 and we have (M1N1)

+ = M+
1 N+

1 ∈ Y
+.

Hence M1N1 ∈ Y. Thus M1 ∈ X Y and M = M+
1 ∈ (X Y)+.

6. If M ⊲∗
β N and N ∈ M ∩Mn then by lemma 6.(1 and 2), M ∈ M ∩Mn.

�

Now we give the basic step in our realisability semantics: the interpretations
and meanings of types.

Definition 16 (Interpretations and meaning of types) Let V = V1∪V2 where
V1 ∩ V2 = ∅ and V1,V2 are both denumerably infinite.

1. Let x ∈ V1 and n ∈ N. We define Nn
x = {xn N1...Nk ∈M / k ≥ 0}.

It is easy to show that if xn N1...Nk ∈ Nn
x then ∀ 1 ≤ i ≤ k, d(Ni) ≥ n.

2. An interpretation I : A 7→ P(M0) is a function such that for all a ∈ A:
• I(a) is saturated and • ∀x ∈ V1, N 0

x ⊆ I(a) ⊆M0.

3. Let an interpretation I : A 7→ P(M0) We extend an interpretation I to T
(hence this includes U) as follows: • I(eU) = I(U)+

• I(U ⊓ V) = I(U) ∩ I(V) • I(U → T) = I(U) I(T)

Since ∩ is commutative, associative and idempotent, then, by lemma 15.1, the
function I is well defined.

4. Let U ∈ T (hence U can be in U). We define the meaning [U] of U by:

[U] = {M ∈M / M is closed and M ∈
⋂

I interpretation

I(U)}

The next lemma shows that type interpretations are saturated and interpreta-
tions of good types only contain good terms.

Lemma 17 On T (hence also on U) we have the following:

1. For any type U and interpretation I, we have I(U) is saturated.

2. If U is a good type such that d(U) = n and I is an interpretation, then
∀x ∈ V1, xn ∈ Nn

x ⊆ I(U) ⊆Mn.

Proof 1. By induction on U using lemma 15.
2.Obviously, xn ∈ Nn

x . We prove Nn
x ⊆ I(U) ⊆Mn by induction on U good. Case

U = a: by definition. Case U = U ⊓ V (resp. U = eU ′): use IH since U, V are
good and d(U) = d(V) (resp. U ′ is good, d(U) = d(U ′) + 1, (Nn

x)+ = Nn+1
x and

(Mn)+ =Mn+1).
Case U = U → T : by definition, U, T are good and m = d(U) ≥ d(T) = n.

• Let N1, ..., Nk such that xnN1...Nk ∈ M (note that d(xnN1...Nk) = n) and
let N ∈ I(U) such that (xnN1...Nk) ⋄ N (hence xnN1...NkN ∈ M). By IH,
d(N) = m ≥ n and N ∈ M. Hence, xnN1...NkN ∈M and xnN1...NkN ∈ Nn

x .
By IH, xnN1...NkN ∈ I(T). Thus xnN1...Nk ∈ I(U → T).

13

• Let M ∈ I(U → T). Let x ∈ V1 such that ∀ p ∈ N, xp 6∈ FV (M). Hence,
M ⋄ xm. By IH, xm ∈ I(U). Then M xm ∈ I(T), and so by IH M xm ∈Mn.
By lemma 2, M is good and d(M) ≤ m. Since d(M xm) = min(d(M), m) = n,
d(M) = n and so M ∈Mn.

�

Corollary 18 (Meanings of good types consist of good terms) On T (hence
also on U) we have: If U is a good type such that d(U) = n then [U] ⊆Mn.

Proof Simply note that by lemma 17, for any interpretation I, I(U) ⊆Mn. �

Lemma 19 (The meaning of types is closed under type operations)
On T (hence also on U) the following hold:

1. [eU] = [U]+

2. [U ⊓ V] = [U] ∩ [V]

3. If U → T is good, then for any interpretation I, I(U) ≀ I(T).

4. On T only (since eU → eT 6∈ U), we have:
If U → T is good, then [e(U → T)] = [eU → eT].

Proof 1. and 2. are easy. 3. Let d(U) = n and M ∈ I(U) I(T). Take x ∈ V1

such that ∀p ∈ N, xp 6∈ FV (M). Hence, M ⋄ xn. By lemma 12, U is good and by
lemma 17, xn ∈ I(U).

4. Since U → T is good, then, by lemma 12, U, T are good and d(U) ≥ d(T).
Again by lemma 12, eU , eT are good, d(eU) ≥ d(eT) and eU → eT is good. Hence
by 3. above, I(U)+ ≀ I(T)+. Thus, by lemma 15.5, for any interpretation I we have
I(e(U → T)) = I(eU → eT). �

4 The typing systems ⊢1 and ⊢2

In this section we introduce ⊢1 and ⊢2, our two intersection type systems with
expansion variables. In ⊢1, types are not restricted and subject reduction fails. In
⊢2, the syntax of types is restricted in the sense that arrows cannot occur to the left
of intersections or expansions. In order to guarantee the subject reduction property
for this type system (and hence completeness later on), we introduce a subtyping
relation which will allow intersection type elimination (something not available in
the first type system).

4.1 The typing rules

In this section we introduce the typing rules and establish a number of properties
including the generation lemma and that when a term is typable then it, and its
type and its context are all good and they all satisfy the relevant hierarchy between
types and terms and no redexes are blocked.

Definition 20 The type system ⊢1 (resp. ⊢2) uses the set T (resp. U) of defini-
tion 11. We follow [3] and write type judgements as M : 〈Γ ⊢ U〉 instead of the
traditional format of Γ ⊢ M : U . For i ∈ {1, 2}, the typing rules of ⊢i are (recall
that when used for ⊢1, U and T range over T , and when used for ⊢2, U ranges
over U and T ranges over T) given on the lefthand side of figure 4.1. In the last
clause, the binary relation ⊑ is defined on U by the rules on the righthand side of
figure 4.1. We let Φ denote types in U, or environments Γ or typings 〈Γ ⊢2 U〉.
When Φ ⊑ Φ′, then Φ and Φ′ belong to the same set (U/environments/typings).

Let Γ be a type environment, i ∈ {1, 2}, U ∈ T and M ∈M. We say that:

14

T good d(T) = n

xn : 〈(xn : T) ⊢1 T 〉
(ax)

T good

x0 : 〈(x0 : T) ⊢2 T 〉
(ax)

M : 〈Γ, (xn : U) ⊢i T 〉

λxn.M : 〈Γ ⊢i U → T 〉
(→I)

M1 : 〈Γ1 ⊢i U → T 〉 M2 : 〈Γ2 ⊢i U〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2 ⊢i T 〉
(→E)

M : 〈Γ1 ⊢i U1〉 M : 〈Γ2 ⊢i U2〉

M : 〈Γ1 ⊓ Γ2 ⊢i U1 ⊓ U2〉
(⊓)

M : 〈Γ ⊢i U〉

M+ : 〈eΓ ⊢i eU〉
(exp)

M : 〈Γ ⊢2 U〉 〈Γ ⊢2 U〉 ⊑ 〈Γ′ ⊢2 U ′〉

M : 〈Γ′ ⊢2 U ′〉
(⊑)

Φ ⊑ Φ
(ref)

Φ1 ⊑ Φ2 Φ2 ⊑ Φ3

Φ1 ⊑ Φ3

(tr)

U2 good d(U1) = d(U2)

U1 ⊓ U2 ⊑ U1

(⊓e)

U1 ⊑ V1 U2 ⊑ V2

U1 ⊓ U2 ⊑ V1 ⊓ V2

(⊓)

U2 ⊑ U1 T1 ⊑ T2

U1 → T1 ⊑ U2 → T2

(→)

U1 ⊑ U2

eU1 ⊑ eU2

(⊑exp)

U1 ⊑ U2

Γ, (yn : U1) ⊑ Γ, (yn : U2)
(⊑c)

U1 ⊑ U2 Γ2 ⊑ Γ1

〈Γ1 ⊢2 U1〉 ⊑ 〈Γ2 ⊢2 U2〉
(⊑〈〉)

Figure 1: Typing rules / Subtyping rules

• Γ is ⊢i-legal iff there are M, U such that M : 〈Γ ⊢i U〉.

• 〈Γ ⊢i U〉 is good iff Γ and U are good.

• d(〈Γ ⊢i U〉) > 0 iff d(Γ) > 0 and d(U) > 0.

The next lemma establishes needed properties of the relation ⊑ on U.

Lemma 21 1. If Γ ⊑ Γ′, U ⊑ U ′ and xn 6∈ dom(Γ) then Γ, (xn : U) ⊑ Γ′, (xn :
U ′).

2. Γ ⊑ Γ′ iff Γ = (xni

i : Ui)n, Γ′ = (xni

i : U ′
i)n and for every 1 ≤ i ≤ n, Ui ⊑ U ′

i .

3. 〈Γ ⊢2 U〉 ⊑ 〈Γ′ ⊢2 U ′〉 iff Γ′ ⊑ Γ and U ⊑ U ′.

4. Let U1 ⊑ U2.

(a) d(U1) = d(U2).

(b) U1 is good iff U2 is good.

(c) If U2 is good and d(U2) = n, then U1 = ⊓k
i=1~ei(1:n)Ti, U2 = ⊓p

j=1
~e′j(1:n)T

′
j,

where p, k ≥ 1, ∀1 ≤ i ≤ k Ti ∈ T, ∀1 ≤ j ≤ p T ′
j ∈ T and ∀1 ≤ j ≤ p,

∃1 ≤ i ≤ k such that ~ei(1:n) = ~e′j(1:n) and Ti ⊑ T ′
j.

(d) Let U1 = ⊓k
i=1~ei(1:ni)(Vi → Ti) and U2 = ⊓p

j=1
~e′j(1:mj)(V

′
j → T ′

j). If
U1 is good and d(U1) = n then ∀i, j, ni = mj = n and ∀1 ≤ j ≤ p,

∃1 ≤ i ≤ k such that ~ei(1:n) = ~e′j(1:n), V ′
j ⊑ Vi and Ti ⊑ T ′

j.

5. If U ⊑ V ⊓ a, then U = U ′ ⊓ a.

6. If eU ⊑ V then V = eU ′ where U ⊑ U ′.

7. If U → T ⊑ V and U → T is good, then V = ⊓p
i=1(Ui → Ti) where p ≥ 1 and

∀1 ≤ i ≤ p, Ui ⊑ U and T ⊑ Ti.

8. If ⊓k
i=1~ei(1:ni)(Vi → Ti) ⊑ V where V is good, d(V) = n and k ≥ 1 then

∀i, ni = n and V = ⊓p
i=1

~e′i(1:n)(V
′
i → T ′

i) where p ≥ 1 and ∀1 ≤ i ≤ p,

∃1 ≤ j ≤ k such that ~ej(1:n) = ~e′i(1:n), V ′
i ⊑ Vj and Tj ⊑ T ′

i .

15

9. Let Φ1 ⊑ Φ2.

• d(Φ1) > 0 iff d(Φ2) > 0

• Φ1 is good iff Φ2 is good.

10. If U ⊑ U ′
1 ⊓ U ′

2 then U = U1 ⊓ U2 where U1 ⊑ U ′
1 and U2 ⊑ U ′

2.

11. If Γ ⊑ Γ′
1 ⊓ Γ′

2 then Γ = Γ1 ⊓ Γ2 where Γ1 ⊑ Γ′
1 and Γ2 ⊑ Γ′

2.

Proof

1. Show by induction on the derivation of Γ ⊑ Γ′ that if Γ ⊑ Γ′ and Γ, (xn : U)
is an environment, then Γ, (xn : U) ⊑ Γ′, (xn : U). Then use tr.

2. Only if) By induction on the derivation of Γ ⊑ Γ′. If) By induction on n and
1.

3. Only if) By induction on the derivation of 〈Γ ⊢2 U〉 ⊑ 〈Γ′ ⊢2 U ′〉. If) By ⊑〈〉.

4. By induction on the derivation of U1 ⊑ U2 using lemmas 12.2 and 12. We

do case tr of 4d. If
⊓k

i=1~ei(1:ni)(Vi → Ti) ⊑ V V ⊑ ⊓p
j=1

~e′j(1:mj)(V
′
j → T ′

j)

⊓k
i=1~ei(1:ni)(Vi → Ti) ⊑ ⊓

p
j=1

~e′j(1:mj)(V
′
j → T ′

j)
,

then, by 4c, ∀i, ni = n and V = ⊓q
l=1

~e′′l(1:n)T
′′
l where q ≥ 1 and ∀1 ≤ l ≤ q,

∃1 ≤ i ≤ k, such that ~e′′l(1:n) = ~ei(1:n) and Vi → Ti ⊑ T ′′
l . If T ′′

l = a, then,
by 5, Vi → Ti = V ′ ⊓ a. Absurd. Hence, ∀1 ≤ l ≤ q, T ′′

l = Wl → T ′′′
l

and V = ⊓q
l=1

~e′′l(1:n)(Wl → T ′′′
l). By IH, ∀1 ≤ l ≤ q, ∃1 ≤ i ≤ k such

that ~ei(1:n) = ~e′′l(1:n), Wl ⊑ Vi and Ti ⊑ T ′′′
l . Also, by IH, ∀j, mj = m and

∀1 ≤ j ≤ p, ∃1 ≤ l ≤ q, ~e′′l(1:n) = ~e′j(1:n), V ′
j ⊑ Wl and T ′′′

l ⊑ T ′
j . Hence,

∀1 ≤ j ≤ p, ∃1 ≤ i ≤ k, such that ~e′j(1:n) = ~ei(1:n), V ′
j ⊑ Vi and Ti ⊑ T ′

j.

5. By induction on U ⊑ V ⊓ a.

6. By induction on eU ⊑ V .

7. By 4c, V = ⊓p
i=1T

′
i where p ≥ 1 and ∀1 ≤ i ≤ p, U → T ⊑ T ′

i . If T ′
i = a,

then, by 5, U → T = U ′ ⊓ a. Absurd. Hence, T ′
i = Ui → Ti. Hence, by 4d,

∀1 ≤ i ≤ p, Ui ⊑ U and T ⊑ Ti.

8. By 4c, ∀i, ni = n and V = ⊓p
i=1

~e′i(1:n)T
′′
i where p ≥ 1 and ∀1 ≤ i ≤ p,

∃1 ≤ ji ≤ k such that ~eji(1:n) = ~e′i(1:n) and Vji
→ Tji

⊑ T ′′
i . Let 1 ≤ i ≤ p.

If T ′′
i = a, then, by 5, Vji

→ Tji
= U ′ ⊓ a. Absurd. Hence, T ′′

i = V ′
i → T ′

i .
By 7, V ′

i ⊑ Vji
and Tji

⊑ T ′
i . We are done.

9. Using 4. and lemma 21.

10. By induction on U ⊑ U ′
1 ⊓ U ′

2.

– Let
U ′

1 ⊓ U ′
2 ⊑ U ′

1 ⊓ U ′
2

. By ref , U ′
1 ⊑ U ′

1 and U ′
2 ⊑ U ′

2.

– Let
U ⊑ U ′′ U ′′ ⊑ U ′

1 ⊓ U ′
2

U ⊑ U ′
1 ⊓ U ′

2

. By IH, U ′′ = U ′′
1 ⊓U ′′

2 such that U ′′
1 ⊑ U ′

1

and U ′′
2 ⊑ U ′

2. Again by IH, U = U1⊓U2 such that U1 ⊑ U ′′
1 and U2 ⊑ U ′′

2 .
So by tr, U1 ⊑ U ′

1 and U2 ⊑ U ′
2.

– Let
U good & d(U ′

1 ⊓ U ′
2) = d(U)

(U ′
1 ⊓ U ′

2) ⊓ U ⊑ U ′
1 ⊓ U ′

2

. By ref , U ′
1 ⊑ U ′

1 and U ′
2 ⊑ U ′

2.

Moreover:

16

∗ If d(U) = d(U ′
1 ⊓ U ′

2) = d(U ′
1) then by ⊓e, U ′

1 ⊓ U ⊑ U ′
1. We are

done.

∗ If d(U) = d(U ′
1 ⊓ U ′

2) = d(U ′
2) then by ⊓e, U ′

2 ⊓ U ⊑ U ′
2. We are

done.

– If
U1 ⊑ U ′

1 & U2 ⊑ U ′
2

U1 ⊓ U2 ⊑ U ′
1 ⊓ U ′

2

there is nothing to prove.

– If
U ⊑ U ′

1 ⊓ U ′
2

eU ⊑ eU ′
1 ⊓ eU ′

2

then by IH U = U1 ⊓ U2 such that U1 ⊑ U ′
1 and

U2 ⊑ U ′
2. So, eU = eU1 ⊓ eU2 and by ⊑exp, eU1 ⊑ eU ′

1 and eU2 ⊑ eU ′
2.

11. By induction on Γ ⊑ Γ′
1 ⊓ Γ′

2.

– Let
Γ′

1 ⊓ Γ′
2 ⊑ Γ′

1 ⊓ Γ′
2

. By ref , Γ′
1 ⊑ Γ′

1 and Γ′
2 ⊑ Γ′

2.

– Let
Γ ⊑ Γ′′ Γ′′ ⊑ Γ′

1 ⊓ Γ′
2

Γ ⊑ Γ′
1 ⊓ Γ′

2

. By IH, Γ′′ = Γ′′
1 ⊓ Γ′′

2 such that Γ′′
1 ⊑ Γ′

1

and Γ′′
2 ⊑ Γ′

2. Again by IH, Γ = Γ1 ⊓Γ2 such that Γ1 ⊑ Γ′′
1 and Γ2 ⊑ Γ′′

2 .
So by tr, Γ1 ⊑ Γ′

1 and Γ2 ⊑ Γ′
2.

– Let
U1 ⊑ U2

Γ, (yn : U1) ⊑ Γ, (yn : U2)
where Γ, (yn : U2) = Γ′

1 ⊓ Γ′
2.

∗ If Γ′
1 = Γ′′

1 , (yn : U ′
2) and Γ′

2 = Γ′′
2 , (yn : U ′′

2) such that U2 = U ′
2⊓U ′′

2 ,
then by 10, U1 = U ′

1 ⊓ U ′′
1 such that U ′

1 ⊑ U ′
2 and U ′′

1 ⊑ U ′′
2 . Hence

Γ = Γ′′
1 ⊓Γ′′

2 and Γ, (yn : U1) = Γ1⊓Γ2 where Γ1 = Γ′′
1 , (yn : U ′

1) and
Γ2 = Γ′′

2 , (yn : U ′′
1) such that Γ1 ⊑ Γ′

1 and Γ2 ⊑ Γ′
2 by ⊑c.

