

Abstract— We are interested in communication support for

time-critical reliable computing. Over a two-decade period, the
distributed computing community has explored a number of
reliable communication models. Yet time-critical applications in
which rapid response matters more than absolute reliability have
received comparatively little attention. We believe that this
category of application is becoming common, and propose a new
probabilistic reliability model for time-critical communication.

I. INTRODUCTION
E suggest in this paper that reliable, time-critical
communication is worthy of renewed attention.

Advances in hardware capabilities, coupled with the growing
popularity of cluster-style data centers, are creating new
scenarios demanding reliable communication protocols that
offer strong probabilistic guarantees of timely delivery.

To illustrate this point, we offer an analysis of the
communication needs of the French Air Traffic Control
System, with which we gained familiarity during 1995-2000,
when we assisted developers charged with architecting and
implementing subsystems that replicate data. Those
subsystems mixed real-time needs with a requirement for
consistency and availability, and were built using the Isis
Toolkit [1][4]. The system is used throughout France and is a
candidate for wide deployment in Europe.

At the time, the needs of an ATC system seemed atypical:
few other systems of that period were implemented as
structured application clusters running on large, distributed
data centers with dedicated high-speed LAN hardware.
However, the economics of computing have shifted. Recent
dialog with companies operating very large data centers
reveals that the time-critical communication needs of ATC
systems are no longer at all unusual [10]. Indeed, perhaps
surprisingly, even e-tailer data centers seem to be increasingly
turning to a style of computing in which timely response is a
primary goal [7]. In this paper, we argue that time-critical
communication deserves a fresh look. Our Ricochet and
Tempest projects are exploring this new model.

II. THE EVOLVING NEED FOR RELIABLE MULTICAST
A basic premise of our work is that the reliable

communication needs of applications are heavily shaped by
the hardware platforms on which they will be hosted. Until

The authors are with the Department of Computer Science, Cornell

University, Ithaca NY 14850; emails {mahesh,ken}@cs.cornell.edu. This
work was supported by grants from NSF, DARPA, AFRL, AFOSR and Intel.

fairly recently, reliable computing was the provenance of
server platforms, and servers addressing time-critical
computing needs were typically hosted on dedicated high-
performance processors, perhaps with specialized fault-
tolerance features. Research on real-time responsiveness
yielded new schedulers, operating systems, and application
development styles.

Much of this work defined “real time computing” in ways
focused on meeting deadlines and guaranteeing predictability
subject to some worst-case fault scenario. For example, real-
time multicast protocols such as ∆-t multicast [6] ensure
ordered, nearly synchronous message delivery despite failures,
at the cost of sending data redundantly. Delivery is delayed to
ensure that even a worst-case failure pattern can be tolerated.
The weakness of this definition of real-time and this style of
“pessimistic” protocol is that in practical settings, the average-
case overheads and delays required to overcome the worst
imaginable failure pattern can be very high.

During the same period, a second style of reliable multicast
was also explored, emphasizing fault-tolerance and
consistency, but without real-time guarantees. This yielded
models such as virtual synchrony (used in the Isis system),
state machine replication (Paxos), and Byzantine replication
(PRACTI replication), and platforms implementing these
models (for details, see [5]).

III. THE FRENCH AIR TRAFFIC CONTROL SYSTEM
The experience of the designers of the PHIDIAS subsystem

of the French Air Traffic Control System will illustrate the
key insight behind our paper [8] [4]. The system was
designed to support teams of three to five controllers using
desktop computing systems to work as a group directing
flights within some sector of an air space. An air traffic
control center is supported by between fifty and two hundred
of these console clusters. Centers operate autonomously, but
are linked, sharing flight plans and other data.

PHIDIAS consists of a number of modular subsystems.
Some interesting subsystems include:

1. Radar image subsystem. The radar devices used by the
ATC systems multicast radar imagery at a fixed
frequency (one image every few seconds). This “raw”
data is typically shown as a background image on
which other ATC data is superimposed.

