
 

 

  
Abstract— We are interested in communication support for 

time-critical reliable computing.  Over a two-decade period, the 
distributed computing community has explored a number of 
reliable communication models.  Yet time-critical applications in 
which rapid response matters more than absolute reliability have 
received comparatively little attention.  We believe that this 
category of application is becoming common, and propose a new 
probabilistic reliability model for time-critical communication.   
 

I. INTRODUCTION 
E suggest in this paper that reliable, time-critical 
communication is worthy of renewed attention. 

Advances in hardware capabilities, coupled with the growing 
popularity of cluster-style data centers, are creating new 
scenarios demanding reliable communication protocols that 
offer strong probabilistic guarantees of timely delivery. 

To illustrate this point, we offer an analysis of the 
communication needs of the French Air Traffic Control 
System, with which we gained familiarity during 1995-2000, 
when we assisted developers charged with architecting and 
implementing subsystems that replicate data.  Those 
subsystems mixed real-time needs with a requirement for 
consistency and availability, and were built using the Isis 
Toolkit [1][4].   The system is used throughout France and is a 
candidate for wide deployment in Europe. 

At the time, the needs of an ATC system seemed atypical: 
few other systems of that period were implemented as 
structured application clusters running on large, distributed 
data centers with dedicated high-speed LAN hardware.  
However, the economics of computing have shifted.  Recent 
dialog with companies operating very large data centers 
reveals that the time-critical communication needs of ATC 
systems are no longer at all unusual [10].   Indeed, perhaps 
surprisingly, even e-tailer data centers seem to be increasingly 
turning to a style of computing in which timely response is a 
primary goal [7].  In this paper, we argue that time-critical 
communication deserves a fresh look.  Our Ricochet and 
Tempest projects are exploring this new model. 

II. THE EVOLVING NEED FOR RELIABLE MULTICAST 
A basic premise of our work is that the reliable 

communication needs of applications are heavily shaped by 
the hardware platforms on which they will be hosted.  Until 
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fairly recently, reliable computing was the provenance of 
server platforms, and servers addressing time-critical 
computing needs were typically hosted on dedicated high-
performance processors, perhaps with specialized fault-
tolerance features.  Research on real-time responsiveness 
yielded new schedulers, operating systems, and application 
development styles.   

Much of this work defined “real time computing” in ways 
focused on meeting deadlines and guaranteeing predictability 
subject to some worst-case fault scenario.  For example, real-
time multicast protocols such as ∆-t multicast [6] ensure 
ordered, nearly synchronous message delivery despite failures, 
at the cost of sending data redundantly.  Delivery is delayed to 
ensure that even a worst-case failure pattern can be tolerated.  
The weakness of this definition of real-time and this style of 
“pessimistic” protocol is that in practical settings, the average-
case overheads and delays required to overcome the worst 
imaginable failure pattern can be very high.  

During the same period, a second style of reliable multicast 
was also explored, emphasizing fault-tolerance and 
consistency, but without real-time guarantees.  This yielded 
models such as virtual synchrony (used in the Isis system), 
state machine replication (Paxos), and Byzantine replication 
(PRACTI replication), and platforms implementing these 
models (for details, see [5]). 

III. THE FRENCH AIR TRAFFIC CONTROL SYSTEM 
The experience of the designers of the PHIDIAS subsystem 

of the French Air Traffic Control System will illustrate the 
key insight behind our paper [8] [4].  The system was 
designed to support teams of three to five controllers using 
desktop computing systems to work as a group directing 
flights within some sector of an air space.  An air traffic 
control center is supported by between fifty and two hundred 
of these console clusters. Centers operate autonomously, but 
are linked, sharing flight plans and other data. 

PHIDIAS consists of a number of modular subsystems.  
Some interesting subsystems include: 

1. Radar image subsystem.  The radar devices used by the 
ATC systems multicast radar imagery at a fixed 
frequency (one image every few seconds).  This “raw” 
data is typically shown as a background image on 
which other ATC data is superimposed. 

2. Weather alert subsystem.  This is one of a class of 
subsystems that send alerts when certain kinds of 
general conditions impacting portions of the overall 
airspace are detected (wind shear is an obvious 
example).  Such alerts trigger updates to relevant 
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portions of the visible display. 
3. Track updates.  These subsystems process the raw 

radar imagery, identify tracks likely to be associated 
with aircraft, search the flight-plans database for 
known craft on the corresponding trajectory, etc., 
resulting in updates to the screen and input for other 
subsystems that compute alerts; for example, if two 
planes are at risk of straying too close together. 

4. Updates to flight plans.  The ATC system maintains a 
central shared database in each region tracking flight 
plans and associated data for each flight known to the 
system.  Some of this data is replicated onto the 
controller consoles and hence must be updated if 
changes occur.  Updates include both critical data 
about flight planning, also more mundane information 
relating to the airline operating the flight, the gate at 
which it is scheduled to park, numbers of passengers 
expected to disembark on arrival, and so forth. 