∗ If yn 6∈ dom(Γ′
1) then Γ = Γ′

1 ⊓ Γ′′
2 where Γ′′

2 , (yn : U2) = Γ′
2. Hence,

Γ, (yn : U1) = Γ′
1 ⊓ Γ2 where Γ2 = Γ′′

2 , (yn : U1). By ref and ⊑c,
Γ′

1 ⊑ Γ′
1 and Γ2 ⊑ Γ′

2.

∗ If yn 6∈ dom(Γ′
2) then similar to the above case.

�

The next lemma is both a context lemma and a typability of subterms lemma.

Lemma 22 Let i ∈ {1, 2} and M : 〈Γ ⊢i U〉. We have:

1. (a) FV (M) = dom(Γ).
(b) If M : 〈∆ ⊢i V 〉, then dom(Γ) = dom(∆).

2. If xn : U1 ∈ Γ and ym : U2 ∈ Γ, then:

(a) If xn : U1 6= ym : U2, then xn 6= ym.

(b) If x = y, then n = m and U1 = U2.

3. If xn : U1 ∈ Γ and ym : U2 ∈ Γ and xn : U1 6= ym : U2, then
x 6= y and xn 6= ym.

4. Assume N : 〈∆ ⊢i V 〉. We have Γ ⋄∆ iff M ⋄N .

5. If N is a subterm of M , then there are ∆, V such that N : 〈∆ ⊢i V 〉.

6. If Γ = Γ1 ⊓ Γ2 ⊓ Γ3, then Γ1 ⋄ Γ2.

Proof 1. (a) by induction on the derivation of M : 〈Γ ⊢i U〉, (b) is a corollary
of (a). 2. (a) and (b) by induction on the derivation of M : 〈Γ ⊢i U〉 using 1. in
the ⊓i case. 3. is a corollary of 2. 4. use 1. 5. by induction on the derivation of
M : 〈Γ ⊢i U〉. 6. Let Γ = (xni

i : Ui)n and x ∈ V . If xp ∈ dom(Γ1) ⊆ dom(Γ) and
xq ∈ dom(Γ2) ⊆ dom(Γ), then by 2, p=q. �

17

The next lemma shows that all typable terms are good, have good types, and
have the same degree as their types. Moreover, all legal contexts are good.

Lemma 23 Let i ∈ {1, 2}. If M : 〈(xni

i : Ui)n ⊢i U〉, then

1. ∀ 1 ≤ i ≤ n, Ui is good and d(Ui) = ni ≥ d(M).

2. U is good and d(M) = d(U).

3. M is good.

Proof By induction on the derivation of M : 〈(xni

i : Ui)n ⊢i U〉.

• ax: 1. and 2. hold by the hypothesis of this rule. 3. holds by definition.

• Let
M : 〈Γ, (xm : U) ⊢i T 〉

λxm.M : 〈Γ ⊢i U → T 〉
where Γ = (xni

i : Ui)n. By IH, d(Ui) = ni,

d(U) = m, d(M) = d(T), ni, m ≥ d(M) and Ui, U, T are good. Hence
d(U) ≥ d(T) and, by definition, U → T is good. Moreover, d(λxm.M) =
d(M) = d(T) = min(d(U), d(T)) = d(U → T) and ni ≥ d(λxm.M). Since by
lemma 22, FV (M) = dom(Γ, (xm : U)), xm ∈ FV (M) and since by IH, M is
good, by definition λxm.M is good.

• Let
M1 : 〈Γ1 ⊢i U → T 〉 M2 : 〈Γ2 ⊢i U〉 Γ1 ⋄ Γ2

M1 M2 : 〈Γ1 ⊓ Γ2 ⊢i T 〉
where

Γ1 = (xni

i : Ui)n, (y
mj

j : Vj)m, Γ2 = (xni

i : U ′
i)n, (zrk

k : Wk)r and Γ1 ⊓ Γ2 =

(xni

i : Ui ⊓ U ′
i)n, (y

mj

j : Vj)m, (zrk

k : Wk)r. By IH, d(Ui) = d(U ′
i) = ni,

d(Vj) = mj , d(Wk) = rk, d(M1) = d(U → T), d(M2) = d(U), ni, mj ≥
d(M1), ni, rk ≥ d(M2) and Ui, Vj , U

′
i , Wk, U → T, U are good. By defini-

tion, Ui ⊓ U ′
i and T are good. Also, d(Ui ⊓ U ′

i) = ni. Since U → T is
good, then, by lemma 12, d(U) ≥ d(T), d(M1) = d(T) and d(M1 M2) =
min(d(M1), d(M2)) = min(d(T), d(U)) = d(T). We have ni ≥ d(M1) =
d(T) = d(M1 M2), mj ≥ d(M1) = d(M1 M2) and rk ≥ d(M2) = d(U) ≥
d(T) = d(M1 M2). Finally, d(M1) = deg(U → T) = d(T) ≤ d(U) = d(M2),
by lemma 22, M1M2 ∈ M so M1 ⋄M2 and by IH, M1 and M2 are good, so
by definition M1M2 is good.

• Let
M : 〈(xni

i : Ui)n ⊢i U〉 M : 〈(xni

i : Vi)n ⊢i V 〉

M : 〈(xni

i : Ui ⊓ Vi)n ⊢i U ⊓ V 〉
(note lemma 22.1). By IH,

d(Ui) = d(Vi) = ni, d(M) = d(U) = d(V), ni ≥ d(M) and Ui, Vi, U, V are
good. Hence, d(Ui ⊓ Vi) = ni and d(M) = d(U ⊓ V). Moreover, by definition,
Ui ⊓ Vi and U ⊓ V are good. Finally, by IH, M is good.

• Let
M : 〈(xni

i : Ui)n ⊢i U〉

M+ : 〈(xni+1
i : eUi)n ⊢i eU〉

. By IH, d(Ui) = ni, d(M) = d(U), ni ≥

d(M) and Ui, U are good. Hence, d(eUi) = ni + 1, d(M+) = d(eU) and
ni + 1 ≥ d(M+). Moreover, by definition, eUi and eU are good. Finally, By
IH, M is good, so by lemma 8.1d, M+ is good.

• Let
M : 〈Γ′ ⊢2 U ′〉 〈Γ′ ⊢2 U ′〉 ⊑ 〈(xni

i : Ui)n ⊢2 U〉

M : 〈(xni

i : Ui)n ⊢2 U〉
. By lemma 21, Γ′ = (xni

i :

U ′
i)n, for every 1 ≤ i ≤ n, Ui ⊑ U ′

i and U ′ ⊑ U . By IH, U ′ is good,
d(M) = d(U ′) and ∀ 1 ≤ i ≤ n, d(U ′

i) = ni, ni ≥ d(M) and U ′
i are good. By

lemma 21, U is good, d(M) = d(U) and ∀ 1 ≤ i ≤ n, d(Ui) = ni and Ui are
good. Moreover, M is good by IH.

�

18

Remark 24 The rules ⊓′i and ax′ given below are derivable in ⊢2:

M : 〈Γ1 ⊢2 U1〉 M : 〈Γ2 ⊢2 U2〉

M : 〈Γ1 ⊓ Γ2 ⊢2 U1 ⊓ U2〉
⊓′i

U is good d(U) = n

xn : 〈(xn : U) ⊢2 U〉
ax′

Proof ⊓′i. Let M : 〈Γ1 ⊢2 U1〉 and M : 〈Γ2 ⊢2 U2〉. By lemma 22, dom(Γ1) =
dom(Γ2). Let Γ1 = (xni

i , Vi)n and Γ2 = (xni

i , V ′
i)n. By lemma 23, ∀1 ≤ i ≤ n, Vi and

V ′
i are good and d(Vi) = d(V ′

i) = ni. By ⊓e, Vi ⊓ V ′
i ⊑ Vi and Vi ⊓ V ′

i ⊑ V ′
i . Hence,

by lemma 21.2, Γ1 ⊓Γ2 ⊑ Γ1 and Γ1⊓Γ2 ⊑ Γ2 and by ⊑ and ⊑〈〉, M : 〈Γ1 ⊓Γ2, U1〉
and M : 〈Γ1 ⊓ Γ2, U2〉. Finally, by ⊓i, M : 〈Γ1 ⊓ Γ2, U1 ⊓ U2〉.
ax′. By lemma 12.2, U = ⊓k

i=1~ei(1:n)Ti where k ≥ 1, and ∀1 ≤ i ≤ k, Ti ∈ T and Ti

is good. Let 1 ≤ i ≤ k. By lemma 12.2, d(Ti) = 0 and by ax, x0 : 〈(x0 : Ti) ⊢2 Ti〉.
Hence, xn : 〈(xn : ~ei(1:n)Ti) ⊢2 ~ei(1:n)Ti〉 by n applications of exp. Now, by k − 1
applications of ⊓′i, xn : 〈(xn : U) ⊢2 U〉. �

Next, the generation lemma which says how type derivations are generated (re-
call that in T , T ranges over all of T whereas in U, T ranges only over T).

Lemma 25 (Generation for ⊢1) 1. If xn : 〈Γ ⊢1 T 〉, then Γ = (xn : T).

2. If λxn.M : 〈Γ ⊢1 T1 → T2〉, then M : 〈Γ, xn : T1 ⊢1 T2〉.

3. If MN : 〈Γ ⊢1 T 〉 then Γ = Γ1 ⊓ Γ2, T = ⊓n
i=1~ei(1:mi)Ti, n ≥ 1, mi ≥ 0,

M : 〈Γ1 ⊢1 ⊓n
i=1~ei(1:mi)(T

′
i → Ti)〉 and N : 〈Γ2 ⊢1 ⊓n

i=1~ei(1:mi)T
′
i 〉.

Proof

1. By induction on the derivation of xn : 〈Γ ⊢1 T 〉.

2. First, we prove by induction on the derivation of λxn.M : 〈Γ ⊢1 T1 → T2〉
that ∃k ≥ 1, Γ1, Γ2, . . . , Γk, such that Γ = Γ1 ⊓ Γ2 . . . ⊓ Γk and ∀ 1 ≤ i ≤ k,
M : 〈Γi, x

n : T1 ⊢1 T2〉. We have two cases:

– Case →i: take k = 1.

– Case ⊓i: Let
λxn.M : 〈∆ ⊢1 T1 → T2〉 λxn.M : 〈Ω ⊢1 T1 → T2〉

λxn.M : 〈∆ ⊓ Ω ⊢1 T1 → T2〉
. By

IH, ∆ = ∆1 . . .∆k1
and ∀ 1 ≤ i ≤ k1, M : 〈∆i, x

n : T1 ⊢1 T2〉 and
Ω = Ω1 . . .Ωk2

and ∀ 1 ≤ j ≤ k2, M : 〈Ωj , x
n : T1 ⊢1 T2〉 and we are

done.

Now we prove 2. Since Γ = Γ1 ⊓ Γ2 . . . ⊓ Γk where ∀ 1 ≤ i ≤ k, M : 〈Γi, x
n :

T1 ⊢ T2〉, by k − 1 applications of ⊓i we get M : 〈Γ, xn : T1 ⊢1 T2〉.

3. By induction on the derivation of MN : 〈Γ ⊢1 T 〉.
�

Lemma 26 (Generation for ⊢2)

1. If xn : 〈Γ ⊢2 U〉, then Γ = (xn : V) where V ⊑ U .

2. If λxn.M : 〈Γ ⊢2 U〉 and d(U) = m, then U = ⊓k
i=1~ei(1:m)(Vi → Ti) where

k ≥ 1 and ∀1 ≤ i ≤ k, M : 〈Γ, xn : ~ei(1:m)Vi ⊢2 ~ei(1:m)Ti〉.

Proof 1. By induction on the derivation of xn : 〈Γ ⊢2 U〉.
2. By induction on the derivation of λxn.M : 〈Γ ⊢2 U〉. We have four cases:

• If
M : 〈Γ, xn : U ⊢2 T 〉

λxn.M : 〈Γ ⊢2 U → T 〉
, nothing to prove.

19

• Let
λxn.M : 〈Γ ⊢2 U1〉 λxn.M : 〈Γ ⊢2 U2〉

λxn.M : 〈Γ ⊢2 U1 ⊓ U2〉
. By lemma 23, U1 ⊓ U2 is good

and d(U1) = d(U2) = m. By IH we have: U1 = ⊓k
i=1~ei(1:m)(Vi → Ti),

U2 = ⊓k+l
i=k+1~ei(1:m)(Vi → Ti) (hence U1 ⊓ U2 = ⊓k+l

i=1~ei(1:m)(Vi → Ti)) where
k, l ≥ 1 and ∀1 ≤ i ≤ k + l, M : 〈Γ, xn : ~ei(1:m)Vi ⊢2 ~ei(1:m)Ti〉. We are done.

• Let
λxn.M : 〈Γ ⊢2 U〉

λxn+1.M+ : 〈eΓ ⊢2 eU〉
. By IH, U = ⊓k

i=1~ei(1:m−1)(Vi → Ti) (since

d(U) = m − 1) where k ≥ 1 and ∀1 ≤ i ≤ k, M : 〈Γ, xn : ~ei(1:m−1)Vi ⊢2

~ei(1:m−1)Ti〉. By e, ∀1 ≤ i ≤ k, M+ : 〈Γ, xn +1 : e~ei(1:m−1)Vi ⊢2 e~ei(1:m−1)Ti〉.

• Let
λxn.M : 〈Γ ⊢2 U〉 〈Γ ⊢2 U〉 ⊑ 〈Γ′ ⊢2 U ′〉

λxn.M : 〈Γ′ ⊢2 U ′〉
. By lemma 21, Γ′ ⊑ Γ and

U ⊑ U ′. By lemma 23, U, U ′ are good and d(U) = d(U ′) = m. By IH,
U = ⊓k

i=1~ei(1:m)(Vi → Ti), where k ≥ 1 and M : 〈Γ, xn : ~ei(1:m)Vi ⊢2 ~ei(1:m)Ti〉

∀ 1 ≤ i ≤ k. By lemma 21, U ′ = ⊓p
i=1

~e′i(1:m)(V
′
i → T ′

i), where p ≥ 1, and

∀1 ≤ i ≤ p, ∃1 ≤ ji ≤ k such that ~eji(1:m) = ~e′i(1:m), V ′
i ⊑ Vji

and Tji
⊑ T ′

i .

Let 1 ≤ i ≤ p. Since 〈Γ, xn : ~eji(1:m)Vji
⊢2 ~eji(1:m)Tji

〉 ⊑ 〈Γ′, xn : ~e′i(1:m)V
′
i ⊢2

~e′i(1:m)T
′
i 〉, by lemma 21, then M : 〈Γ′, xn : ~e′i(1:m)V

′
i ⊢2

~e′i(1:m)T
′
i 〉.

�

The next lemma says that there are no blocked β-redexes in a typable term.

Lemma 27 (No β-redexes are blocked in typable terms) Let i ∈ {1, 2} and
M : 〈Γ ⊢i U〉. If (λxn.M1)M2 is a subterm of M , then d(M2) = n and hence
(λxn.M1)M2 ⊲β M1[x

n := M2].

Proof

• Case ⊢1. By induction on the derivation of M : 〈Γ ⊢1 U〉. The only inter-
esting case is →e where M = (λxn.M1)M2 is the subterm in question. Here,
λxn.M1 : 〈Γ1 ⊢1 T1 → T2〉 M2 : 〈Γ2 ⊢ T1〉 Γ1 ⋄ Γ2

(λxn.M1)M2 : 〈Γ1 ⊓ Γ2 ⊢1 T2〉
.

By Lemma 25.2, M1 : 〈Γ1, x
n : T1 ⊢1 T2〉. By lemma 23, n = d(T1) and

d(M2) = d(T1). Hence, n = d(M2) and (λxn.M1)M2 ⊲β M1[x
n := M2].

• Case ⊢2. By lemma 22.5, (λxn.M1)M2 is typable. By induction on the typing
of (λxn.M1)M2. We consider only the rule →e:
λxn.M1 : 〈Γ1 ⊢′ V → T 〉 M2 : 〈Γ2 ⊢′ V 〉 Γ1 ⋄ Γ2

(λxn.M1)M2 : 〈Γ1 ⊓ Γ2 ⊢′ T 〉
.

By lemma 12.2, d(V → T) = 0. By Lemma 26.2, V → T = ⊓k
i=1(Vi → Ti)

where k ≥ 1 and ∀1 ≤ i ≤ k, M1 : 〈Γ1, x
n : Vi ⊢′ Ti〉. Hence k = 1, Vi = V ,

Ti = T and M1 : 〈Γ1, x
n : V ⊢′ T 〉. By lemma 23, V is good, d(M2) = d(V)

and d(V) = n. So, d(M2) = n and (λxn.M1)M2 ⊲β M1[x
n := M2].

�

4.2 Failure of subject reduction using ⊢1

The next lemma shows that the substitution lemma for ⊢1, and subject reduction
for β using ⊢1 fail. (See lemma 31 and corollary 33 for the statements of substitution
and subject reduction.)

Lemma 28 (Subject β-reduction fails for ⊢1) Let a, b, c be different elements
of A. We have:

1. (λx0.x0x0)(y0z0)⊲β (y0z0)(y0z0)

20

2. (λx0.x0x0)(y0z0) : 〈y0 : b→ ((a→ c) ⊓ a), z0 : b ⊢1 c〉.

3. x0x0 : 〈x0 : (a→ c) ⊓ a ⊢1 c〉.

4. It is not possible that

(y0z0)(y0z0) : 〈y0 : b→ ((a→ c) ⊓ a), z0 : b ⊢1 c〉.
Hence, the substitution and subject β-reduction lemmas fail for ⊢1.

Proof 1..3 are easy. For 4, assume (y0z0)(y0z0) : 〈y0 : b → ((a → c) ⊓ a), z0 :
b ⊢1 c〉. By lemma 25.3 twice using lemma 22, lemmas 23 and 25.1:

• y0z0 : 〈y0 : b→ ((a→ c) ⊓ a), z0 : b ⊢1 ⊓n
i=1(Ti → c)〉.