2. Weather alert subsystem. This is one of a class of
subsystems that send alerts when certain kinds of
general conditions impacting portions of the overall
airspace are detected (wind shear is an obvious
example). Such alerts trigger updates to relevant

Reliable Multicast for Time-Critical Systems
Mahesh Balakrishnan and Ken Birman
Cornell University, Ithaca, NY-14853

{mahesh, ken}@cs.cornell.edu

W

portions of the visible display.
3. Track updates. These subsystems process the raw

radar imagery, identify tracks likely to be associated
with aircraft, search the flight-plans database for
known craft on the corresponding trajectory, etc.,
resulting in updates to the screen and input for other
subsystems that compute alerts; for example, if two
planes are at risk of straying too close together.

4. Updates to flight plans. The ATC system maintains a
central shared database in each region tracking flight
plans and associated data for each flight known to the
system. Some of this data is replicated onto the
controller consoles and hence must be updated if
changes occur. Updates include both critical data
about flight planning, also more mundane information
relating to the airline operating the flight, the gate at
which it is scheduled to park, numbers of passengers
expected to disembark on arrival, and so forth.

5. Console to console state updates. This is an important
category of events specific to the French design. As
noted, controllers work in small teams, and a goal of
the system was to replicate the data associated with
each team over the full set of consoles that team was
using. The purpose is to ensure consistency and
support fault-tolerance: if a machine crashes, the others
can take over its responsibilities until the fault is
repaired. Reliable multicast is used for these updates.

6. System management, monitoring and control messages.
PHIDIAS has a system-wide monitoring architecture
but does not use the multicast system in it (the Isis
protocols don’t scale to the necessary degree).

7. Air control center to center updates. Some types of
controller actions or local events have important
ramifications for other air traffic control centers that
are likely to see the same flight, or that may be
responsible for the flight before it reaches a given
center; these updates need to be shared reliably using
wide-area messaging.

When implementing their system, the French team basically
split uses of multicast into categories:

1. Multicasts for which no special reliability protocol was
needed. Without exception, these were cases in which
the hardware itself had properties strong enough to
provide desired application-level guarantees without
additional work. Obviously, though, the counterpart of
“doing nothing” to enhance reliability is that
application software had built-in expectations. For
example, each console knew that the radar system
should send a refreshed image every few seconds and
had a preprogrammed reaction to deal with missed
data. Through analysis of possible scenarios, it was
determined that loss of a single radar update or even
two was safely tolerable, but that extended periods
without updates posed risks. Accordingly, as time
passed without radar updates, the system gradually
reacted in an escalating manner: checking with other

members of the cluster to see if other nodes were
receiving data successfully, then displaying a low-level
alarm to the user, and finally displaying a higher level
alarm that offered the air traffic controller a choice
between deliberately turning off the background radar
images (e.g. if the radar itself was temporarily offline),
or taking the console offline. In general, the
philosophy was one of not overreacting, but still
detecting problems, involving the controller when
some threshold was reached, and having a “fail safe”
backup option in all cases.

2. Multicasts for which virtual synchrony guarantees
would be offered. These updates were guaranteed to
reach all operational machines in the appropriate
receiver group, and if a group member was detected as
faulty, that console would be taken offline for repair
and subsequent restart. So here we had a very strong
reliability guarantee. As noted earlier, no group would
ever have more than three to five members, even in a
control center with hundreds of machines into total.

What we find interesting in this approach is that although
quite a few of the “virtual synchrony” applications clearly
have some form of timeliness requirement, that form of
multicast primitive does not provide any sort of real-time
guarantee at all. Something similar can be said of the “raw”
multicast: this is as fast as they come (IP multicast
implemented in hardware), but offers no guarantees of
reliability. Our own recent studies of similar styles of
communication make it clear that bursty packet loss can be a
real problem for such uses of unreliable hardware multicast.
The French system, in retrospect, mostly avoided this issue
because the applications running on the LAN are carefully
controlled and vetted – in their setting, some data loss is
observed, but it isn’t especially frequent. Had they tried to do
the same thing on a modern clustered data center with a
random mix of applications, raw multicast might not have
been reliable enough for the intended use. Thus we have here
an implicit reliability expectation, supported by a mixture of
application-specific knowledge and hardware properties.