5. Console to console state updates.  This is an important 
category of events specific to the French design.  As 
noted, controllers work in small teams, and a goal of 
the system was to replicate the data associated with 
each team over the full set of consoles that team was 
using.  The purpose is to ensure consistency and 
support fault-tolerance: if a machine crashes, the others 
can take over its responsibilities until the fault is 
repaired.  Reliable multicast is used for these updates.  

6. System management, monitoring and control messages.  
PHIDIAS has a system-wide monitoring architecture 
but does not use the multicast system in it (the Isis 
protocols don’t scale to the necessary degree).  

7. Air control center to center updates.   Some types of 
controller actions or local events have important 
ramifications for other air traffic control centers that 
are likely to see the same flight, or that may be 
responsible for the flight before it reaches a given 
center; these updates need to be shared reliably using 
wide-area messaging. 

When implementing their system, the French team basically 
split uses of multicast into categories: 

1. Multicasts for which no special reliability protocol was 
needed.  Without exception, these were cases in which 
the hardware itself had properties strong enough to 
provide desired application-level guarantees without 
additional work.  Obviously, though, the counterpart of 
“doing nothing” to enhance reliability is that 
application software had built-in expectations.  For 
example, each console knew that the radar system 
should send a refreshed image every few seconds and 
had a preprogrammed reaction to deal with missed 
data.  Through analysis of possible scenarios, it was 
determined that loss of a single radar update or even 
two was safely tolerable, but that extended periods 
without updates posed risks.  Accordingly, as time 
passed without radar updates, the system gradually 
reacted in an escalating manner: checking with other 

members of the cluster to see if other nodes were 
receiving data successfully, then displaying a low-level 
alarm to the user, and finally displaying a higher level 
alarm that offered the air traffic controller a choice 
between deliberately turning off the background radar 
images (e.g. if the radar itself was temporarily offline), 
or taking the console offline.  In general, the 
philosophy was one of not overreacting, but still 
detecting problems, involving the controller when 
some threshold was reached, and having a “fail safe” 
backup option in all cases. 

2. Multicasts for which virtual synchrony guarantees 
would be offered.  These updates were guaranteed to 
reach all operational machines in the appropriate 
receiver group, and if a group member was detected as 
faulty, that console would be taken offline for repair 
and subsequent restart.  So here we had a very strong 
reliability guarantee.  As noted earlier, no group would 
ever have more than three to five members, even in a 
control center with hundreds of machines into total. 

What we find interesting in this approach is that although 
quite a few of the “virtual synchrony” applications clearly 
have some form of timeliness requirement, that form of 
multicast primitive does not provide any sort of real-time 
guarantee at all.  Something similar can be said of the “raw” 
multicast: this is as fast as they come (IP multicast 
implemented in hardware), but offers no guarantees of 
reliability. Our own recent studies of similar styles of 
communication make it clear that bursty packet loss can be a 
real problem for such uses of unreliable hardware multicast.  
The French system, in retrospect, mostly avoided this issue 
because the applications running on the LAN are carefully 
controlled and vetted – in their setting, some data loss is 
observed, but it isn’t especially frequent.  Had they tried to do 
the same thing on a modern clustered data center with a 
random mix of applications, raw multicast might not have 
been reliable enough for the intended use.  Thus we have here 
an implicit reliability expectation, supported by a mixture of 
application-specific knowledge and hardware properties.  

As noted, the second category of multicast offers a property 
seemingly remote from any real-time guarantee, namely 
virtual synchrony.  This is an all-or-nothing ordered delivery 
property implemented through protocols that start with an IP 
multicast (or a set of one-to-one UDP transmissions), but then 
use background acknowledgement and retransmission 
mechanisms to identify and recover lost data in accordance 
with a very strong model – one that can be mapped to what 
the theory community calls weak consensus.   The protocol 
just happened to be fast enough to satisfy the real-time needs 
of the system with overwhelmingly high probability. 

This is fascinating, because several of the subsystems in 
question clearly had time-critical data delivery needs, 
combined with their reliability requirement.  Viewed more 
closely, we find that there are two categories of applications 
that fall into this one category.  One group needs a predictably 
high probability of successful event notification or message 



 

 

delivery.  Virtual synchrony, in some sense, is a much 
stronger reliability and consistency model than these need, but 
because the Isis Toolkit was actually quite fast, satisfied the 
time-criticality goal while providing even more reliability than 
was strictly necessary.  The second group of applications 
needed strong consistency for safety (for example, it is 
absolutely vital that at most one plane be routed into any one 
control sector at any instant in time, so routing decisions made 
by ground controllers have very strong reliable delivery 
obligations).  Obviously, one also wants these to be delivered 
in a timely manner, but airplanes move fairly slowly in 
comparison to multicast messages, and the timeliness needs of 
such applications were often thousands of times slower than 
the point at which Isis would either successfully deliver its 
messages, or flag a communication problem as unrecoverable 
and force one of the offending consoles to restart. 

For reasons of brevity, this paper cannot delve more deeply 
into the properties of the French system, although we 
recognize that our discussion may have left the reader 
interested in learning more.  In addition to the paper cited here 
[4], the French government maintains a substantial amount of 
information about their system online at www.dgac.fr, and 
even more information is available through EURESCOM, the 
European Air Traffic Control standards organization. 