• y0 : 〈y0 : b→ ((a→ c) ⊓ a) ⊢1 b→ (a→ c) ⊓ a〉.

• z0 : 〈z0 : b ⊢1 b〉.

• ⊓n
i=1(Ti → c) = (a→ c) ⊓ a.

Hence a = Ti → c for some Ti. Absurd. �

4.3 Subject reduction and expansion using ⊢2

In this section we show that the substitution lemma holds for ⊢2 and we use this
to show that subject reduction and subject expansion for β using ⊢2 holds. The
subject reduction and expansion for β will be used in the proof of completeness
(more specifically in lemma 52 which is basic for the completeness theorem 53).

Just as we defined the degree decreasing of a term, we do the same for a type.

Definition 29 1. If d(U) > 0, we inductively define the type U− as follows:
(U1 ⊓ U2)

− = U−
1 ⊓ U−

2 (eU)− = U

If d(U) ≥ n > 0, we write U−n for (. . . (U

n
︷ ︸︸ ︷
−)− . . .−)−.

2. If Γ = (xni

i : Ui)k and d(Γ) > 0, then we let
Γ− = (xni−1

i : U−
i)k.

If d(Γ) ≥ n > 0, we write Γ−n for (. . . (Γ

n
︷ ︸︸ ︷
−)− . . .−)−.

3. If U is a type and Γ is a type environment such that d(Γ) > 0 and d(U) > 0,
then we let (〈Γ ⊢2 U〉)− = (〈Γ− ⊢2 U−〉).

Lemma 30 1. If d(U) > 0, then d(U−) = d(U)− 1.

2. If d(U) > 0 and U is a good type, then U− is a good type.

3. If d(U1) > 0 and U1 ⊑ U2, then U−
1 ⊑ U−

2 .

4. If d(Φ1) > 0 and Φ1 ⊑ Φ2, then Φ−
1 ⊑ Φ−

2 .

5. If M : Φ and d(Φ) > 0, then M− : Φ−.

6. If M+ : 〈Γ ⊢2 eU〉, then M : 〈Γ− ⊢2 U〉.

Proof 1. By induction on U .
2. By induction on U using 1. and lemma 12.
3. By induction on the derivation of U1 ⊑ U2 using 1, 2 and lemma 21.
4. Use 3 and lemma 21.
5. By induction on the derivation of M : Φ. By lemma 12.2, we have three cases.

21

• Let
M : 〈Γ ⊢2 W1〉 M : 〈Γ ⊢2 W2〉

M : 〈Γ ⊢2 W1 ⊓W2〉
. By lemma 23, d(W1) = d(W2) = d(W1⊓

W2) > 0. By IH, M− : 〈Γ− ⊢2 W−
1 〉 and M− : 〈Γ− ⊢2 W−

2 〉. Hence, by ⊓i,
M− : 〈Γ− ⊢2 W−

1 ⊓W−
2 〉.

• Let
M : 〈(xni

i : Ui)n ⊢2 U〉

M+ : 〈(xni+1
i : eUi)n ⊢2 eU〉

. By lemma 8.1a, (M+)− = M .

• Let
M : Φ1 Φ1 ⊑ Φ2

M : Φ2
. By lemma 21, d(Φ1) > 0. Hence, by IH, M− : Φ−

1 .

By 4, Φ−
1 ⊑ Φ−

1 . Hence, by ⊑, M− : Φ−
2 .

6. Note that d(eU) > 0. Hence, by lemma 5, (M+)− : 〈Γ− ⊢2 (eU)−〉. Hence, by
lemma 8.1a, M : 〈Γ− ⊢2 U〉. �

The next lemma which fails for ⊢1, is needed in the proof of subject reduction
for β using ⊢2.

Lemma 31 (Substitution for ⊢2) If M : 〈Γ, xn : U ⊢2 V 〉, N : 〈∆ ⊢2 U〉 and
Γ ⋄∆, then M [xn := N] : 〈Γ ⊓∆ ⊢2 V 〉.

Proof By induction on the derivation of M : 〈Γ, xn : U ⊢2 V 〉.

• If
T good

x0 : 〈(x0 : T) ⊢2 T 〉
and N : 〈∆ ⊢2 T 〉, then N = x0[x0 := N] : 〈∆ ⊢2 T 〉.

• Let
M : 〈Γ, xn : U, ym : U ′ ⊢2 T 〉

λym.M : 〈Γ, xn : U ⊢2 U ′ → T 〉
. Since Γ ⋄ ∆, by BC, Γ, ym : U ′ ⋄ ∆

and ym 6∈ dom(∆). By IH, M [xn := N] : 〈Γ ⊓ ∆, ym : U ′ ⊢2 T 〉. By →i,
(λym.M)[xn := N] = λym.M [xn := N] : 〈Γ ⊓∆ ⊢2 U ′ → T 〉.

• Let
M1 : 〈Γ1, x

n : U1 ⊢2 V → T 〉 M2 : 〈Γ2, x
n : U2 ⊢2 V 〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2, xn : U1 ⊓ U2 ⊢2 T 〉
where xn ∈

FV (M1) ∩ FV (M2), N : 〈∆ ⊢2 U1 ⊓ U2〉 and (Γ1 ⊓ Γ2) ⋄ ∆. By ⊓e and ⊑,
N : 〈∆ ⊢2 U1〉 and N : 〈∆ ⊢2 U2〉. Now use IH and →e.
The cases xn ∈ FV (M1) \ FV (M2) or xn ∈ FV (M2) \ FV (M1) are easy.

• If
M : 〈Γ, xn : U ⊢2 U1〉 M : 〈Γ, xn : U ⊢2 U2〉

M : 〈Γ, xn : U ⊢2 U1 ⊓ U2〉
use IH and ⊓i.

• Let
M : 〈Γ, xn : U ⊢2 V 〉

M+ : 〈eΓ, xn+1 : eU ⊢2 eV 〉
where N : 〈∆ ⊢2 eU〉 and eΓ ⋄ ∆. By

lemma 23, d(N) = d(eU) = d(U) + 1 > 0. Hence, by lemmas 8.3 and 30.6,
N = P+ and P : 〈∆− ⊢2 U〉. As eΓ ⋄∆, then Γ ⋄∆−. By IH, M [xn := P] :
〈Γ ⊓∆− ⊢2 V 〉. By e and lemma 8.2, M+[xn+1 := N] : 〈eΓ ⊓∆ ⊢2 eV 〉.

• Let
M : 〈Γ′, xn : U ′ ⊢2 V ′〉 〈Γ′, xn : U ′ ⊢2 V ′〉 ⊑ 〈Γ, xn : U ⊢2 V 〉

M : 〈Γ, xn : U ⊢2 V 〉
(note the use of lemma 21). By lemma 21, dom(Γ) = dom(Γ′), Γ ⊆ Γ′,
U ⊆ U ′ and V ′ ⊆ V . Hence Γ′ ⋄ ∆, N : 〈∆ ⊢2 U ′〉 and, by IH, M [xn :=
N] : 〈Γ′ ⊓ ∆ ⊢2 V ′〉. It is easy to show that Γ ⊓ ∆ ⊆ Γ′ ⊓ ∆. Hence,
〈Γ′ ⊓∆ ⊢2 V ′〉 ⊆ 〈Γ ⊓∆ ⊢2 V 〉 and M [xn := N] : 〈Γ ⊓∆ ⊢2 V 〉.

�

22

Now, we give the basic block in the proof of subject reduction for β.

Theorem 32 If M : 〈Γ ⊢2 U〉 and M ⊲β N , then N : 〈Γ ⊢2 U〉.

Proof By induction on the derivation of M : 〈Γ ⊢2 U〉. →i, ⊓i and ⊑ are by IH.
We give the remaining two cases.

• Let
M1 : 〈Γ1 ⊢2 U → T 〉 M2 : 〈Γ2 ⊢2 U〉 Γ1 ⋄ Γ2

M1M2 : 〈Γ1 ⊓ Γ2 ⊢2 T 〉
. For the cases N = M1N2

where M2⊲β N2 or N = N1M2 where M1⊲β N1 use IH. Assume M1 = λxn.P
and M1M2 = (λxn.P)M2 ⊲β P [xn := M2] = N where d(M2) = n. Since
λxn.P : 〈Γ1 ⊢2 U → T 〉 and, by lemma 12.2.2a d(U → T) = 0, then, by
lemma 26.2, P : 〈Γ1, x

n : U ⊢2 T 〉. By lemma 31, P [xn := M2] : 〈Γ1 ⊓ Γ2 ⊢2

T 〉.

• Let
M : 〈Γ ⊢2 U〉

M+ : 〈eΓ ⊢2 eU〉
. If M+ ⊲β N , then by lemma 6.1, d(M+) = d(N). By

lemmas 8.1a and 8.3, d(N) > 0, N = P+ and M ⊲β P . By IH, P : 〈Γ ⊢2 U〉
and, by exp, N : 〈eΓ ⊢2 eU〉.

�

Corollary 33 (Subject reduction for β)
If M : 〈Γ ⊢2 U〉 and M ⊲∗

β N , then N : 〈Γ ⊢2 U〉.

Proof By induction on the length of the derivation of M ⊲∗
β N using theorem

32. �

The next lemma will be used in the proof of subject expansion for β.

Lemma 34 Let (λxn.M1)M2 : 〈Γ ⊢2 U〉 then Γ = Γ1 ⊓ Γ2 and ∃V ∈ U such that
M1 : 〈Γ1, (x

n : V) ⊢2 U〉 and M2 : 〈Γ2 ⊢2 V 〉.

Proof By induction on the derivation of (λxn.M1)M2 : 〈Γ ⊢2 U〉.

• Let
λxn.M1 : 〈Γ1 ⊢2 V → T 〉 M2 : 〈Γ2 ⊢2 V 〉 Γ1 ⋄ Γ2

(λxn.M1)M2 : 〈Γ1 ⊓ Γ2 ⊢2 T 〉
.

Since d(V → T) = 0, by lemma 26.2 M1 : 〈Γ1, (x
n : V) ⊢2 T 〉.

• Let
(λxn.M1)M2 : 〈Γ ⊢2 U1〉 (λxn.M1)M2 : 〈Γ ⊢2 U2〉

(λxn.M1)M2 : 〈Γ ⊢2 U1 ⊓ U2〉
. By IH, Γ = Γ1⊓Γ2 =

Γ′
1 ⊓ Γ′

2, ∃V, V ′ ∈ U, such that M1 : 〈Γ1, (x
n : V) ⊢2 U1〉, M2 : 〈Γ2 ⊢2 V 〉,

M1 : 〈Γ′
1, (x

n : V ′) ⊢2 U2〉 and M2 : 〈Γ′
2 ⊢2 V ′〉. By lemma 23.1, Γ1, Γ2, Γ

′
1,

Γ′
2, V and V ′ are all good. By lemma 22.1, dom(Γ1, (x

n : V)) = FV (M1) =
dom(Γ′

1, (x
n : V ′)) so dom(Γ1) = dom(Γ′

1) and dom(Γ2) = FV (M2) =
dom(Γ′

2). Hence,by ⊓e, and lemma 21, Γ1 ⊓ Γ′
1, (x

n : V ⊓ V ′) ⊑ Γ1, (x
n : V),

Γ1 ⊓ Γ′
1, (x

n : V ⊓ V ′) ⊑ Γ′
1, (x

n : V ′), Γ2 ⊓ Γ′
2 ⊑ Γ2 and Γ2 ⊓ Γ′

2 ⊑ Γ′
2. By

lemma 21.3 and ⊑, M1 : 〈Γ1 ⊓ Γ′
1, (x

n : V ⊓ V ′) ⊢2 U1〉, M1 : 〈Γ1 ⊓ Γ′
1, (x

n :
V ⊓ V ′) ⊢2 U2〉, M2 : 〈Γ2 ⊓ Γ′

2 ⊢2 V 〉 and M2 : 〈Γ2 ⊓ Γ′
2 ⊢2 V ′〉. So by ⊓i,

M1 : 〈Γ1 ⊓ Γ′
1, (x

n : V ⊓ V ′) ⊢2 U1 ⊓ U2〉 and M2 : 〈Γ2 ⊓ Γ′
2 ⊢2 V ⊓ V ′〉.

• Let
(λxn.M1)M2 : 〈Γ ⊢2 U〉

(λxn+1.M+
1)M+

2 : 〈eΓ ⊢2 eU〉
. By IH, Γ = Γ1⊓Γ2 and ∃V ∈ U, such that

M1 : 〈Γ1, (x
n : V) ⊢2 U〉 and M2 : 〈Γ2 ⊢2 V 〉. So by exp, M+

1 : 〈eΓ1, (x
n+1 :

eV) ⊢2 eU〉 and M+
2 : 〈eΓ2 ⊢2 eV 〉.

• Let
(λxn.M1)M2 : 〈Γ′ ⊢2 U ′〉 〈Γ′ ⊢2 U ′〉 ⊑ 〈Γ ⊢2 U〉

(λxn.M1)M2 : 〈Γ ⊢2 U〉
. By lemma 21.3, Γ ⊑ Γ′

and U ′ ⊑ U . By IH, Γ′ = Γ′
1⊓Γ′

2 and ∃V ∈ U, such that M1 : 〈Γ′
1, (x

n : V) ⊢2

U ′〉 and M2 : 〈Γ′
2 ⊢2 V 〉. By lemma 21.11, Γ = Γ1 ⊓Γ2 such that Γ1 ⊑ Γ′

1 and
Γ2 ⊑ Γ′

2. So by ⊑, M1 : 〈Γ1, (x
n : V) ⊢2 U〉 and M2 : 〈Γ2 ⊢2 V 〉.

�

23

Now, we give the basic block in the proof of subject expansion for β.

Lemma 35 If N : 〈Γ ⊢2 U〉 and M ⊲β N then M : 〈Γ ⊢2 U〉

Proof By induction on the derivation of N : 〈Γ ⊢2 U〉.

• Let
T good

x0 : 〈(x0 : T) ⊢2 T 〉
where M ⊲β x0. By cases on M , we can show that

M = (λy0.y0)x0. Since T is good, by ax, y0 : 〈(y0 : T) ⊢2 T 〉, then by →i,
λy0.y0 : 〈() ⊢2 T → T 〉, and so by →e, (λy0.y0)x0 : 〈(x0 : T) ⊢2 T 〉.

• Let
N : 〈Γ, (xn : U) ⊢2 T 〉

λxn.N : 〈Γ ⊢2 U → T 〉
where M ⊲β λxn.N . By cases on M .

– If M is a variable this is not possible.

– If M = λxn.M ′ such that M ′⊲β N and xn ∈ FV (M ′)∩FV (N) then by
IH, M : 〈Γ, (xn : U) ⊢2 T 〉 and by →i, M : 〈Γ ⊢2 U → T 〉.

– If M is an application term then the reduction must be at the root.
Hence, M = (λym.M1)M2 ⊲β M1[y

m := M2] = λxn.N where ym ∈
FV (M1). There are two cases (M1 cannot be an application term):

∗ If M1 = ym then M2 = λxn.N and d(N) = m. By lemma 23.2, m =
d(N) = d(T) = 0. So M = (λy0.y0)(λxn.N). Since by lemma 23.2,
U → T is good , by ax, y0 : 〈(y0 : U → T) ⊢2 U → T 〉, then
by →i, λy0.y0 : 〈() ⊢2 (U → T) → (U → T)〉, and so by →e,
(λy0.y0)(λxn.N) : 〈Γ ⊢2 U → T 〉.

∗ If M1 = λxn.M ′
1 then M1[y

m := M2] = λxn.M ′
1[y

m := M2] = λxn.N
and d(M2) = m. Since (λym.M ′

1)M2 ⊲β M ′
1[y

m := M2] = N , by IH,
(λym.M ′

1)M2 : 〈Γ, (xn : U) ⊢2 T 〉. By lemma 34, Γ, (xn : U) =
Γ1 ⊓ Γ2 and ∃V ∈ U such that M ′

1 : 〈Γ1, (y
m : V) ⊢2 T 〉 and

M2 : 〈Γ2 ⊢2 V 〉. Since M ∈ M, ym ∈ FV (M ′
1) and so (since

xn 6∈ FV (M2)), by lemma 22 Γ = Γ′
1 ⊓ Γ2 and Γ1 = Γ′

1, (x
n : U).

Hence by →i, λxn.M ′
1 : 〈Γ′

1, (y
m : V) ⊢2 U → T 〉, again by →i,

λym.λxn.M ′
1 : 〈Γ′

1 ⊢2 V → U → T 〉, and since by lemma 22.6,
Γ′

1 ⋄ Γ2, by →e, M = (λym.λxn.M ′
1)M2 : 〈Γ ⊢2 U → T 〉.

• Let
N1 : 〈Γ1 ⊢2 U → T 〉 N2 : 〈Γ2 ⊢2 U〉 Γ1 ⋄ Γ2

N1N2 : 〈Γ1 ⊓ Γ2 ⊢2 T 〉
and M ⊲β N1N2.

– If M = M1N2 ⊲β N1N2 where M1 ⋄N2, N1 ⋄N2 and M1 ⊲β N1 then by
IH, M1 : 〈Γ1 ⊢2 U → T 〉, and by →e, M : 〈Γ1 ⊓ Γ2 ⊢2 T 〉.

– If M = N1M2 ⊲β N1N2 where N1 ⋄M2, N1 ⋄N2 and M2 ⊲β N2 then by
IH, M2 : 〈Γ2 ⊢2 U〉, and by →e, M : 〈Γ1 ⊓ Γ2 ⊢2 T 〉.

– If M = (λxn.M1)M2 ⊲β M1[x
n := M2] = N1N2 where d(M2) = n and

xn ∈ FV (M1). By cases on M1 (M1 cannot be an abstraction):

∗ If M1 = xn then M2 = N1N2, d(N1N2) = n and
M = (λx0.x0)(N1N2). By lemma 23, n = 0 and T is good. By ax,
x0 : 〈(x0 : T) ⊢2 T 〉, hence by →i, λx0.x0 : 〈() ⊢2 T → T 〉, and by
→e, (λx0.x0)(N1N2) : 〈Γ1 ⊓ Γ2 ⊢2 T 〉.