As noted, the second category of multicast offers a property
seemingly remote from any real-time guarantee, namely
virtual synchrony. This is an all-or-nothing ordered delivery
property implemented through protocols that start with an IP
multicast (or a set of one-to-one UDP transmissions), but then
use background acknowledgement and retransmission
mechanisms to identify and recover lost data in accordance
with a very strong model – one that can be mapped to what
the theory community calls weak consensus. The protocol
just happened to be fast enough to satisfy the real-time needs
of the system with overwhelmingly high probability.

This is fascinating, because several of the subsystems in
question clearly had time-critical data delivery needs,
combined with their reliability requirement. Viewed more
closely, we find that there are two categories of applications
that fall into this one category. One group needs a predictably
high probability of successful event notification or message

delivery. Virtual synchrony, in some sense, is a much
stronger reliability and consistency model than these need, but
because the Isis Toolkit was actually quite fast, satisfied the
time-criticality goal while providing even more reliability than
was strictly necessary. The second group of applications
needed strong consistency for safety (for example, it is
absolutely vital that at most one plane be routed into any one
control sector at any instant in time, so routing decisions made
by ground controllers have very strong reliable delivery
obligations). Obviously, one also wants these to be delivered
in a timely manner, but airplanes move fairly slowly in
comparison to multicast messages, and the timeliness needs of
such applications were often thousands of times slower than
the point at which Isis would either successfully deliver its
messages, or flag a communication problem as unrecoverable
and force one of the offending consoles to restart.

For reasons of brevity, this paper cannot delve more deeply
into the properties of the French system, although we
recognize that our discussion may have left the reader
interested in learning more. In addition to the paper cited here
[4], the French government maintains a substantial amount of
information about their system online at www.dgac.fr, and
even more information is available through EURESCOM, the
European Air Traffic Control standards organization.

IV. TIME-CRITICAL MULTICAST RELIABILITY
To summarize our observation, PHIDIAS offers several

examples of subsystems that seem to have a natural need for
timely data delivery. In building their system, the developers
ultimately accepted a tradeoff. For some applications, they
concluded that a combination of very rapid delivery with
probabilistic physical “guarantees” obtained by application
design, system management policies and analysis of the
properties of hardware would be sufficient. For other
purposes, the reliability need was felt to outweigh the need for
time-criticality, and a strong reliability option was favored,
taking advantage of the fact that at least in their setting, the
communication loads were low enough and hence multicast
data rates fast enough that messages would tend to be
delivered quickly in any case. In effect, they were well aware
of an implicit time-criticality need, but convinced themselves
that even if the property wasn’t formally guaranteed by the
underlying technology, the system as implemented would
achieve the required properties. This was later confirmed
during their testing and validation effort.

Modern developments are now compelling a reexamination
of these kinds of scenarios. The economics of scale have
begun to favor data centers over other ways of obtaining
scalable high performance, hence more and more developers
are building services to run on commodity clusters or in data
centers. These developers do expect reliability. Yet, because
the actual purpose of scalability is often to ensure that an
application will continue to give good time-critical
responsiveness even when the number of clients using it
becomes large, the even stronger need is for excellent time-

critical message delivery.
The reason we need to formulate this as a new kind of

reliability challenge is that the sort of reasoning used when
building the French system is simply not appropriate in a
modern data center hosting a more general mix of
applications. Moreover, these systems may experience
transient faults of a type never seen in the French ATC
environment. To address the needs of these kinds of
applications, a multicast primitive is required that treats those
needs as first-class goals and meets them despite failures.

A. Observed failure modes in clustered computers.
One can see an example of the kind of faults that concern us

in Figure 1, which is reprinted from a separate, forthcoming
paper. Here we’ve experimented with the behavior of the
UDP communication layer on a cluster when subjecting some
of its nodes to bursts of incoming traffic of a type that might
easily occur in a general mix of applications. What we see is
that the nodes begin to lose packets (due to O/S resource
exhaustion) and that the losses are bursty, with loss burst
lengths ranging from a median value of 5 packets to as many
as 75 packets for more intense spikes in incoming traffic.

Against this backdrop, we want to offer a reliable, time-
critical multicast primitive. But what should time critical
mean, or reliability mean, in this context? Again, the air
traffic control application gives some insight.

Recall from the ATC discussion that many data sources
basically send streams of updates from what can be loosely
termed to be a “sensor”. The ATC examples suggest that for
some purposes, getting these updates delivered rapidly matters
more than doing so with perfect reliability – loss of an event
here and there would be acceptable as long as these losses
occur with bounded probability that can be adjusted to match
application needs.

Figure 1: Loss Characterization for Cluster Nodes

How common is such a requirement? We raised this

question with a number of industry developers at companies
that include Amazon.com, Apache, Google, Raytheon,
Tangosol, Yahoo! and others. All are familiar with a wide
range of applications, designed for scalability, in which some

form of time-critical behavior is desired. We learned that a
scalable services architecture first proposed by a team at
Microsoft has gradually become popular among developers of
solutions for such settings, and that quite a few of these kinds
of applications need a time-critical reliable multicast.

B. Farms, RACS and RAPS.
In a widely cited paper, Jim Gray and others discussed

terminology for a new kind of application that they were
encountering in data centers and other scalable settings. They
used the term “farm” to refer to these kinds of scalable
systems as a whole, and suggest that a typical farm runs some
number of scalable services. Each of these services, they
found, is commonly partitioned for scalability: on the basis of
a key, incoming requests are vectored to representatives using
some partitioning function. They call these reliable arrays of
partitioned services (RAPS) for this reason. Now, a RAPS
would not be particularly reliable if a single failure could
depopulate one of its partitions. Accordingly, they suggest
that a RAPS should implement each of the partitions as a
reliable array of cloned servers (a RACS). To clone the
service state, one would make copies of any databases used to
respond to incoming queries and multicast updates across the
copies. Figure 2 illustrates the structure and access patterns of
a single RACS.

RACS

Updates
multicast to
whole group

Queries
unicast to

single nodes

Figure 2: A service implemented by a single RACS

What sorts of services do developers implement in this
manner? It turns out that they span a wide range, typified by
relatively weak forms of state. Examples include:

• An inventory service that tracks the number of units of
the products offered by an e-tailer available at its
distribution sites or affiliates. Updates are deltas against
the state: “add five” or “remove one”, and hence are order-
insensitive and commute with each other.

• Product popularity rankings: “customers who looked at X
often looked at Y and Z too, and most purchase Z.”
Updates are typically computed by a background process

and then distributed in bulk periodically, with the service
itself handling a read-only query load against a database
that only receives updates from the back-end.

• Product pricing data (similar to popularity).
• Data about popular products or responses to popular
searches.

Notice that while the inventory service manages real data, the
other examples are best understood as forms of caches, with
back-end databases or other kinds of back-end data sources
sending periodic updates, and the cache handling a read-
mostly workload that originates with clients.

Interestingly, we learned that for these kinds of services,
timely response is often more important than a completely
accurate response. A timely response matters because the
companies we spoke to are “graded” on the time it takes to
compute an appropriate web page and return it to the end-user
when a query is received. Sluggish responses mean lost sales.
Moreover, when they invest to scale up, the new hardware is
purchased in the expectation of extra responsiveness: twice
the number of nodes, for example, to guarantee the same
responsiveness for twice as many clients.