∗ If M1 = M ′
1M

′′
1 then M1[x

n := M2] = M ′
1[x

n := M2]M
′′
1 [xn :=

M2] = N1N2. So, M ′
1[x

n := M2] = N1 and M ′′
1 [xn := M2] = N2.

· If xn ∈ FV (M ′
1) and xn ∈ FV (M ′′

1) then (λxn.M ′
1)M2 ⊲β N1

and (λxn.M ′′
1)M2 ⊲β N2. By IH, (λxn.M ′

1)M2 : 〈Γ1 ⊢2 U → T 〉
and (λxn.M ′′

1)M2 : 〈Γ2 ⊢2 U〉. By lemma 34 twice, Γ1 = Γ′
1⊓Γ′′

1 ,
Γ2 = Γ′

2 ⊓ Γ′′
2 , and ∃V, V ′ ∈ U such that M ′

1 : 〈Γ′
1, (x

n : V) ⊢2

24

U → T 〉, M2 : 〈Γ′′
1 ⊢2 V 〉, M ′′

1 : 〈Γ′
2, (x

n : V ′) ⊢2 U〉 and
M2 : 〈Γ′′

2 ⊢2 V ′〉. By lemma 23.1, Γ′
1, Γ

′
2, Γ

′′
1 , Γ′′

2 , V and V ′

are all good. By lemma 22.1, dom(Γ′′
1) = FV (M2) = dom(Γ′′

2).
Hence, by ⊓e, lemma 21, ⊑ and ⊓i, M2 : 〈Γ′′

1 ⊓ Γ′′
2 ⊢2 V ⊓ V ′〉.

Since by lemma 22.6, Γ′
1 ⋄ Γ′

2, by →e, M ′
1M

′′
1 : 〈Γ′

1 ⊓ Γ′
2, (x

n :
V ⊓V ′) ⊢2 T 〉. So by→i, λxn.M ′

1M
′′
1 : 〈Γ′

1⊓Γ′
2 ⊢2 (V ⊓V ′)→ T 〉.

Finally, by →e and since by lemma 22.6, Γ′
1 ⊓ Γ′

2 ⋄ Γ′′
1 ⊓ Γ′′

2 and
Γ1 ⊓ Γ2 = Γ′

1 ⊓ Γ′
2 ⊓ Γ′′

1 ⊓ Γ′′
2 , (λxn.M ′

1M
′′
1)M2 : 〈Γ1 ⊓ Γ2 ⊢2 T 〉.

· If xn ∈ FV (M ′
1) and xn 6∈ FV (M ′′

1) then M ′
1[x

n := M2] =
N1 and M ′′

1 = N2. We have (λxn.M ′
1)M2 ⊲β N1, so by IH,

(λxn.M ′
1)M2 : 〈Γ1 ⊢2 U → T 〉. By lemma 34, Γ1 = Γ′

1 ⊓ Γ′′
1

and ∃V ∈ U such that M ′
1 : 〈Γ′

1, (x
n : V) ⊢2 U → T 〉 and

M2 : 〈Γ′′
1 ⊢2 V 〉. Since by lemma 22.6, Γ′

1 ⋄ Γ2, by →e, M ′
1M

′′
1 :

〈Γ′
1 ⊓ Γ2, (x

n : V) ⊢2 T 〉, and by →i, λxn.M ′
1M

′′
1 : 〈Γ′

1 ⊓ Γ2 ⊢2

V → T 〉. Finally, by →e and since by lemma 22.6, Γ′
1 ⊓ Γ2 ⋄ Γ′′

1 ,
(λxn.M ′

1M
′′
1)M2 : 〈Γ1 ⊓ Γ2 ⊢2 T 〉.

· If xn 6∈ FV (M ′
1) and xn ∈ FV (M ′′

1) then the proof is similar to
the previous case.

• Let
N : 〈Γ ⊢2 U1〉 N : 〈Γ ⊢2 U2〉

N : 〈Γ ⊢2 U1 ⊓ U2〉
and M ⊲β N . By IH, M : 〈Γ ⊢2 U1〉 and

M : 〈Γ ⊢2 U2〉, hence by ⊓i, M : 〈Γ ⊢2 U1 ⊓ U2〉.

• Let
N : 〈Γ ⊢2 U〉

N+ : 〈eΓ ⊢2 eU〉
and M ⊲β N+. By lemma 8.6, M− ⊲β N , and by IH,

M− : 〈Γ ⊢2 U〉. By lemma 8.1b, (M−)+ = M and by exp, M : 〈eΓ ⊢2 eU〉.

• Let
N : 〈Γ ⊢2 U〉 〈Γ ⊢2 U〉 ⊑ 〈Γ′ ⊢2 U ′〉

N : 〈Γ′ ⊢2 U ′〉
and M ⊲β N . By IH, M : 〈Γ ⊢2 U〉

and by ⊑ M : 〈Γ′ ⊢2 U ′〉.
�

Corollary 36 (Subject expansion for β)
If N : 〈Γ ⊢2 U〉 and M ⊲∗

β N then M : 〈Γ ⊢2 U〉

Proof By induction on the length of the derivation of M⊲∗
β N using lemma 35.�

5 Soundness of the realisability semantics for ⊢1/⊢2

and examples

Lemma 37 If I be an interpretation and U ⊑ V , then I(U) ⊆ I(V).

Proof By induction of the derivation of U ⊑ V . �

We already gave the realisability semantics for the types in T and U in sec-
tion 3.2. The next lemma shows that this semantics is sound with respect to ⊢1

and ⊢2.

Lemma 38 (Soundness of ⊢1/⊢2) Let i ∈ {1, 2} and M : 〈(xni

i : Ui)n ⊢i U〉, I
be an interpretation and ∀1 ≤ i ≤ n, Ni ∈ I(Ui). If M [(xni

i := Ni)n] ∈ M, then
M [(xni

i := Ni)n] ∈ I(U).

Proof By induction on the derivation of M : 〈(xni

i : Ui)n ⊢i U〉. First note, by
lemma 23 and lemma 17, ∀1 ≤ i ≤ n, Ui is good and Ni ∈ M.

• If
T good d(T) = n

xn : 〈(xn : T) ⊢i T 〉
and N ∈ I(T), then xn[xn := N] = N ∈ I(T).

25

• Let
M : 〈(xni

i : Ui)n, (xm : U) ⊢i T 〉

λxm.M : 〈(xni

i : Ui)n ⊢i U → T 〉
and ∀1 ≤ i ≤ n, Ni ∈ I(Ui) where

(λxm.M)[(xni

i := Ni)n] ∈ M. Let N ∈ I(U) where (λxm.M)[(xni

i := Ni)n] ⋄
N . Since (λxm.M [(xni

i := Ni)n]) ⋄ N , by lemma 3, M [(xni

i := Ni)n] ⋄ N
and M [(xni

i := Ni)n][xm := N] = M [(xni

i := Ni)n, xm := N] ∈ M. Hence,
by IH, M [(xni

i := Ni)n, xm := N] ∈ I(T). By lemma 23, U, T are good
and d(U) = m. By lemma 17, d(N) = m and (λxm.M [(xn1

1 := N1)n])N ⊲β

M [(xni

i := Ni)n, xm := N] ∈ I(T). Since, by lemma 17 I(T) is saturated,
then (λxm.M [(xn1

1 := N1)n])N ∈ I(T) and hence λxm.M [(xni

i := Ni)n] ∈
I(U) I(T) = I(U → T).

• Let
M1 : 〈Γ1 ⊢i U → T 〉 M2 : 〈Γ2 ⊢i U〉 Γ1 ⋄ Γ2

M1 M2 : 〈Γ1 ⊓ Γ2 ⊢i T 〉
where

Γ1 = (xni

i : Ui)n, (y
mj

j : Vj)m, Γ2 = (xni

i : U ′
i)n, (zrk

k : Wk)r and

Γ1 ⊓ Γ2 = (xni

i : Ui ⊓ U ′
i)n, (y

mj

j : Vj)m, (zrk

k : Wk)r.

Let ∀ 1 ≤ i ≤ n, Pi ∈ I(Ui ⊓ U ′
i), ∀ 1 ≤ j ≤ m, Qj ∈ I(Vj) and ∀ 1 ≤ k ≤

r, Rk ∈ I(Wk) where
(M1M2)[(x

ni

i := Pi)n, (y
mj

j := Qj)m, (zrk

k := Rk)r] ∈ M.

Let A = M1[(x
ni

i := Pi)n, (y
mj

j := Qj)m] and
B = M2[(x

ni

i := Pi)n, (zrk

k := Rk)r].

By lemma 22, FV (M1) = dom(Γ1) and FV (M2) = dom(Γ2). Hence,
(M1M2)[(x

ni

i := Pi)n, (y
mj

j := Qj)m, (zrk

k := Rk)r] = AB.
By lemma 3, A ∈M, B ∈M, and A ⋄B.
By IH, A ∈ I(U) I(T) and B ∈ I(U).
Hence, AB = (M1M2)[(x

ni

i := Pi)n, (y
mj

j := Qj)m, (zrk

k := Rk)r] ∈ I(T).

• Let
M : 〈(xni

i : Ui)n ⊢i U〉 M : 〈(xni

i : Vi)n ⊢i V 〉

M : 〈(xni

i : Ui ⊓ Vi)n ⊢i U ⊓ V 〉
(note lemma 22.1) and ∀ 1 ≤

i ≤ n, Ni ∈ I(Ui ⊓ Vi) = I(Ui) ∩ I(Vi) where M [(xni

i := Ni)n] ∈ M.
By IH, M [(xni

i := Ni)n] ∈ I(U) and M [(xni

i := Ni)n] ∈ I(V). Hence,
M [(xni

i := Ni)n] ∈ I(U ⊓ V).

• Let
M : 〈(xni

i : Ti)n ⊢i U〉

M+ : 〈(xni+1
i : eTi)n ⊢i eU〉

and ∀ 1 ≤ i ≤ n, Ni ∈ I(eTi) = I(Ti)
+

where M+[(xni+1
i := Ni)n] ∈ M. Then ∀ 1 ≤ i ≤ n, Ni = P+

i where Pi ∈
I(Ti). By lemmas 3 and 8.1(c)i, ⋄{M+, N1, . . . , Nn} and ⋄{M, P1, . . . , Pn}.
Then, by lemma 3, M [(xni

i := Pi)n] ∈ M and, by IH, M [(xni

i := Pi)n] ∈ I(U).
Hence, by lemma 8.2, M+[(xni+1

i := P+
i)n] = (M [(xni

i := Pi)n])+ ∈ I(U)+ =
I(eU).

• Let
M : Φ Φ ⊑ Φ′

M : Φ′
where φ′ = 〈(xni

i : Ui)n ⊢2 U〉. By lemma 21, we have

Φ = 〈(xni

i : U ′
i)n ⊢2 U ′〉, where for every 1 ≤ i ≤ m, Ui ⊑ U ′

i and U ′ ⊑ U . By
lemma 37, Ni ∈ I(U ′

i), then, by IH, M [(xni

i := Ni)n] ∈ I(U ′) and, by lemma
37, M [(xni

i := Ni)n] ∈ I(U).
�

Theorem 39 (Soundness of ⊢1/⊢2 for closed terms) If M : 〈() ⊢i U〉, then
M ∈ [U].

Proof By lemma 38, M ∈ I(U) for any interpretation I. By lemma 22,
FV (M) = dom(()) = ∅ and hence M is closed. Therefore, M ∈ [U]. �

26

The next definition and lemma put the realisability semantics in use.

Definition 40 (Examples) Let a, b ∈ A where a 6= b. We define:

• Id0 = a→ a, Id1 = e(a→ a) and Id′1 = ea→ ea.

• D = (a ⊓ (a→ b))→ b.

• Nat0 = (a→ a)→ (a→ a), Nat1 = e((a→ a)→ (a→ a)),
Nat′1 = e(a→ a)→ (ea→ ea) and Nat′0 = (ea→ a)→ (ea→ a).

Moreover, if M, N are terms and n ∈ N, we define (M)n N by induction on n:
(M)0 N = N and (M)m+1 N = M ((M)m N).

Lemma 41 1. [Id0] = {M ∈ M0 / M ⊲∗
β λy0.y0}.

2. [Id1] = [Id′1] = {M ∈ M
1 / M ⊲∗

β λy1.y1}. (Note that Id′1 6∈ U.)

3. [D] = {M ∈M0 / M ⊲∗
β λy0.y0y0}.

4. [Nat0] = {M ∈ M0 / M ⊲∗
β λf0.f0 or M ⊲∗

β λf0.λy0.(f0)ny0 where n ≥ 1}.

5. [Nat1] = [Nat′1] = {M ∈ M1 / M ⊲∗
β λf1.f1 or M ⊲∗

β λf1.λx1.(f1)ny1 where
n ≥ 1}. (Note that Nat′1 6∈ U.)

6. [Nat′0] = {M ∈ M0 /M ⊲∗
β λf0.f0 or M ⊲∗

β λf0.λy1.f0y1}.

7. [(a ⊓ b)→ a] = {M ∈M0 /M ⊲∗
β λy0.y0}.

8. It is not possible that λy0.y0 : 〈() ⊢1 (a ⊓ b)→ a〉.

9. λy0.y0 : 〈() ⊢2 (a ⊓ b)→ a〉.

Proof

1. Let y ∈ V2 and X = {M ∈M0 / M ⊲∗
β x0N1...Nk where k ≥ 0 and x ∈ V1 or

M⊲∗
β y0}. X is saturated and ∀x ∈ V1, N 0

x ⊆ X ⊆M0. Take an interpretation
I such that I(a) = X . If M ∈ [Id0], then M is closed and M ∈ X X . Since
y0 ∈ X and M ⋄ y0, then My0 ∈ X and My0⊲∗

β x0N1...Nk for some x ∈ V1 or

My0⊲∗
β y0. Since M is closed and x0 6= y0, by lemma 6.1, My0⊲∗

β y0. Hence,

by lemma 10.4, M ⊲∗
β λy0.y0 and, by lemma 6.(1 and 2), M ∈M

0.

Conversely, let M ∈M0 be closed and M⊲∗
βλy0.y0. Let I be an interpretation,

N ∈ I(a) and M ⋄ N . Since I(a) is saturated and MN ⊲∗
β N , MN ∈ I(a)

and hence M ∈ I(a) I(a) . Hence, M ∈ [Id0].

2. By lemma 19 (by lemma 12, a→ a is good), [Id′1] = [ea→ ea] = [e(a→ a)] =
[Id1] = [a → a]+ = [Id0]

+. By 1., and lemma 8.1d, [Id0]
+ = {M ∈ M1 / M

is closed and M ⊲∗
β λy1.y1}.

3. Let y ∈ V2, X = {M ∈M0 / M⊲∗
β y0 or M⊲∗

β x0N1...Nk where k ≥ 0 and x ∈

V1} and Y = {M ∈M0 / M⊲∗
βy0y0 or M⊲∗

βx0N1...Nk or M⊲∗
βy0(x0N1...Nk)

where k ≥ 0 and x ∈ V1}. X , Y are saturated and ∀x ∈ V1, N 0
x ⊆ X ,Y ⊆M0.

Let I be an interpretation such that I(a) = X and I(b) = Y. If M ∈ [D],
then M is closed (hence M ⋄ y0) and M ∈ (X ∩ (X Y)) Y. Since y0 ∈ X
and y0 ∈ X Y, y0 ∈ X ∩ (X Y) and My0 ∈ Y. Since M is closed and
x0 6= y0, by lemma 6.1, My0 ⊲∗

β y0y0. Hence, by lemma 10.4, M ⊲∗
β λy0.y0y0

and, by lemma 6.(1 and 2), d(M) = 0 and M ∈ M0.

Conversely, let M ∈M
0 be closed and M ⊲∗

β λy0.y0y0. Let I be an interpre-
tation and N ∈ I(a ⊓ (a → b)) = I(a) ∩ (I(a) I(b)) (since M is closed,
M ⋄ N). Since I(b) is saturated, NN ∈ I(b) and MN ⊲∗

β NN , we have
MN ∈ I(b) and hence M ∈ I(a ⊓ (a→ b)) I(b). Therefore, M ∈ [D].

27

4. Let f, y ∈ V2 where f 6= y and take X = {M ∈M0 / M ⊲∗
β (f0)n(x0N1...Nk)

or M ⊲∗
β (f0)ny0 where k, n ≥ 0 and x ∈ V1}. X is saturated and ∀x ∈ V1,

N 0
x ⊆ X ⊆M

0. Let I be an interpretation such that I(a) = X . If M ∈ [Nat0],
then M is closed and M ∈ (X X) (X X). We have f0 ∈ X X ,
y0 ∈ X and ⋄{M, f0, y0}, then Mf0y0 ∈ X and Mf0 y0 ⊲∗

β (f0)n(x0N1...Nk)

or Mf0y0
⊲

∗
β (f0)ny0 where n ≥ 0. Since M is closed and {x0}∩{y0, f0} = ∅,

by lemma 6.1, Mf0y0 ⊲∗
β (f0)ny0 where n ≥ 1. Hence, by lemma 10.4,

M⊲∗
β λf0.f0 or M⊲∗

β λf0.λy0.(f0)ny0 where n ≥ 1. Moreover, by lemma 6.(1

and 2), d(M) = 0 and M ∈M
0.

Conversely, let M ∈M0 be closed and M ⊲∗
β λf0.f0 or M ⊲∗

β λf0.λy0.(f0)ny0

where n ≥ 1. Let I be an interpretation, N ∈ I(a → a) = I(a) I(a),
N ′ ∈ I(a) and N ⋄N ′. We show, by induction on m ≥ 0, that (N)mN ′ ∈ I(a).
Since MNN ′⊲∗

β(N)mN ′ where m ≥ 0 and (N)mN ′ ∈ I(a) which is saturated,
then MNN ′ ∈ I(a). Hence, M ∈ (I(a) I(a)) → (I(a) I(a)) and
M ∈ [Nat0].

5. By lemma 19, [Nat1] = [eNat0] = [Nat0]
+. Let I be an interpretation.

Since ea → ea and e(a → a) → e(a → a) are good (by lemma 12), then, by
lemmas 15.5 and 19.3, I(e(a → a) → (ea → ea)) = I((a → a) → (a → a))+

and hence [Nat′1] = [Nat0]
+. By 4., [Nat1] = [Nat′1] = [Nat0]

+ = {M ∈ M
1

/ M is closed and M ⊲∗
β λf1.f1 or M ⊲∗

β λf1.λy1.(f1)ny1 where n ≥ 1}.

6. Let f, y ∈ V2 where f 6= y and take X = {M ∈ M
0 / M ⊲

∗
β x0P1...Pk or

M ⊲∗
β f0 (x1Q1...Ql) or M ⊲∗

β y0 or M ⊲∗
β f0y1 where k, l ≥ 0, x ∈ V1

and d(Qi) ≥ 1}. X is saturated and ∀x ∈ V1, N 0
x ⊆ X ⊆ M0. Let I be

an interpretation such that I(a) = X . If M ∈ [Nat′0], then M is closed
and M ∈ (X+ X) (X+ X). Let N ∈ X+ such that f0 ⋄ N . We
have N ⊲∗

β x1P+
1 ...P+

k or N ⊲∗
β y1, then f0N ⊲∗

β f0(x1P+
1 ...P+

k) ∈ X or

N ⊲∗
β f0y1 ∈ X , thus f0 ∈ X+

 X . We have f0 ∈ X+
 X , y1 ∈ X+ and

⋄{M, f0, y1}, then Mf0y1 ∈ X . Since M is closed and {x0, x1}∩{y1, f0} = ∅,
by lemma 6.1, Mf0y1 ⊲∗

β f0y1. Hence, by lemma 10.4, M ⊲∗
β λf0.f0 or

M⊲∗
β λf0.λy1.f0y1. Moreover, by lemma 6.(1 and 2), d(M) = 0 and M ∈M

0.

Conversely, let M ∈ M0 be closed and M ⊲∗
β λf0.f0 or M ⊲∗

β λf0.λy1.f0y1.

Let I be an interpretation, N ∈ I(ea→ a) = I(a)+ I(a) and N ′ ∈ I(a)+

where ⋄{M, N, N ′}. Since MNN ′⊲∗
β NN ′, NN ′ ∈ I(a) and I(a) is saturated,

then MNN ′ ∈ I(a). Hence, M ∈ (I(a)+ I(a)) → (I(a)+ I(a)) and
M ∈ [Nat′0].

7. Let y ∈ V2 and take X = {M ∈ M0 / M ⊲∗
β y0 or M ⊲∗

β x0N1...Nk where

k ≥ 0 and x ∈ V1}. X is saturated and ∀x ∈ V1, N 0
x ⊆ X ⊆ M0. Let I be

an interpretation such that I(a) = I(b) = X . If M ∈ [(a ⊓ b) → a], then M
is closed and M ∈ X X . Since M y0 ∈ X (as y0 ∈ X and M ⋄ y0) and
M is closed and x0 6= y0, by lemma 6.1, M y0 ⊲∗

β y0. Hence, by lemma 10.4,

M ⊲∗
β λy0.y0. By lemma 6.(1 and 2), d(M) = d(λy0.y0) = 0 and M ∈M

0.

Conversely, let M ∈ M0 be closed and M⊲∗
βλy0.y0. Let I be an interpretation

and N ∈ I(a ⊓ b) (hence M ⋄ N). Since I(a) is saturated, N ∈ I(a) and
MN ⊲∗

β N , then MN ∈ I(a) and hence M ∈ I(a ⊓ b) I(a). Hence,
M ∈ [(a ⊓ b)→ a].

8. If λy0.y0 : 〈() ⊢1 (a ⊓ b)→ a〉, then, by Lemma 25, y0 : 〈(y0 : a ⊓ b) ⊢1 a〉 and
again, by Lemma 25, y0 : a = y0 : a ⊓ b. Hence, a = a ⊓ b. Absurd.

9. Easy.

28

�

Remark 42 (Failure of completeness for ⊢1) Items 7. and 8. of lemma 41
show that we can not have a completeness result (a converse of theorem 39) for
⊢1. To type the term λy0.y0 by the type (a ⊓ b) → a, we need an elimination rule
for ⊓ which we have in ⊢2. However, we will see that we have completeness for ⊢2

only if we are restricted to the use of one single expansion variable.

6 Completeness of ⊢2 with one expansion variable

Recall remark 42 where we said that λy0.y0 : 〈() ⊢2 (a ⊓ b)→ a〉 and that we even
have completeness for one single expansion variable in the new type system. In
this section, we will establish this completeness theorem for one expansion variable.
First, we give an example (see lemma 43) which shows why completeness does not
work in the presence of more than one expansion variable.

Lemma 43 Let Nat′′0 = (e1a → a) → (e2a → a) where a ∈ A, e1, e2 ∈ E and
e1 6= e2. We have:

1. λf0.f0 ∈ [Nat′′0].

2. It is not possible that λf0.f0 : 〈() ⊢2 Nat′′0〉.

Proof 1. For every interpretation I, I(e1a→ a) = I(e2a→ a) = I(a)+ I(a).
2. If λf0.f0 : 〈() ⊢2 Nat′′0〉, by lemma 26.2 and 26.1, f0 : 〈f0 : e1a→ a ⊢2 e2a→ a〉
and e1a → a ⊑ e2a → a. Thus, by lemma 21.7, e2a ⊑ e1a. Again, by lemma 21.5,
e1a = e2U where a ⊑ U . This is impossible since e1 6= e2. �

Hence we have λf0.f0 ∈ [Nat′′0] but λf0.f0 is not typable by Nat′′0 and we do
not have completeness in the presence of more than one expansion variable. The
problem comes from the fact that for the realizability semantics that we considered,
we identify all expansion variables. In order to give a completeness theorem we will
in what follows restrict our system to only one expansion variable. In the rest of
this section, we assume that the set E contains only one expansion variable ec.

The need of one single expansion variable is clear in part 2) of the next lemma
which would fail if we use more than one single expansion variable. For example, if
e1 6= e2 then e1(e2a)− = e1a 6= e2a. The next lemma is crucial for the rest of this
section and hence, having a single expansion variable is also crucial.

Lemma 44 Let U, V ∈ U and d(U) = d(V) > 0.

1. ecU
− = U .

2. If U− = V −, then U = V .

Proof 1. By induction on U . 2. If U− = V − then ecU
− = ecV

− and by 1, U = V .�

In the next definition and lemma, we divide the set {yn / y ∈ V2} disjointly
amongst the types of order n.

Definition 45 Let U ∈ U. We inductively define sets of variables VU by:

• If d(U) = 0, then:

– VU is an infinite set of variables of degree 0.

– If y0 ∈ VU , then y ∈ V2.

– If U 6= V and d(U) = d(V) = 0, then VU ∩ VV = ∅.

29

• If d(U) = n + 1, then we put VU = {yn+1 / yn ∈ VU−}.

Lemma 46 1. If d(U) = n, then VU is an infinite set of variables of degree n
and if yn ∈ VU , then y ∈ V2.

2. If U 6= V and d(U) = d(V) = n, then VU ∩VV = ∅.

3. If yn ∈ VU , then yn+1 ∈ VecU .

4. If yn+1 ∈ VU , then yn ∈ VU− .

Proof 1. and 2. By induction on n and using lemma 44. 3. Because (ecU)− = U .
4. By definition. �

Our partition of the set V2 as above will enable us to define useful infinite sets
which will contain type environments that will play a crucial role in one particular
type interpretation. These infinite sets and type environments are given in the next
definition.

Definition 47 1. Let n ∈ N. We let Gn = {(yn : U) / U ∈ U, d(U) = n
and yn ∈ VU} and Hn =

⋃

m≥n Gm. Note that Gn and Hn are not type
environments because they are infinite sets.

2. Let n ∈ N, M ∈ M and U ∈ U, we write M : 〈Hn ⊢2 U〉 iff there is a type
environment Γ ⊂ Hn where M : 〈Γ ⊢2 U〉

Lemma 48 1. If Γ ⊂ Hn, then eΓ ⊂ Hn+1.

2. If Γ ⊂ Hn+1, then Γ− ⊂ Hn.

3. If Γ1 ⊂ Hn, Γ2 ⊂ Hm and m ≥ n, then Γ1 ⊓ Γ2 ⊂ Hn.

Proof 1. resp. 2. By lemma 46.3 resp. 46.4. 3. First note that Hm ⊆ Hn. Let
(xp : U1⊓U2) ∈ Γ1⊓Γ2 where (xp : U1) ∈ Γ1 ⊂ Hn and (xp : U2) ∈ Γ2 ⊂ Hm ⊆ Hn,
then d(U1) = d(U2) = p and xp ∈ VU1

∩ VU2
. Hence, by lemma 46.2, U1 = U2 and

Γ1 ⊓ Γ2 = Γ1 ∪ Γ2 ⊂ Hn. �

Now, for every n, we define the set of the good terms of order n which contain some
free variable xi where x ∈ V1 and i ≥ n.

Definition 49 For every n ∈ N, let Vn = {M ∈ M
n / xi ∈ FV (M) where x ∈ V1

and i ≥ n}. It is easy to see that, for every n ∈ N and for every x ∈ V1, Nn
x ⊆ V

n.

Lemma 50 1. (Vn)+ = Vn+1.

2. If y ∈ V2 and (M ym) ∈ Vn, then M ∈ Vn.

3. If M ∈ Vn, M ⋄N , N ∈M and d(N) = m ≥ n, then MN ∈ Vn.

4. If d(M) = n, m ≥ n, M ⋄N , M ∈ M and N ∈ Vm, then MN ∈ Vn.

Proof Easy. �

30

Finally, the crucial interpretation I for the proof of completeness is given as follows:

Definition 51 Let I be the interpretation defined by: for all type variables a,
I(a) = V0 ∪ {M ∈ M0 / M : 〈H0 ⊢2 a〉}.

The next lemma shows that I is indeed an interpretation and moreover, the inter-
pretation of a type of order n contains the good terms of order n which are typable
in these special environments which are parts of the infinite sets of definition 47.

Lemma 52 1. I is an interpretation. I.e., ∀a ∈ A, I(a) is saturated and ∀x ∈
V1, N 0

x ⊆ I(a) ⊆M0.

2. If U ∈ U is good and d(U) = n, then

I(U) = Vn ∪ {M ∈ Mn / M : 〈Hn ⊢2 U〉}.

Proof 1. First we show that I(a) is saturated. Let M ⊲∗
β N and N ∈ I(a).

• If N ∈ V0 then N ∈ M0 and ∃xi such that x ∈ V1, i ≥ 0 and xi ∈ FV (N).
By lemma 15.6, M0 is saturated and so, M ∈ M0. By lemma 6.1, FV (M) =
FV (N) and so, xi ∈ FV (M). Hence, M ∈ V0

• If N ∈ {M ∈M0 / M : 〈H0 ⊢2 a〉} then ∃Γ ⊂ H0, such that N : 〈Γ ⊢2 a〉. By
subject expansion corollary 36, M : 〈Γ ⊢2 a〉 and by lemma 6.1, d(M) = d(N).
Hence, M ∈ {M ∈M0 / M : 〈H0 ⊢2 a〉}.

Now we show that ∀x ∈ V1, N 0
x ⊆ I(a) ⊆M0.

• Let x ∈ V1 and M ∈ N 0
x . Hence, M = x0N1 . . . Nk ∈ M

0, and x0 ∈ FV (M).
Thus, M ∈ V0.

• Let M ∈ I(a). If M ∈ V0, then M ∈ M0. Else, ∃Γ ⊂ H0 where M : 〈Γ ⊢2 a〉.
Since by lemma 23, M is good and d(M) = d(a) = 0, M ∈ M0.

2. By induction on U good.

• U = a: By definition of I and by 1.

• U = ecV : d(V) = n−1 and, by lemma 12, V is good. By IH and lemma 50.1,
I(ecV) = (I(V))+ = (Vn−1∪{M ∈Mn−1 / M : 〈Hn−1 ⊢2 V 〉})+ = Vn∪({M ∈
Mn−1 / M : 〈Hn−1 ⊢2 V 〉})+.

– If M ∈ Mn−1 and M : 〈Hn−1 ⊢2 V 〉, then M : 〈Γ ⊢2 V 〉 where Γ ⊂ Hn−1.
By exp and lemma 48.1, M+ : 〈ecΓ ⊢2 ecV 〉 and ecΓ ⊂ Hn. Thus by
lemma 23.(3 and 1), M+ ∈M

n and M+ : 〈Hn ⊢2 ecV 〉.

– If M ∈ Mn and M : 〈Hn ⊢2 ecV 〉, then M : 〈Γ ⊢2 ecV 〉 where Γ ⊂ Hn.
By lemmas 30.5, and 48.2, M− : 〈Γ− ⊢2 V 〉 and Γ− ⊂ Hn−1. Thus, by
lemma 8.(1b and 1d), M = (M−)+ and M− ∈ Mn−1. Hence, M− ∈
{M ∈ M

n−1 / M : 〈Hn−1 ⊢2 V 〉}.

Hence ({M ∈ Mn−1 / M : 〈Hn−1 ⊢2 V 〉})+ = {M ∈ Mn / M : 〈Hn ⊢2 U〉}
and I(U) = Vn ∪ {M ∈M

n / M : 〈Hn ⊢2 U〉}.

• U = U1 ⊓U2: By lemma 12, U1, U2 are good and d(U1) = d(U2) = n. By IH,
I(U1 ⊓ U2) = I(U1) ∩ I(U2) =
(Vn ∪ {M ∈Mn / M : 〈Hn ⊢2 U1〉})∩ (Vn ∪ {M ∈Mn / M : 〈Hn ⊢2 U2〉}) =
Vn ∪ ({M ∈ Mn / M : 〈Hn ⊢2 U1〉} ∩ {M ∈ Mn / M : 〈Hn ⊢2 U2〉}).

– If M ∈ Mn, M : 〈Hn ⊢2 U1〉 and M : 〈Hn ⊢2 U2〉, then M : 〈Γ1 ⊢2 U1〉
and M : 〈Γ2 ⊢2 U2〉 where Γ1, Γ2 ⊂ Hn. By remark 24, M : 〈Γ1 ⊓ Γ2 ⊢2

U1 ⊓ U2〉. Since by lemma 48.3, Γ1 ⊓ Γ2 ⊂ Hn, M : 〈Hn ⊢2 U1 ⊓ U2〉.

31

– If M ∈ Mn and M : 〈Hn ⊢2 U1 ⊓ U2〉, then M : 〈Γ ⊢2 U1 ⊓ U2〉 where
Γ ⊂ Hn. By ⊑, M : 〈Γ ⊢2 U1〉 and M : 〈Γ ⊢2 U2〉. Hence, M : 〈Hn ⊢2

U1〉 and M : 〈Hn ⊢2 U2〉.

We deduce that I(U1 ⊓ U2) = Vn ∪ {M ∈ Mn / M : 〈Hn ⊢2 U1 ⊓ U2〉}.

• U = V → T : By lemmas 12.2, V , T are good and let m = d(V) ≥ d(T) = 0.
By IH, I(V) = Vm ∪ {M ∈Mm / M : 〈Hm ⊢2 V 〉} and I(T) = V0 ∪ {M ∈M0

/ M : 〈H0 ⊢2 T 〉}. Note that I(V → T) = I(V) I(T).

– Let M ∈ I(V) I(T) and by lemma 46.1, let ym ∈ VV such that y ∈ V2,
and ∀n, yn 6∈ FV (M). Then ym ⋄M . By remark 24, ym : 〈(ym : V) ⊢2

V 〉. Hence ym : 〈Hm ⊢2 V 〉 and so ym ∈ I(V) and Mym ∈ I(T).

∗ If Mym ∈ V0, then since y ∈ V2, by lemma 50.2, M ∈ V0.

∗ If Mym ∈ {M ∈ M0 / M : 〈H0 ⊢2 T 〉} then Mym ∈ M0 and
Mym : 〈H0 ⊢2 T 〉. So Mym : 〈Γ ⊢2 T 〉 where Γ ⊂ H0. Since
ym ∈ FV (Mym) and since by lemma 22, dom(Γ) = FV (Mym),
Γ = Γ′, (ym : V ′) where by lemma 23.1, d(V ′) = m. Since (ym :
V ′) ∈ H0, d(V ′) = m and ym ∈ VV ′ , by lemma 46.2, V = V ′. So
Mym : 〈Γ′, (ym : V) ⊢2 T 〉 and by lemma 26.1, M : 〈Γ′ ⊢2 V → T 〉
and by lemma 23.(1 and 3), M ∈ M and d(M) = 0. Since Γ′ ⊂ H

0,
M : 〈H0 ⊢2 V → T 〉. And so, M ∈ {M ∈ M0 / M : 〈H0 ⊢2 V →
T 〉}.

– Let M ∈ V0 ∪ {M ∈ M
0 / M : 〈H0 ⊢2 V → T 〉} and N ∈ I(V) =

Vm ∪ {M ∈ Mm / M : 〈Hm ⊢2 V 〉} such that M ⋄N . Then, d(N) = m.

∗ Case M ∈ V0. Since N ∈M, by lemma 50.3, MN ∈ V0 ⊆ I(T).

∗ Case M ∈ {M ∈ M0 / M : 〈H0 ⊢2 V → T 〉}, so M ∈M0.

· If N ∈ Vm, then, by lemma 50.4, MN ∈ V0 ⊆ I(T).

· If N ∈ {M ∈ M
m / M : 〈Hm ⊢2 V 〉}, so M : 〈Γ1 ⊢2 V → T 〉

and N : 〈Γ2 ⊢2 V 〉 where Γ1 ⊂ H0 and Γ2 ⊂ Hm. Since M ⋄N
then by lemma 22.4, Γ1 ⋄ Γ2. So by →e, MN : 〈Γ1 ⊓ Γ2 ⊢2 T 〉.
By lemma 48.3, Γ1 ⊓ Γ2 ⊂ H0. Therefore MN : 〈H0 ⊢2 T 〉. By
lemma 23, MN ∈ M0. Hence, MN ∈ {M ∈ M0 / M : 〈H0 ⊢2

T 〉} ⊆ I(T).

Hence, M ∈ I(V → T).

We deduce that I(V → T) = V0 ∪ {M ∈ M0 / M : 〈H0 ⊢2 V → T 〉}.
�

Now we use the special I to show completeness.

Theorem 53 (Completeness) Let U ∈ U be good such that d(U) = n.

1. [U] = {M ∈ Mn / M : 〈() ⊢2 U〉}.