Complete accuracy for such services is an illusive goal.
Developers explained to us that for large data centers, the raw
incoming data is often noisy. An inventory system, for
example, must be designed in the expectation that sometimes,
bar codes don’t read properly and an item is shipped without
an appropriate debit transaction being issued, or an item is
restocked without an “add items” transaction occurring.
Breakage and theft may be issues. Compensating mechanisms
are used to identify inconsistencies and correct them (audits,
comparison with purchase and sale databases, etc). Thus a
goal of perfect reliability might be overkill.

Finally, notice that for all of the examples given, updates
don’t need to be totally ordered. The reasons vary: for the
inventory service, updates commute, hence the effect of
applying them “out of order” won’t be visible to end-users.
Indeed, there isn’t really a notion of correct state here: if a
query occurs concurrent with an inventory change, the
response can equally well be based on the inventory before or
after the update, since these systems don’t use locking, aren’t
transactional, and aren’t trying to “guarantee” any form of
serialization property. The actual purchase of that very last
discounted digital camera will run through a different system,
in any case, and at that stage a verification can be performed
to make sure that there are still cameras left in stock.

For the cache services, on the other hand, while updates
ordering does “matter”, conflicting updates would never
occur. The backend system that sends updates can easily be
designed to never update the same item more often than once
every T seconds, and so long as the multicast is reliable
enough to get through within T seconds, out of order updates
would never occur. Moreover, our respondents explained that
like the inventory example, caches are understood to be
potentially inaccurate and compensating mechanisms are built
into the parts of their system that book actual purchases or
other definitive transactions. And finally, the same point

about the intrinsic noisiness of the query mechanism applies
here: if a query for product popularity happens to be issued
just as the popularity is updated, the client will probably be
satisfied with either response; neither is “more correct”.

C. Time-critical reliable multicast
Our review suggests that modern data centers need a

communications primitive with properties that were also
needed in the French air traffic system, but implemented using
a protocol targeted to the characteristics of modern platforms.

Figure 3: RACS-induced Multicast Groups

Needed is a multicast primitive that:
1. Delivers multicasts to a target group of processes. In

the settings we’ve described, the numbers of groups
could be large. Moreover, unlike the situation the
French achieved through careful design, in general
settings there might be many groups, their sizes may
vary widely, and they may overlap, with a single node
belonging to many groups. Figure 3 shows one reason
for such communication patterns, where nodes host
replicas of multiple services, causing RACS to overlap.

2. Delivers multicasts quickly even if faults occur. The
basic goal should be to ensure that for a given level of
protocol overhead, as high a percentage of multicasts
as possible will be applied to each RACS as quickly as
is practical, insuring that queries will reflect the most
current data.

3. Tolerates failures that include packet loss. As Figure 1
shows, applications need protection against loss bursts
induced by traffic spikes, in addition to node crashes.

4. Has probabilistic properties, perhaps even extending to
delivery ordering and reliability.

5. Does not attempt to recover data if the timeliness of
delivery would be seriously compromised.

Among these, we believe that all but the last requirement
fall directly out of the scenarios we’ve analyzed. But what of
the assertion that probabilistic reliability might suffice?

Our thinking is as follows. First, we do want the primitive
to try and recover lost packets. But how hard should it try?
After all, the presumption here is that the developer is using
this primitive for time-critical updates and, in many cases (not
all), doesn’t even require reliability as long as losses are
random. So clearly, we need a mechanism that can eliminate

loss bursts – we’ve seen that this is a real issue. But on the
other hand, a mechanism that tries so hard to recover data that
it will do so even after a long effort might be counter-
productive: for many purposes, the application might not even
want data recovered beyond some sort of timeout, or beyond
the next update from the data source (for example, the next
radar image). Doing so would just overload the
communication channel with no-longer-wanted bytes!