2. [U] is stable by reduction: i.e., if M ∈ [U] and M ⊲∗
β N , then N ∈ [U].

3. [U] is stable by expansion: i.e., if N ∈ [U] and M ⊲∗
β N , then M ∈ [U].

Proof Recall: [U] = {M ∈M / M is closed and M ∈
⋂

I interpretation I(U)}.

1. Let M ∈ [U]. Then M is a closed term and M ∈ I(U). Hence, by lemma 52,
M ∈ Vn ∪ {M ∈ Mn / M : 〈Hn ⊢2 U〉}. Since M is closed, M 6∈ Vn. Hence,
M ∈ {M ∈Mn / M : 〈Hn ⊢2 U〉} and so, M : 〈Γ ⊢2 U〉 where Γ ⊂ Hn. Since
M is closed, by lemma 22.1, Γ = () and M : 〈() ⊢2 U〉.

Conversely, let M ∈ Mn where M : 〈() ⊢2 U〉. By lemma 22.1, M is closed.
Let I be an interpretation. By soundness lemma 38, M ∈ I(U). Thus
M ∈ [U].

32

2. Let M ∈ [U] such that M⊲∗
βN . By 1, M ∈ Mn and M : 〈() ⊢2 U〉. By subject

reduction corollary 33, N : 〈() ⊢2 U〉. By lemma 6.1, d(N) = d(M) = n. By
lemma 23.3, N ∈ M. Hence, by 1, N ∈ [U].

3. Let N ∈ [U] such that M ⊲∗
β N . By 1, N ∈Mn and N : 〈() ⊢2 U〉. By subject

expansion corollary 36, M : 〈() ⊢2 U〉. By lemma 6.1, d(N) = d(M) = n. By
lemma 23.3, M ∈M. Hence, by 1, M ∈ [U].

�

7 Conclusion and future work

In this paper, we studied the λIN-calculus, an indexed version of the λI-calculus.
This indexed version was typed using first a basic intersection type system with
expansion variables but without an intersection elimination rule, and then using an
intersection type system with expansion variables and an elimination rule.

We gave a realisability semantics for both type systems showing that the first
type system is not complete in the sense that there are types whose semantic mean-
ing is not the set of λIN-terms having this type. In particular, we showed that
λy0.y0 is in the semantic meaning of (a⊓b)→ a but it is not possible to give λy0.y0

the type (a ⊓ b) → a. The main reason for the failure of completeness in the first
system is associated with the failure of the subject reduction property for this first
system. Hence, we moved to the second system which we show to have the desirable
properties of subject reduction and expansion and strong normalisation. However,
for this second system, we show again that completeness fails if we use more than
one expansion variable but that completeness succeeds if we restrict the system to
one single expansion variable.

Since we show in the appendices that each of these type systems, when restricted
to the normal λI-calculus represents a well known intersection type system with
expansion variables, our study can be said to be the first denotational semantics
study of intersection type systems with expansion variables (using realizability or
any other approach) and outlines the difficulties of doing so. Although we have in
this paper limited the study to the λI-calculus, future work will include extending
this work to the full λ-calculus and with an ω-type rule as well.

References

[1] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, revised edition, 1984.

[2] S. Carlier, J. Polakow, J. B. Wells, A. J. Kfoury. System E: Expansion variables
for flexible typing with linear and non-linear types and intersection types. In
Programming Languages & Systems, 13th European Symp. Programming, vol.
2986 of Lecture Notes in Computer Science. Springer, 2004.

[3] S. Carlier, J. B. Wells. Expansion: the crucial mechanism for type inference
with intersection types: A survey and explanation. In Proc. 3rd Int’l Work-
shop Intersection Types & Related Systems (ITRS 2004), 2005. The ITRS ’04
proceedings appears as vol. 136 (2005-07-19) of Elec. Notes in Theoret. Comp.
Sci.

[4] M. Coppo, M. Dezani-Ciancaglini, B. Venneri. Principal type schemes and
λ-calculus semantics. In J. R. Hindley, J. P. Seldin, eds., To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic
Press, 1980.

33

[5] T. Coquand. Completeness theorems and lambda-calculus. In 7th Int’l Conf.
Typed Lambda Calculi and Applications, vol. 3461 of Lecture Notes in Computer
Science, Nara, Japan, 2005. Springer.

[6] S. Farkh, K. Nour. Résultats de complétude pour des classes de types du
système AF2. Theoretical Informatics and Applications, 31(6), 1998.

[7] J. R. Hindley. The simple semantics for Coppo-Dezani-Sallé types. In
M. Dezani-Ciancaglini, U. Montanari, eds., International Symposium on Pro-
gramming, 5th Colloquium, vol. 137 of LNCS, Turin, 1982. Springer-Verlag.

[8] J. R. Hindley. The completeness theorem for typing λ-terms. Theoretical
Computer Science, 22, 1983.

[9] J. R. Hindley. Curry’s types are complete with respect to F-semantics too.
Theoretical Computer Science, 22, 1983.

[10] J. R. Hindley. Basic Simple Type Theory, vol. 42 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1997.

[11] F. Kamareddine, K. Nour. A completeness result for a realisability semantics
for an intersection type system. Annals of Pure and Applied Logic, 146, 2007.

[12] J. Krivine. Lambda-Calcul : Types et Modèles. Etudes et Recherches en Infor-
matique. Masson, 1990.

[13] R. Labib-Sami. Typer avec (ou sans) types auxilières.

A Introducing eta reduction

Now we define the eta reduction relation on the λIN-calculus.

Definition 54 1. The reduction relation ⊲η on M is defined as the least com-
patible relation closed under the rule: λxn.Mxn ⊲η M if xn 6∈ FV (M) and
d(M) ≤ n.

2. We define ⊲βη = ⊲β ∪⊲η.

3. For r ∈ {η, βη}, we denote by ⊲∗
r the reflexive and transitive closure of ⊲r.

We also denote by ≃r the equivalence relation induced by ⊲∗
r.

The next lemma shows that these new reduction relations are well defined on the
λIN-calculus.

Lemma 55 Let r ∈ {η, βη}. ⊲r is a well defined relation on M. I.e., if M ∈ M
and M ⊲r N then N ∈M. Hence, ⊲∗

r is a also well defined relation on M.

Proof The cases r = η are by induction on M ⊲r N . We only treat the basic
case. Assume λxn.Nxn ⊲η N where xn 6∈ FV (N) and d(N) ≤ n. Since N is a
subterm of λxn.Nxn, then N ∈ M.

Now, ⊲βη is a relation since it is the union of two relations. Finally, we show
by induction on M ⊲∗

r N that if M ∈M and M ⊲∗
r N then N ∈M. �

34

The next lemma shows that the new reduction relations preserve the free vari-
ables, degrees and goodness of terms.

Lemma 56 Let M, N ∈ M and r ∈ {η, βη}. Assume M ⊲∗
r N . We have:

1. FV (M) = FV (N) and d(M) = d(N).

2. M is good iff N is good.

Proof 1. By induction on the derivation of M ⊲∗
r N . We only treat the following:

• Assume λxn.Nxn
⊲η N where xn 6∈ FV (N) and d(N) ≤ n. Obviously,

FV (λxn.Nxn) = FV (N) and d(λxn.Nxn) = min(d(N), n) = d(N).

2. By induction on the length of the derivation M ⊲∗
r N .

• If the length of the derivation is 0, nothing to prove.

• Case M ⊲η N . We do the proof by induction on the derivation of M ⊲η N .
Since the compatibility cases are similar to those of the proof of lemma 6
(when M ⊲β N), we only do the case M = λxn.Nxn

⊲β N with d(N) ≤ n
and xn 6∈ FV (N). Since M ∈M, then Nxn ∈M, and so N ⋄ xn.

– If N is good then since by definition xn is good, and since d(N) ≤ n =
deg(xn) then by defintion Nxn is good. Now, since xn ∈ FV (Nxn),
λxn.Nxn is good by definition.

– If M is good then by lemma 2 twice, N is good.

• Case M ⊲βη N . Then, either M ⊲β N or M ⊲η N and we use either lemma 6
or the case above.

• Case M ⊲r N1 ⊲
∗
r N use IH.

�

Lemma 57 Let r ∈ {η, βη}, ≻∈ {⊲,⊲∗}, p ≥ 0 and M, N ∈M.

1. If M ≻r N , then M+ ≻r N+.

2. If d(M) > 0 and M ≻r N , then M− ≻r N−.

3. If M ≻r N+, then M− ≻r N .

4. If M+ ≻r N , then M ≻r N−.

5. Let P ∈M. If M ≻r N , P ≻r Q and M ⋄ P , then N ⋄Q.

6. If M ≻r N , M ⋄ P and d(P) = n, then M [xn := P] ≻r N [xn := P].

7. If N ≻r P and M ⋄N , then M [xn := N]⊲∗
r M [xn := P].

8. If M ⊲∗
r N , P ⊲∗

r P ′, M ⋄ P and d(P) = n, then M [xn := P]⊲∗
r N [xn := P ′].

Proof

1. The case r ∈ {η} and ≻= ⊲ is by induction on M ⊲r N using lemma 8, for
case ⊲βη use the results for ⊲β (lemma 8) and ⊲η, case ⊲∗

r is by induction
on the length of M ⊲∗

r N using the result for case ⊲r.

2. Similar to 1.

3. By lemma 56.1, lemma 8 and 2 above, M− ≻ N .

35

4. Similar to 3.

5. Note that, by lemma 56.1, FV (M) = FV (N) and FV (P) = FV (Q).

6. Case r ∈ {η} and ≻= ⊲ is by induction on M using lemmas 3.6b and 3.7. For
case ⊲βη use the results for ⊲β (lemma 8) and ⊲η. Case ⊲∗

r is by induction
on the length of M ⊲∗

r N using the result for case ⊲r.

7. Case r ∈ {η} and ≻= ⊲ is by induction on M . For case ⊲βη use the results
for ⊲β (lemma 8) and ⊲η. Case ⊲∗

r is by induction on the length of M ⊲∗
r N

using the result for case ⊲r.

8. Use 6 and 7.
�

The next lemma says that there are no blocked η-redexes in a typable term.

Lemma 58 (No η-redexes are blocked in typable terms) Let i ∈ {1, 2} and
M : 〈Γ ⊢i U〉. If λxn.Nxn is a subterm of M , then d(N) ≤ n and hence if
xn 6∈ FV (N) then λxn.Nxn ⊲η N .

Proof Since Nxn is a subterm of M , by lemma 22.5, Nxn is typable. By induc-
tion on the typing of Nxn. We consider only the rule →e:

• Case ⊢1. Let
N : 〈∆ ⊢1 T1 → T2〉 xn : 〈(xn : T1) ⊢1 T1〉

Nxn : 〈∆, (xn : T1) ⊢1 T2〉
(by lemma 25.1).

By lemma 23 and lemma 12.1a, d(N) = d(T1 → T2) = d(T2) ≤ d(T1) = n.
Hence λxn.Nxn ⊲η N .

• Case ⊢2.
N : 〈Γ1 ⊢2 V → T 〉 xn : 〈(xn : W) ⊢2 V 〉

Nxn : 〈Γ1, (xn : W) ⊢2 T 〉
.

By lemma 26.1, W ⊑ V and, by lemma 23, d(N) = d(V → T) = 0 ≤ d(V) =
n. Hence, if xn 6∈ FV (N) then λxn.Nxn ⊲η N .

�

The next lemma shows that the substitution lemma for ⊢1, and subject reduction
for η using ⊢1 fail.

Lemma 59 (Subject η-reduction fails for ⊢1) Let a, b, c be different elements
of A. We have:

1. λx0.y0x0 ⊲η y0.

2. λx0.y0x0 : 〈y0 : (a→ b) ⊓ (a→ c) ⊢1 a→ (b ⊓ c)〉.

3. It is not possible that

y0 : 〈y0 : (a→ b) ⊓ (a→ c) ⊢1 a→ (b ⊓ c)〉.
Hence, subject reduction for η using ⊢1 fails.

Proof 1 and 2 are easy. For 3, assume y0 : 〈y0 : (a→ b) ⊓ (a→ c) ⊢1 a→ (b ⊓ c)〉.
By lemma 25.1, y0 : (a→ b)⊓ (a→ c) = y0 : a→ (b⊓ c) and hence, (a→ b)⊓ (a→
c) = a→ (b ⊓ c). Absurd. �

36

Lemma 60 (Extra Generation for ⊢2)

1. If Mxn : 〈Γ, xn : U ⊢2 V 〉, d(V) = 0 and xn 6∈ FV (M), then V = ⊓k
i=1Ti

where k ≥ 1 and ∀1 ≤ i ≤ k, M : 〈Γ ⊢2 U → Ti〉.

2. If λxn.Mxn : 〈Γ ⊢2 U〉 and xn 6∈ FV (M), then M : 〈Γ ⊢2 U〉.

Proof 1. By induction on the derivation of Mxn : 〈Γ, xn : U ⊢2 V 〉. We have
three cases:

• If
M : 〈Γ ⊢2 U → T 〉 xn : 〈xn : V ⊢2 U〉 Γ ⋄ (xn : V) V ⊑ U

Mxn : 〈Γ, xn : V ⊢2 T 〉
(using lemma 26.1

and lemma 22), then since U → T ⊑ V → T , we have M : 〈Γ ⊢2 V → T 〉.

• If
Mxn : 〈Γ, xn : U ⊢2 U1〉 Mxn : 〈Γ, xn : U ⊢2 U2〉

Mxn : 〈Γ, xn : U ⊢2 U1 ⊓ U2〉
, by lemma 23 U1 ⊓ U2 is

good and, by lemma 12.1b, d(U1) = d(U2) = 0. By IH, U1 = ⊓k
i=1Ti, U2 =

⊓k+l
i=k+1Ti, where k, l ≥ 1 and ∀ 1 ≤ i ≤ k + l, M : 〈Γ ⊢2 U → Ti〉.

• If
Mxn : 〈Γ, xn : U ⊢2 V 〉 〈Γ, xn : U ⊢2 V 〉 ⊑ 〈Γ′, xn : U ′ ⊢2 V ′〉

Mxn : 〈Γ′, xn : U ′ ⊢2 V ′〉
,

by lemma 21, Γ′ ⊑ Γ, U ′ ⊑ U and V ⊑ V ′. By lemma 21, d(V) = d(V ′) = 0.
By IH, V = ⊓k

i=1Ti where k ≥ 1 and ∀1 ≤ i ≤ k, M : 〈Γ ⊢2 U → Ti〉. By
lemma 21.4 (since V is good by lemma 23), V ′ = ⊓p

i=1T
′
i where 1 ≤ p ≤ k

and ∀1 ≤ i ≤ p, Ti ⊑ T ′
i . Since for any 1 ≤ i ≤ p, 〈Γ ⊢2 U → Ti〉 ⊑ 〈Γ′ ⊢2

U ′ → T ′
i 〉, then ∀1 ≤ i ≤ p, M : 〈Γ′ ⊢2 U ′ → T ′

i 〉.

2. By lemma 23, m = d(U) = d(λxn.Mxn) = d(Mxn) ≤ n. Hence n−m ≥ 0 and
d(Mxn) = d(M) = m. By lemma 26.2, U = ⊓k

i=1~ei(1:m)(Vi → Ti) where k ≥ 1 and
∀1 ≤ i ≤ k, Mxn : 〈Γ, xn : ~ei(1:m)Vi ⊢2 ~ei(1:m)Ti〉.

• If m = 0, then ∀1 ≤ i ≤ k, Mxn : 〈Γ, xn : Vi ⊢2 Ti〉 and M : 〈Γ ⊢2 Vi → Ti〉
by 1. Hence, by k − 1 applications ⊓i, M : 〈Γ ⊢2 U〉.

• If m > 0, then, by lemma 23 and m-applications of lemma 30.5, ∀1 ≤ i ≤ k,
M−mxn−m : 〈Γ−m, xn−m : Vi ⊢2 Ti〉 and, M−m : 〈Γ−m ⊢2 Vi → Ti〉 by 1.
Now, by m-applications of exp, M : 〈Γ ⊢2 ~ei(1:m)(Vi → Ti)〉. Finally, by
k-applications of ⊓i, M : 〈Γ ⊢2 U〉.

�

We also show using the extra generation lemma 60 that subject reduction for η
using ⊢2 also holds. First, we give the basic block in the proof of subject reduction
for η.

Theorem 61 If M : 〈Γ ⊢2 U〉 and M ⊲η N , then N : 〈Γ ⊢2 U〉.

Proof By induction on the derivation of M : 〈Γ ⊢2 U〉. →i is by lemma 60.2.
→e, ⊓i and ⊑ are by IH. We only do the exp case.

Let
M : 〈Γ ⊢2 U〉

M+ : 〈eΓ ⊢2 eU〉
. If M+

⊲η N , then, by lemma 8.1a, d(M+) > 0 and, by

lemma 56.1, d(N) > 0. By lemma 8.3, N = P+ and M ⊲η P . By IH, P : 〈Γ ⊢2 U〉
and, by exp, N : 〈eΓ ⊢2 eU〉. �

Corollary 62 (Subject reduction for βη)
If M : 〈Γ ⊢2 U〉 and M ⊲∗

βη N , then N : 〈Γ ⊢2 U〉.

Proof By induction on the length of the derivation of M ⊲∗
βη N using theorems

32 and 61. �

37

B Confluence of ⊲∗β and ⊲∗βη

In this section we establish the confluence of ⊲∗
β and ⊲∗

βη using the standard parallel
reduction method.

Definition 63 Let r ∈ {β, βη}. We define on M the binary relation
ρr
→ by:

• M
ρr
→M

• If M
ρr
→M ′ and xn ∈ FV (M), then λxn.M

ρβ

→ λxn.M ′.

• If M
ρr
→M ′, N

ρβ

→ N ′ and M ⋄N then MN
ρr
→M ′N ′

• If M
ρr
→M ′, N

ρr
→ N ′, M⋄N , xn ∈ FV (M) and d(N) = n, then (λxn.M)N

ρr
→

M ′[xn := N ′]

• If M
ρβη
→ M ′, xn 6∈ FV (M) and d(M) ≤ n, then λxn.Mxn ρβη

→ M ′

We denote the transitive closure of
ρr
→ by

ρr
→→. When M

ρr
→ N (resp. M

ρr
→→ N),

we can also write N
ρr
← M (resp. N

ρr
←← M). If R, R′ ∈ {

ρr
→,

ρr
→→,

ρr
←,

ρr
←←}, we write

M1RM2R
′M3 instead of M1RM2 and M2R

′M3.