Thus we settle on the mixture of properties just enumerated.
Clearly, we’re no longer in the world of real-time multicast,
virtual synchrony multicast, or best-effort hardware multicast.
The need is for a new and different beast – indeed, a family of
them, because even the requirements enumerated above could
still correspond to quite a range of possible protocols (one can
add ordering mechanisms, stronger fault-tolerance features,
security features, additional consistency guarantees, etc).

V. THE RICOCHET PROTOCOL
In work reported elsewhere, we describe two examples of

protocols that match this new specification. One protocol,
Slingshot [2], is aimed at settings with just a single group.
The second, Ricochet [1], addresses scalability in the number
and layout of groups, and is a closer fit to the full list of
properties identified above. In the interest of not repeating
work published elsewhere1, we limit ourselves to a summary
of the Ricochet protocol and describe why it fits the listed
properties.

Ricochet works using Lateral Error Correction, a loss
recovery mechanism in which multicast receivers create XOR
repair packets from incoming data packets and send them to
other randomly selected receivers. The key contribution of
Ricochet is that it decouples packet recovery latency from the
data rate in any single group or at any single sender. This is in
contrast with existing scalable multicast protocols, which are
invariably dependent on the rate of outgoing data at a single
sender in a single group – for those existing protocols, the
larger the number of senders to a group and the larger the
number of groups splitting a receiver’s bandwidth, the worse
the latency of packet recovery.

By generating repairs at receivers and exchanging them
across group barriers, Ricochet achieves performance that
depends on the aggregate rate of incoming data at a receiver
across all groups, and is insensitive to the number of groups in
the system or their overlap patterns [property 1]. In practice,
Ricochet recovers most lost packets within milliseconds using
the proactive repair traffic. The fraction of lost packets
recovered depends on the bandwidth overhead expended by
the protocol, which is a tunable parameter [property 2].
Ricochet deals with bursty loss by staggering the creation of
XORs over time and across groups, tolerating loss bursts of
tens of packets. Further, it has no single point of failure and
degrades gracefully in the face of node failure [property 3].

1 We emphasize that the application analysis presented here did not appear

in prior work and is the main original contribution of the present paper.

Histogram of SRM Recoveries (64 Groups)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.
0E

+0
0

2.
3E

+0
6

4.
7E

+0
6

7.
0E

+0
6

9.
3E

+0
6

1.
2E

+0
7

1.
4E

+0
7

1.
6E

+0
7

1.
9E

+0
7

2.
1E

+0
7

2.
3E

+0
7

2.
6E

+0
7

2.
8E

+0
7

3.
0E

+0
7

3.
3E

+0
7

3.
5E

+0
7

3.
7E

+0
7

Microseconds

P
er

ce
nt

ag
e

Histogram of Ricochet Recoveries (64 Groups)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2.
8E

+0
3

2.
0E

+0
4

3.
7E

+0
4

5.
4E

+0
4

7.
1E

+0
4

8.
8E

+0
4

1.
0E

+0
5

1.
2E

+0
5

1.
4E

+0
5

1.
6E

+0
5

1.
7E

+0
5

1.
9E

+0
5

2.
1E

+0
5

2.
2E

+0
5

2.
4E

+0
5

2.
6E

+0
5

2.
7E

+0
5

Microseconds

Pe
rc

en
ta

ge

Figure 4: Ricochet versus SRM, 64 groups per node

For lost packets that cannot be recovered through the

proactive repair traffic, Ricochet optionally initiates reactive
recovery – by sending a retransmission request to the sender
of the data – which leads to full data reliability within a few
hundred milliseconds. Applications that do not require more
than two or three nines of reliability can switch off reactive
recovery, obtaining probabilistic reliability guarantees
[property 4 and 5].

Figure 4 compares Ricochet with a well-known non-time-
critical reliable multicast protocol, SRM [9]. This experiment
was conducted on a 64-node cluster, with each node in 64
groups of size 10 each. The presence of many groups impacts
SRM performance severely, pushing its recovery latency into
seconds, while Ricochet recovers packets three orders of
magnitude faster – details of this test can be found in [1].

Ricochet offers probabilistic reliability – we are building
layers over it that provide stronger properties, such as
probabilistic ordering. Ricochet is available for download at
http://www.cs.cornell.edu/projects/quicksilver/ricochet.html.

VI. FUTURE WORK: THE TEMPEST SYSTEM
Our work with time-critical communication has only just

started. Unlike Slingshot and Ricochet, which have been
completed, Tempest is a future system, still being
implemented as this paper was in preparation, with a
completion target of mid to late 2006. The idea is to use
Ricochet in a platform that offers turn-key scalability to
developers working specifically in the Web Services

architecture. Tempest takes a relatively standard Web
Services application, built in Java, and linked with a library of
our own design that offers a special Java “collection” class in
which the application stores information that should be
replicated within a RACS.

The user interacts with Tempest through a drag-and-drop
GUI that elicits a variety of information about the application:
the interfaces it offers to the outside world, which ones are
queries and which ones are updates, how the partitioning key
can be found in the arguments to these procedures, etc. With
this information, Tempest automatically clones and partitions
the service, deploys it onto a cluster running the Tempest
runtime environment and tools, and than manages it
dynamically to heal inconsistencies that can arise at runtime,
for example after a crash or recovery, or in the event that
Ricochet delivers a multicast to just some of the members of a
RACS. Ricochet itself is just a transport protocol used by
Tempest when an update is sent to a service under its control.

VII. CONCLUSIONS
We revisited old work on a real air traffic control system (in

use in France since 1996), and noticed a previously
unremarked collection of requirements associated with data
replication under timing constraints. Dialog with developers
of modern data centers revealed that similar needs have
become common, but also that the solution used in the French
system is not directly applicable in these new settings,
primarily because they support a more general application
mix. With this in mind, we proposed a new definition for a
time-critical reliable multicast.

We then summarized work on implementing multicast
protocols compatible with this new goal (over time, we think
that a whole family of solutions could be developed), and
pointed to an ongoing activity to integrate these kinds of
protocols into an application development framework.

VIII. REFERENCES
[1] M. Balakrishnan, K. Birman, A. Phanishayee, S. Pleisch. Ricochet:

Lateral Error Correction for Time-Critical Multicast. In Submission.
[2] M. Balakrishnan, S. Pleisch, K. Birman. Slingshot: Time-Critical

Multicast for Clustered Applications. In IEEE Network and Computing
Applications (NCA). July 2005

[3] K. P. Birman. Replication and fault-tolerance in the Isis system. In
Proceedings of the 10th ACM symposium on Operating Systems
Principles, pages 79--86. ACM Press, 1985.

[4] K. Birman, "A Review of Experiences with Reliable Multicast",
Software: Practice & Experience, 29(9), pp. 741-774, July 1999.

[5] K.P. Birman. Reliable Distributed Systems: Technologies, Web
Services, and Applications. Springer; 1 edition (March 25, 2005)

[6] F Cristian , H Aghili , R Strong , D Dolev, Atomic broadcast: from
simple message diffusion to Byzantine agreement, Information and
Computation, v.118 n.1, p.158-179, April 1995

[7] B. Devlin, J. Gray, B. Laing, and G. Spix. Scalability terminology:
Farms, clones, partitions, and packs: RACS and RAPS. Technical Report
MS-TR-99-85, Microsoft Research, December 1999.

[8] Damien Figarol, Personal communications. 1995-1998.
[9] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, L. Zhang. A reliable

multicast framework for light-weight sessions and application level
framing. IEEE/ACM Transactions on Networking, 5(6): 784-803, 1997.

[10] Personal communications with developers at Amazon.com, Apache,
Google, Raytheon, Tangosol ,Yahoo! and elsewhere. 2005.