Lemma 64 Let r ∈ {β, βη} and M ∈ M.

1. If M ⊲r M ′, then M
ρr
→M ′.

2. If M
ρr
→M ′, then M ′ ∈M, M⊲∗

rM
′, FV (M) = FV (M ′) and d(M) = d(M ′).

3. If M
ρr
→M ′, N

ρr
→ N ′ and M ⋄N , then M ′ ⋄N ′.

Proof 1. By induction on the derivation of M ⊲r M ′. 2. By induction on the

derivation of M
ρr
→ M ′ using lemmas 6.1, 56.1, 8.11 and 57.8. 3. M ′ ⋄N ′ since by

2, FV (M) = FV (M ′) and FV (N) = FV (N ′) and M ⋄N . �

Lemma 65 Let r ∈ {β, βη}, M, N ∈M, N
ρr
→ N ′ and M ⋄N . We have:

1. M [xn := N]
ρr
→M [xn := N ′].

2. If M
ρr
→M ′ and d(N) = n, then M [xn := N]

ρr
→M ′[xn := N ′].

Proof 1. By induction on M using lemmas 3.2, 3.4 and 3.6a.

2. By induction on M
ρr
→ M ′ using 1, lemmas 3.2, 3.4, 3.6a and 64.3. We only do

one interesting case where (λym.M1)M2
ρβ

→ M ′
1[y

m := M ′
2], M1

ρβ

→ M ′
1, M2

ρβ

→ M ′
2,

M1 ⋄M2, ym ∈ FV (M1) and d(M2) = m. Then:

a. M1[x
n := N]

ρβ

→M ′
1[x

n := N ′], by IH and lemma 3.2.

b. M2[x
n := N]

ρβ

→M ′
2[x

n := N ′], by IH and lemma 3.2.

c. M1[x
n := N] ⋄M2[x

n := N], by lemmas 3.2 and 3.4.

d. M ′
1[x

n := N ′] ⋄M ′
2[x

n := N ′], by a., b., c., and lemma 64.3.

e. ym ∈ FV (M1[x
n := N]).

f. d(M2[x
n := N]) = m, by lemmas 3.2.

g. ym 6∈ FV (N ′), by BC and by lemma 3.7,
M ′

1[x
n := N ′][ym := M ′

2[x
n := N ′]] = M ′

1[y
m := M ′

2][x
n := N ′].

Hence, (λym.M1[x
n := N])M2[x

n := N]
ρβ
→M ′

1[x
n := N ′][ym := M ′

2[x
n := N ′]]

and so, ((λym.M1)M2)[x
n := N]

ρβ
→M ′

1[y
m := M ′

2][x
n := N ′]. �

38

Lemma 66 Let r ∈ {β, βη}. Note that:

1. If xn ρr
→ N , then N = xn.

2. If λxn.P
ρβ

→ N , then N = λxn.P ′ where P
ρβ

→ P ′ and xn ∈ FV (P) ∩ FV (P ′).

3. If λxn.P
ρβη

→ N then one of the following holds:

• N = λxn.P ′ where P
ρβη

→ P ′ and xn ∈ FV (P) ∩ FV (P ′).

• P = P ′xn where xn 6∈ FV (P ′) ∪ FV (N), d(P ′) ≤ n and P ′ ρβη

→ N .

4. If PQ
ρr
→ N , then one of the following holds:

• N = P ′Q′, P
ρr
→ P ′, Q

ρr
→ Q′, P ⋄Q, and P ′ ⋄Q′.

• P = λxn.P ′, N = P ′′[xn := Q′], xn ∈ FV (P ′) ∩ FV (P ′′), d(Q) =

d(Q′) = n, P ′ ρr
→ P ′′, Q

ρr
→ Q′, P ′ ⋄Q and P ′′ ⋄Q′.

Proof 1. By induction on the derivation of xn ρr
→ N .

2. By induction on the derivation of λxn.P
ρβ

→ N using lemma 64.2.

3. By induction on the derivation of λxn.P
ρβη
→ N using lemma 64.2.

4. By induction on the derivation of PQ
ρr
→ N using lemma 64.2 and 64.3. �

Lemma 67 Let r ∈ {β, βη} and M, M1, M2 ∈M.

1. If M2
ρr
←M

ρr
→M1, then there is M ′ ∈M such that M2

ρr
→M ′ ρr

←M1.

2. If M2
ρr
←←M

ρr
→→M1, then there is M ′ ∈ M such that M2

ρr
→→M ′ ρr

←←M1.

Proof 1. Both cases by induction on M . We only do the βη case making dis-
criminate use of lemma 66.

• If M = xn, by lemma 66, M1 = M2 = xn. Take M ′ = xn.

• If N2P2
ρβη
← NP

ρβη
→ N1P1 where N2

ρβη
← N

ρβη
→ N1, P2

ρβη
← P

ρβη
→ P1, N ⋄ P ,

N1 ⋄ P1 and N2 ⋄ P2, then, by IH, ∃N ′, P ′ such that N2
ρβη

→ N ′ ρβη

← N1 and

P2
ρβη
→ P ′ ρβη

← P1. Hence, N2P2
ρβη
→ N ′P ′ ρβη

← N1P1.

• If (λxn.P1)Q1
ρβη
← (λxn.P)Q

ρβη
→ P2[x

n := Q2] where λxn.P
ρβη
→ λxn.P1, P

ρβη
→

P2, Q1
ρβη
← Q

ρβη
→ Q2, λxn.P1 ⋄Q1, λxn.P ⋄Q, P ⋄Q, P2 ⋄Q2, xn ∈ FV (P) ∩

FV (P2), d(Q) = d(Q2) = n, then, by lemma 66, xn ∈ FV (P) ∩ FV (P1)

and P
ρβη

→ P1. By IH, ∃P ′, Q′ such that P1
ρβη

→ P ′ ρβη

← P2 and Q1
ρβη

→ Q′ ρβη

←
Q2. By lemma 64.2, d(Q1) = d(Q) = n. By lemma 3.2, P1 ⋄ Q1. Hence,

(λxn.P1)Q1
ρβη
→ P ′[xn := Q′].

Moreover, since P2
ρβη

→ P ′, Q2
ρβη

→ Q′, P2 ⋄ Q2, and d(Q2) = n, then, by

lemma 65.2, P2[x
n := Q2]

ρβη

→ P ′[xn := Q′].

• If P1[x
n := Q1]

ρβη

← (λxn.P)Q
ρβη

→ P2[x
n := Q2] where P1

ρβη

← P
ρβη

→ P2, P ⋄Q,

P1 ⋄ Q1, P2 ⋄ Q2, Q1
ρβη
← Q

ρβη
→ Q2, xn ∈ FV (P) ∩ FV (P1) ∩ FV (P2) and

d(Q) = d(Q1) = d(Q2) = n, then, by IH, ∃P ′, Q′ where P1
ρβη
→ P ′ ρβη

← P2 and

Q1
ρβη
→ Q′ ρβη

← Q2. Hence, by lemma 65.2,

P1[x
n := Q1]

ρβη

→ P ′[xn := Q′]
ρβη

← P2[x
n := Q2].

• If λxn.N2
ρβη

← λxn.N
ρβη

→ λxn.N1 where N2
ρβη

← N
ρβη

→ N1 and xn ∈ FV (N1) ∩

FV (N2) ∩ FV (N), by IH, there is N ′ such that N2
ρβη
→ N ′ ρβη

← N1. Hence,

λxn.N2
ρβη
→ λxn.N ′ ρβη

← λxn.N1.

39

• If M1
ρβη
← λxn.Pxn ρβη

→ M2, xn 6∈ FV (P)∪FV (M1)∪FV (M2) and d(P) ≤ n,

then, by IH, there is M ′ such that M2
ρβη

→ M ′ ρβη

← M1.

• If M1
ρβη

← λxn.Pxn
ρβη

→ λxn.P ′, where P
ρβη

→ M1, Pxn
ρβη

→ P ′, d(P) ≤ n and

xn 6∈ FV (P) ∪ FV (M1). By lemma 66, P ′ = P ′′xn and P
ρβη

→ P ′′. By IH,

there is M ′ such that P ′′ ρβη

→ M ′ ρβη

← M1. By lemma 64.2, xn 6∈ FV (P ′′) and

d(P ′′) ≤ n. Hence, M2 = λxn.P ′′xn ρβη

→ M ′ ρβη

← M1.

2. First show by induction on M
ρr
→→ M1 (and using 1) that if M2

ρr
← M

ρr
→→ M1,

then there is M ′ such that M2
ρr
→→M ′ ρr

←M1. Then use this to show 2 by induction

on M
ρr
→→M2. �

Theorem 68 (Confluence of ⊲∗
β/⊲∗

βη) Let r ∈ {β, βη}, M, M1, M2 ∈ M.

1. If M⊲∗
r M1 and M⊲∗

r M2, then there is M ′ such that M1⊲
∗
r M ′ and M2⊲

∗
r M ′.

2. M1 ≃β M2 iff there is a term M such that M1 ⊲
∗
β M and M2 ⊲

∗
β M .

Proof

1. By lemma 67.2,
ρr
→→ is confluent. By lemma 64.1 and 64.2, M

ρr
→→ N iff M⊲∗

r N .
Then ⊲∗

r is confluent.

2. If) is by definition of ≃β. Only if) is by induction on M1 ≃β M2 using 1.
�

C Strong normalization of the type systems ⊢1 and
⊢2

To show the strong normalisation of our two type systems, we will use the well-
known reducibility method. First, we define the sets of strongly normalising terms
for each degree n.

Definition 69 1. We say that M ∈ M is strongly normalising if there are no
infinite derivations M ⊲β M1 ⊲β

2. For every n ∈ N, we define SN
n = {M ∈ Mn / M is strongly normalizing}

and SN =
⋃

i∈N
SN

i. Note that SN = {M ∈ M / M is strongly normalizing}
and SN

n = SN ∩Mn.

Remark 70 We can show that since we work with the λIN-calculus, strong nor-
malisation is equivalent to weak normalisation. However, since this result is not
needed for this paper, we do not discuss it further.

The next lemma shows that some terms are strongly normalising if they are parts
or β-expansions of strongly normalising terms.

Lemma 71 1. If Mxn ∈ SN, then M ∈ SN.

2. Let d(N) = n. If M [xn := N] ∈ SN, then M ∈ SN.

3. Let k ≥ 0 and d(N) = n. If M, N, N1, ..., Nk, M [xn := N] N1...Nk ∈ SN, then
(λxn.M)NN1...Nk ∈ SN.

40

Proof 1. If M ⊲β M1 ⊲β . . . is an infinite derivation, then Mxn ⊲β M1x
n ⊲β . . .

is an infinite derivation. Absurd.
2. Since M [xn := N] ∈ M, then M ⋄N by BC and lemma 3.2. If M ⊲β M1 ⊲β . . .
is an infinite derivation, then, by lemma 8.8, Mi ⋄N for every i ≥ 1. By lemma 8.9,
M [xn := N]⊲β M1[x

n := N]⊲β . . . is an infinite derivation. Absurd.
3. As M [xn := N] ∈ M, then M ⋄ N by BC and lemma 3.2. Since M, N, N1, . . . ,
Nk ∈ SN, any infinite ⊲β-derivation starting at (λxn.M)NN1 . . . Nk has the form:
(λxn.M)N ⊲∗

β M ′[xn := N ′]N ′
1 . . .N ′

k⊲β . . . where M ⊲∗
β M ′, N⊲∗

β N ′, ∀ 1 ≤ i ≤ k,
Ni ⊲

∗
β N ′

i and the infinite derivation continues from M ′[xn := N ′]N ′
1 . . . N ′

k. By
lemma 8.11, M [xn := N]⊲∗

β M ′[xn := N ′].
Hence M [xn := N]N1 . . .Nk ⊲

∗
β M ′[xn := N ′]N ′

1 . . . N ′
k and there is an infinite

derivation starting at M [xn := N]N1 . . . Nk ∈ SN. Absurd. �

Strong normalisation is closed under the lifting and decreasing of the degree of
a term.

Lemma 72 1. M ∈ SN iff M+ ∈ SN.

2. If d(M) > 0, M ∈ SN iff M− ∈ SN.

3. For every n ∈ N, (SN
n)+ = SN

n+1 and (SN
n+1)− = SN

n.

Proof 1. Only if): Let M ∈ SN. If M+ 6∈ SN, take an infinite derivation
M+ ⊲β N1 ⊲β N2 ⊲β By lemma 8.1a and lemma 6.1, d(M+) > 0 and ∀i ≥ 1,
d(Ni) > 0. By lemmas 8.3 and 8.1b, ∀i ≥ 1, ∃Mi = N−

i such that Ni = M+
i and

M ⊲β M1 ⊲β M2 ⊲β . . . is an infinite derivation. Absurd.
If): Let M+ ∈ SN. If M 6∈ SN, take an infinite derivation M ⊲β M1 ⊲β M2 ⊲β
By lemma 8.4, M+ ⊲β M+

1 ⊲β M+
2 ⊲β . . . is an infinite derivation. Absurd.

2. By lemma 8.3, M = (M−)+. By 1. M− ∈ SN iff M = (M−)+ ∈ SN.
3. Use 1. and 2. �

Now we define SN -saturated sets and establish some of their properties.

Definition 73 We say that X ⊆M is SN -saturated iff whenever M, N, N1, ..., Nk ∈
SN, xn ∈ FV (M), d(N) = n and M [xn := N]N1...Nk ∈ X , then (λxn.M)NN1...Nk ∈
X .

Lemma 74 1. For every n ∈ N, the set SN
n is SN -saturated.

2. If X ,Y are SN -saturated sets, then X ∩ Y is SN -saturated.

3. If X is SN -saturated, then X+ is SN -saturated.

4. If Y is SN -saturated, then, for every set X ⊆ SN, X Y is SN -saturated.

Proof

1. Let M, N, N1, ..., Nk ∈ SN such that d(N) = m, xm ∈ FV (M) and M [xm :=
N]N1...Nk ∈ SN

n. Since (λxm.M)NN1...Nk ⊲β M [xm := N]N1...Nk and
d(M [xm := N]N1...Nk) = n, then, by lemma 6.1,
d((λxm.M)NN1...Nk) = n. Since M, N, N1, ..., Nk, M [xm := N]N1...Nk ∈
SN, then, by lemma 71, (λxm.M)NN1...Nk ∈ SN.

2. Easy.

3. If M, N, N1, ..., Nk ∈ SN, xn ∈ FV (M), d(N) = n and M [xn := N] N1...Nk

∈ X+, then, by lemma 8.1(c)iii, (M [xn := N])−N−
1 ...N−

k ∈ X . Since M ⋄N
(by lemma 3), n > 0 and for each P ∈ {M, N, N1, . . . , Nk}, d(P) > 0, then,
by lemma 8.3 (M [xn := N])− = M−[xn−1 := N−] and, by lemma 72.2,
M−, N−, N−

1 , ..., N−
k ∈ SN. Moreover, xn−1 ∈ FV (M−) and by lemma 8.3

d(N−) = n− 1. Hence since X is SN -saturated,
(λxn−1.M−)N−N−

1 ...N−
k ∈ X and, by lemma 8.3, (λxn.M)NN1...Nk ∈ X+.

41

4. If M, N, N1, ..., Nk ∈ SN, xn ∈ FV (M), d(N) = n, M [xn := N] N1...Nk ∈
X Y and P ∈ X ⊆ SN such that (λxn.M)NN1...Nk⋄P , then, by lemma 8.8
M [xn := N]N1...Nk ⋄ P and hence M [xn := N] N1...NkP ∈ Y. Since Y is
SN -saturated, (λxn.M)NN1...NkP ∈ Y.
Thus (λxn.M N) N1...Nk ∈ X Y.

�

Now we define the so-called SN -interpretation of types.

Definition 75 1. Let x ∈ V and n ∈ N. We define
SN

n
x = {xn N1...Nk ∈ M / k ≥ 0 and ∀1 ≤ i ≤ k, Ni ∈ SN

mi and mi ≥ n}.

2. An SN -interpretation I : A 7→ P(M0) is a function such that for all a ∈ A:
• I(a) is SN -saturated • ∀x ∈ V, SN

0
x ∩M ⊆ I(a) ⊆ SN

0 ∩M

3. We extend an SN -interpretation I to T (hence also to U) as follows:
• I(eU) = I(U)+ • I(U1⊓U2) = I(U1)∩I(U2) • I(U → T) = I(U) I(T).

Lemma 76 1. For every x ∈ V, SN
n
x ⊆ SN

n.

2. On T (and hence on U), we have:
If U is a type and I is an SN -interpretation then:

(a) I(U) is SN -saturated.

(b) Let x ∈ V. If U is good and d(U) = n, then xn ∈ SN
n
x ∩M ⊆ I(U) ⊆

SN
n ∩M.

Proof

1. For every x ∈ V and for every M ∈ SN
n
x , d(M) = n and M ∈ SN, then

M ∈ SN
n.

2a. By induction on U type using lemma 74.

2b. Obviously, xn ∈ SN
n
x ∩M. We show SN

n
x ∩M ⊆ I(U) ⊆ SN

n∩M by induction
on U good.
Case U = a: by definition. Case U = U1 ⊓ U2 (resp. U = eV): use IH
since, by lemma 12, U1, U2 are good and d(U1) = d(U2) (resp. V is good,
d(U) = d(V) + 1, (SN

n
x)+ = SN

n+1
x and, by lemma 72.3 (SN

n)+ = SN
n+1).

Case U = V → T : by lemma 12, V, T are good and m = d(V) ≥ d(T) =
d(U) = n.

– Let k ≥ 0 and xnN1...Nk ∈ SN
n
x ∩M where ∀1 ≤ i ≤ k, Ni ∈ SN

mi and
mi ≥ n. Take N ∈ I(V) such that (xnN1...Nk)⋄N (hence xnN1...NkN ∈
M). By IH, I(V) ⊆ SN

m ∩ M and d(N) = m ≥ n. Again, by IH,
xnN1...NkN ∈ SN

n
x ∩M ⊆ I(T). Thus xnN1...Nk ∈ I(V → T).

– Let M ∈ I(V → T) and x ∈ V such that ∀p ∈ N, xp 6∈ FV (M). Hence,
M ⋄xm. Since xm ∈ SN

m
x ∩M, by IH, xm ∈ I(V). Then Mxm ∈ I(T) ⊆

SN
n ∩M by IH, and d(Mxm) = min(d(M), m) = n. Since Mxm ∈ M,

by lemma 2, M is good and d(M) ≤ m. Thus d(M) = n and, by
lemma 71.1, M ∈ SN

n ∩M.
�

Lemma 77 If I be an SN -interpretation and U ⊑ V , then I(U) ⊆ I(V).

Proof By induction on the derivation of U ⊑ V . �

42

Lemma 78 Let i ∈ {1, 2} and M : 〈(xni

i : Ui)n ⊢i U〉, I be an SN -interpretation
and ∀1 ≤ i ≤ n, Ni ∈ I(Ui). If M [(xni

i := Ni)n] ∈ M, then M [(xni

i := Ni)n] ∈
I(U).

Proof By induction on the derivation of M : 〈(xni

i : Ui)n ⊢i U〉. The proof is
similar to that of lemma 38. We use lemma 77 for the typing rule ⊑. We only look
at the typing rule →i.

Let
M : 〈(xni

i : Ui)n, xm : V ⊢i T 〉

λxm.M : 〈(xni

i : Ui)n ⊢i V → T 〉
where (λxm.M)[(xni

i := Ni)n] ∈ M and ∀ 1 ≤

i ≤ n, Ni ∈ I(Ui). Let N ∈ I(V) where (λxm.M)[(xni

i := Ni)n] ⋄N .
Since (λxm.M [(xni

i := Ni)n])⋄N , by lemma 3, M [(xni

i := Ni)n]⋄N and M [(xni

i :=
Ni)n][xm := N] = M [(xni

i := Ni)n, xm := N] ∈ M. By IH, M [(xni

i := Ni)n, xm :=
N] ∈ I(T). By lemma 12, V, T are good and d(V) = m. Hence, by lemma 76,
d(N) = m and (λxm.M [(xn1

1 := N1)n])N ⊲β M [(xni

i := Ni)n, xm := N] ∈ I(T).
By lemma 76, I(T), I(V) ⊆ SN and so N , M [(xni

i := Ni)n, xm := N] ∈ SN. Hence
M [(xni

i := Ni)n] ∈ SN by lemma 71, and since I(T) is SN -saturated (lemma 76), we
get by definition 73 that (λxm.M [(xn1

1 := N1)n])N ∈ I(T). Hence, λxm.M [(xni

i :=
Ni)n] ∈ I(V) I(T). �

Theorem 79 Let i ∈ {1, 2}. If M : 〈(xni

i : Ui)n ⊢i U〉, then M is strongly
normalizing.

Proof Let d(U) = k and take, by lemmas 74.1 and 76.1, the SN -interpretation
I defined by: for all a ∈ A, I(a) = SN

0. By lemma 23, U is good and ∀1 ≤ i ≤ n,
Ui is good and d(Ui) = ni. By lemma 76, xni

i ∈ SN
ni

xi
∩M ⊆ I(Ui) ∀1 ≤ i ≤ n and

I(U) ⊆ SN
k. Hence, by lemma 78, M = M [(xni

i := xni

i)n] ∈ I(U) ⊆ SN
k and M is

strongly normalizing. �

D Removing indices from ⊢1

We assume familiarity with the λI-calculus (the λIN-calculus without indices). We
use the same syntax of types for the λI-calculus and we define λI-environments
to be exactly those of the λIN-calculus but where all upper indices disappear from
the variables. We use the same meta-variables in the λI- and λIN-calculi. If Γ1

and Γ2 are two λI-environments, then we define Γ1 ⊓ Γ2 as usual. Moreover, if
Γ = (xi : Ti)n is a λI-environment, then we define eΓ = (xi : eTi)n.

Definition 80 1. We define the very good types on T by:

• If a ∈ A, then a is very good.

• If U, T are very good and d(U) = d(T), then U → T and U ⊓ T are very
good.

• If U is very good and e ∈ E, then eU is very good.

Note that if U is very good then U is very good.

2. We define
◦

⊢ to be the typing relation on the λIN-calculus given by all the rules
of ⊢1 except for ax which is replaced by:

T very good d(T) = n

xn : 〈(xn : T) ⊢1 T 〉
ax◦

Definition 81 1. Let r ∈ {s, v}. We define the typing system ⊢r for the λI-
calculus, based on the rules {axr,→ir,→er,⊓ir , expr} given as follows:

x : 〈(x : T) ⊢s T 〉
axs

T very good

x : 〈(x : T) ⊢v T 〉
axv

43

M : 〈Γ, (x : T1) ⊢r T2〉

λx.M : 〈Γ ⊢r T1 → T2〉
→ir

M1 : 〈Γ1 ⊢r T1 → T2〉 M2 : 〈Γ2 ⊢r T1〉

M1 M2 : 〈Γ1 ⊓ Γ2 ⊢r T2〉
→er

M : 〈Γ1 ⊢s T1〉 M : 〈Γ2 ⊢s T2〉

M : 〈Γ1 ⊓ Γ2 ⊢s T1 ⊓ T2〉
⊓is

M : 〈Γ1 ⊢v T1〉 M : 〈Γ2 ⊢v T2〉 d(T1) = d(T2)

M : 〈Γ1 ⊓ Γ2 ⊢v T1 ⊓ T2〉
⊓iv

M : 〈Γ ⊢r T 〉

M : 〈eΓ ⊢r eT 〉
expr

2. We associate to each λIN-term M a λI-term M by induction as follows:
xn = x M1 M2 = M1 M2 λxn.M = λx.M

3. If Γ = (xni

i : Ti)k, then we let Γ = (xi : Ti)k.

Lemma 82 1. (a) M+ = M . (b) eΓ = eΓ
(c) Let m ∈ N. If M = N and all subterms of M have degree m then M is
the unique such term of degree m (i.e., if M ′ = N and all subterms of M ′

have degree m then M = M ′).

2. If Γ = (xni

i : Ti)n and M : 〈Γ ⊢1 T 〉, then Γ = (xi : Ti)n is a λI-environment.

3. If Γ1, Γ2 and Γ1 ⊓ Γ2 are ⊢1-legal, then Γ1 ⊓ Γ2 = Γ1 ⊓ Γ2.

4. If M : 〈(xi : Ti)n ⊢v T 〉 then M : 〈(xi : Ti)n ⊢s T 〉, T is very good, ∀ 1 ≤ i ≤
n, Ti is very good and d(Ti) = d(T).

5. If M : 〈(xni

i : Ti)n

◦

⊢ T 〉 then M : 〈(xni

i : Ti)n ⊢1 T 〉, T is very good,
∀ 1 ≤ i ≤ n, Ti is very good, d(Ti) = ni = d(T) = d(M) and if N is a subterm
of M then d(N) = d(M).

Proof

1 (a) and (c) are by induction on M and (b) is trivial.

2 by lemma 22.3, if i 6= j, then xi 6= xj and hence Γ = (xi : Ti)n is a λI-
environment.

3 Let Γ1 = (xni

i : Ui)n, (y
mj

j : Vj)m and Γ2 = (xni

i : U ′
i)n, (zrk

k : Wk)r. Γ1⊓Γ2 =

(xni

i : Ui ⊓ U ′
i)n, (y

mj

j : Vj)m, (zrk

k : Wk)r. By 2, Γ1 = (xi : Ui)n, (yj : Vj)m,

Γ2 = (xi : U ′
i)n, (zk : Wk)m and Γ1 ⊓ Γ2 = (xi : Ui ⊓ U ′

i)n, (yj : Vj)m, (zk :
Wk)r are λI-environments and xi 6= yj and xi 6= zk ∀i, j, k.
Hence, Γ1 ⊓ Γ2 = (xi : Ui ⊓ U ′

i)n, (yj : Vj)m, (zk : Wk)r = Γ1 ⊓ Γ2.

4. By induction on the derivation of M : 〈(xi : Ti)n ⊢v T 〉.

5. By induction on the derivation of M : 〈(xni

i : Ti)n

◦

⊢ T 〉.
�

44

The next lemma shows that if indices are removed from a legal typing judge-
ment, then the resulting typing judgement is legal in the λI-calculus using the
corresponding intersection type system. The lemma also establishes the result in
the other direction for very good types.

Lemma 83 1. If M : 〈Γ ⊢1 T 〉, then M : 〈Γ ⊢s T 〉.

2. If M : 〈Γ ⊢v T 〉, then there are M ′, Γ′ such that M ′ = M , Γ′ = Γ and

M ′ : 〈Γ′
◦

⊢ T 〉. Moreover, such M ′ and Γ′ are unique.

Proof

1. By induction on the derivation of M : 〈Γ ⊢1 T 〉 using lemma 82.

• ax is trivial.

• Let
M : 〈Γ, (xm : T1) ⊢1 T2〉

λxm.M : 〈(xni

i : Ui)n ⊢1 T1 → T2〉
where Γ = (xni

i : Ui)n.

By lemma 82 and IH, Γ = (xi : Ui)n and M : 〈Γ, x : T1 ⊢s T2〉.
Hence, by →i, λx.M : 〈Γ ⊢s T1 → T2〉.

•
M1 : 〈Γ1 ⊢1 T1 → T2〉 M2 : 〈Γ2 ⊢1 T1〉 Γ1 ⋄ Γ2

(M1 M2) : 〈Γ1 ⊓ Γ2 ⊢1 T2〉
.

By IH, M1 : 〈Γ1 ⊢s T1 → T2〉 and M2 : 〈Γ2 ⊢s T1〉.
Thus, by →e and lemma 82, M1 M2 : 〈Γ1 ⊓ Γ2 = Γ1 ⊓ Γ2 ⊢s T2〉.

• Let
M : 〈Γ1 ⊢1 T1〉 M : 〈Γ2 ⊢1 T2〉

M : 〈Γ1 ⊓ Γ2 ⊢1 T1 ⊓ T2〉
. By IH, M : 〈Γ1 ⊢s T1〉 and M :

〈Γ2 ⊢s T2〉, thus, by ⊓i and lemma 82, M : 〈Γ1⊓Γ2 = Γ1 ⊓ Γ2 ⊢s T1⊓T2〉.

• Let
M : 〈Γ ⊢1 T 〉

M+ : 〈eΓ ⊢1 eT 〉
. By IH, exp and lemma 82, M : 〈eΓ = eΓ ⊢s eT 〉.

2. First, we prove the existence of M ′ and Γ′ by induction on the derivation of
M : 〈Γ ⊢v T 〉 using lemma 82.

• axv is trivial.

• Let
M : 〈Γ, (x : T1) ⊢v T2〉

λx.M : 〈Γ ⊢v T1 → T2〉
. By IH, there are M ′, Γ′ such that Γ′ = Γ,

M ′ = M , and M ′ : 〈Γ′, xm : T1

◦

⊢ T2〉.

Hence, by →i, λxm.M ′ : 〈Γ
◦

⊢ T1 → T2〉.

• Let
M1 : 〈Γ1 ⊢v T1 → T2〉 M2 : 〈Γ2 ⊢v T1〉

(M1 M2) : 〈Γ1 ⊓ Γ2 ⊢v T2〉
. By IH, there are M ′

1, M ′
2,

Γ′
1, Γ′

2, such that M ′
1 = M1, M ′

2 = M2, Γ′
1 = Γ1, Γ′

2 = Γ2, M ′
1 : 〈Γ′

1

◦

⊢

T1 → T2〉 and M ′
2 : 〈Γ′

2

◦

⊢ T1〉. By lemma 82.(4 and 5), T1 → T2 is
very good (hence d(T1) = d(T2)) and if xn ∈ FV (M ′

1), xm ∈ FV (M ′
2)

then d(xn) = n = d(M ′
1) and d(xm) = m = d(M ′

2). By lemma 82.5 and
lemma 23, d(M ′

1) = d(T1 → T2) = d(T2) and d(M ′
2) = d(T2). Hence,

m = n. By lemma 22.4, Γ′
1 ⋄ Γ′

2, Hence, by →e, M ′
1M

′
2 : 〈Γ′

1 ⊓ Γ′
2

◦

⊢ T2〉.

• Let
M : 〈Γ1 ⊢v T1〉 M : 〈Γ2 ⊢v T2〉 d(T1) = d(T2)

M : 〈Γ1 ⊓ Γ2 ⊢v T1 ⊓ T2〉
.

By IH, there are M ′, M ′′, Γ′
1, Γ

′
2 such that M ′ = M ′′ = M , Γ′

1 = Γ1,

Γ′
2 = Γ2, M ′ : 〈Γ′

1

◦

⊢ T1〉, and M ′′ : 〈Γ′
2

◦

⊢ T2〉. By lemma 82.(1 and 5),

M ′ = M ′′ and hence by ⊓i, M ′ : 〈Γ′
1 ⊓ Γ′

2

◦

⊢ T1 ⊓ T2〉.

45

• Let
M : 〈Γ ⊢v T 〉

M+ : 〈eΓ ⊢v eT 〉
. Use IH, exp and lemma 82.

Now we prove unicity of M ′ and Γ′. Assume that there are M ′′, Γ′′ such that

M ′′ = M , Γ′′ = Γ and M ′′ : 〈Γ′′
◦

⊢ T 〉. By lemma 82.(1 and 5) and lemma 23,
M ′ = M ′′. Moreover, since Γ′ = Γ′′ = Γ then let Γ′ = (xni

i : Ui)n, Γ′′ =
(xmi

i : Ui)n and Γ = (xi : Ui)n. By lemma 82.5, ∀1 ≤ i ≤ n, m1 = ni = d(T).
Hence, Γ′ = Γ′′.

�

E Removing indices from ⊢2

In this section we show that our results for ⊢2 can be translated to the λI-calculus
(i.e., where indices are removed). We use the notations of section D.

Definition 84 1. The typing rules of the λI-calculus are given as follows:

x : 〈(x : T) ⊢′2 T 〉
ax

M : 〈Γ, (x : U) ⊢′2 T 〉

λx.M : 〈Γ ⊢′2 U → T 〉
→i

M1 : 〈Γ1 ⊢′2 U → T 〉 M2 : 〈Γ2 ⊢′2 U〉

M1M2 : 〈Γ1 ⊓ Γ2 ⊢′2 T 〉
→e

M : 〈Γ ⊢′2 U1〉 M : 〈Γ ⊢′2 U2〉

M : 〈Γ ⊢′2 U1 ⊓ U2〉
⊓i

M : 〈Γ ⊢′2 U〉

M : 〈eΓ ⊢′2 eU〉
exp

M : 〈Γ ⊢′2 U〉 〈Γ ⊢′2 U〉 ⊑′ 〈Γ′ ⊢′2 U ′〉

M : 〈Γ′ ⊢′2 U ′〉
⊑′

In the last clause, the binary relation ⊑′ is defined by the following rules:

Φ ⊑′ Φ
ref

Φ1 ⊑′ Φ2 Φ2 ⊑′ Φ3

Φ1 ⊑′ Φ3
tr

U1 ⊓ U2 ⊑′ U1
⊓e

U1 ⊑
′ V1 & U2 ⊑

′ V2

U1 ⊓ U2 ⊑′ V1 ⊓ V2
⊓

U2 ⊑′ U1 & T1 ⊑′ T2

U1 → T1 ⊑′ U2 → T2
→

U1 ⊑′ U2

eU1 ⊑′ eU2
⊑′

exp

46

U1 ⊑
′ U2

Γ, (y : U1) ⊑′ Γ, (y : U2)
⊑′

c

U1 ⊑′ U2 & Γ2 ⊑′ Γ1

〈Γ1 ⊢′2 U1〉 ⊑′ 〈Γ2 ⊢′2 U2〉
⊑′

〈〉

2. We define M and Γ as in definition 81.
If 〈Γ ⊢2 U〉 is a typing, then we let 〈Γ ⊢2 U〉 = 〈Γ ⊢′2 U〉.

Lemma 85 1. If U ⊑ U ′ then U ⊑′ U ′.

2. If Γ ⊑′ Γ′, U ⊑′ U ′ and x 6∈ dom(Γ) then Γ, (x : U) ⊑′ Γ′, (x : U ′).

3. Γ ⊑′ Γ′ iff Γ = (xi : Ui)n, Γ′ = (xi : U ′
i)n and for every 1 ≤ i ≤ n, Ui ⊑′ U ′

i .

4. 〈Γ ⊢2 U〉 ⊑′ 〈Γ′ ⊢2 U ′〉 iff Γ′ ⊑′ Γ and U ⊑′ U ′.

Proof 1. By induction on U ⊑ U ′. The rest is similar to the proof of lemma 21.�

Lemma 86 1. (a) M+ = M . (b) eΓ = eΓ.

2. If Γ = (xni

i : Ui)n and M : 〈Γ ⊢2 U〉, then Γ = (xi : Ui)n is a λI-environment.

3. If Γ1, Γ2 and Γ1 ⊓ Γ2 are ⊢2-legal, then Γ1 ⊓ Γ2 = Γ1 ⊓ Γ2.

4. If Γ ⊑ Γ′, then Γ ⊑′ Γ′.

5. If 〈Γ ⊢2 U〉 ⊑ 〈Γ′ ⊢2 U ′〉, then 〈Γ ⊢2 U〉 ⊑′ 〈Γ′ ⊢2 U ′〉.

Proof For 1, 2, 3, see lemma 82. 4. use lemmas 21.2, 85.1 and 85.3.
5. use lemmas 21.3, 4, 85.1 and 85.4. �

Lemma 87 If M : 〈Γ ⊢2 U〉, then M : 〈Γ ⊢′2 U〉

Proof By induction on the derivation of M : 〈Γ ⊢2 U〉 using lemma 86.3 in →e

and lemma 86.5 in ⊑′. We examine the rule ⊑′.

Let
M : 〈Γ ⊢2 U〉 〈Γ ⊢2 U〉 ⊑ 〈Γ′ ⊢2 U ′〉

M : 〈Γ′ ⊢2 U ′〉
. By IH, M : 〈Γ ⊢′2 U〉, and, by

lemma 86.5, 〈Γ ⊢′2 U〉 ⊑′ 〈Γ′ ⊢′2 U ′〉, then M : 〈Γ′ ⊢′2 U ′〉. �

47