IV. TIME-CRITICAL MULTICAST RELIABILITY 
To summarize our observation, PHIDIAS offers several 

examples of subsystems that seem to have a natural need for 
timely data delivery.  In building their system, the developers 
ultimately accepted a tradeoff.  For some applications, they 
concluded that a combination of very rapid delivery with 
probabilistic physical “guarantees” obtained by application 
design, system management policies and analysis of the 
properties of hardware would be sufficient.  For other 
purposes, the reliability need was felt to outweigh the need for 
time-criticality, and a strong reliability option was favored, 
taking advantage of the fact that at least in their setting, the 
communication loads were low enough and hence multicast 
data rates fast enough that messages would tend to be 
delivered quickly in any case.  In effect, they were well aware 
of an implicit time-criticality need, but convinced themselves 
that even if the property wasn’t formally guaranteed by the 
underlying technology, the system as implemented would 
achieve the required properties.  This was later confirmed 
during their testing and validation effort. 

Modern developments are now compelling a reexamination 
of these kinds of scenarios.  The economics of scale have 
begun to favor data centers over other ways of obtaining 
scalable high performance, hence more and more developers 
are building services to run on commodity clusters or in data 
centers.  These developers do expect reliability.  Yet, because 
the actual purpose of scalability is often to ensure that an 
application will continue to give good time-critical 
responsiveness even when the number of clients using it 
becomes large, the even stronger need is for excellent time-

critical message delivery. 
The reason we need to formulate this as a new kind of 

reliability challenge is that the sort of reasoning used when 
building the French system is simply not appropriate in a 
modern data center hosting a more general mix of 
applications. Moreover, these systems may experience 
transient faults of a type never seen in the French ATC 
environment.  To address the needs of these kinds of 
applications, a multicast primitive is required that treats those 
needs as first-class goals and meets them despite failures.  

A. Observed failure modes in clustered computers. 
One can see an example of the kind of faults that concern us 

in Figure 1, which is reprinted from a separate, forthcoming 
paper.  Here we’ve experimented with the behavior of the 
UDP communication layer on a cluster when subjecting some 
of its nodes to bursts of incoming traffic of a type that might 
easily occur in a general mix of applications.  What we see is 
that the nodes begin to lose packets (due to O/S resource 
exhaustion) and that the losses are bursty, with loss burst 
lengths ranging from a median value of 5 packets to as many 
as 75 packets for more intense spikes in incoming traffic. 

Against this backdrop, we want to offer a reliable, time-
critical multicast primitive.  But what should time critical 
mean, or reliability mean, in this context?  Again, the air 
traffic control application gives some insight.   

Recall from the ATC discussion that many data sources 
basically send streams of updates from what can be loosely 
termed to be a “sensor”.  The ATC examples suggest that for 
some purposes, getting these updates delivered rapidly matters 
more than doing so with perfect reliability – loss of an event 
here and there would be acceptable as long as these losses 
occur with bounded probability that can be adjusted to match 
application needs. 

 

 
Figure 1: Loss Characterization for Cluster Nodes 

 
How common is such a requirement?  We raised this 

question with a number of industry developers at companies 
that include Amazon.com, Apache, Google, Raytheon, 
Tangosol, Yahoo! and others.    All are familiar with a wide 
range of applications, designed for scalability, in which some 



 

 

form of time-critical behavior is desired.  We learned that a 
scalable services architecture first proposed by a team at 
Microsoft has gradually become popular among developers of 
solutions for such settings, and that quite a few of these kinds 
of applications need a time-critical reliable multicast. 

B. Farms, RACS and RAPS. 
In a widely cited paper, Jim Gray and others discussed 

terminology for a new kind of application that they were 
encountering in data centers and other scalable settings.  They 
used the term “farm” to refer to these kinds of scalable 
systems as a whole, and suggest that a typical farm runs some 
number of scalable services.  Each of these services, they 
found, is commonly partitioned for scalability: on the basis of 
a key, incoming requests are vectored to representatives using 
some partitioning function.  They call these reliable arrays of 
partitioned services (RAPS) for this reason.  Now, a RAPS 
would not be particularly reliable if a single failure could 
depopulate one of its partitions.  Accordingly, they suggest 
that a RAPS should implement each of the partitions as a 
reliable array of cloned servers (a RACS).   To clone the 
service state, one would make copies of any databases used to 
respond to incoming queries and multicast updates across the 
copies.  Figure 2 illustrates the structure and access patterns of 
a single RACS. 

RACS

Updates 
multicast to 
whole group

Queries 
unicast to 

single nodes

 
Figure 2: A service implemented by a single RACS 

What sorts of services do developers implement in this 
manner?  It turns out that they span a wide range, typified by 
relatively weak forms of state.  Examples include: 

• An inventory service that tracks the number of units of 
the products offered by an e-tailer available at its 
distribution sites or affiliates.  Updates are deltas against 
the state: “add five” or “remove one”, and hence are order-
insensitive and commute with each other.   

• Product popularity rankings: “customers who looked at X 
often looked at Y and Z too, and most purchase Z.”  
Updates are typically computed by a background process 

and then distributed in bulk periodically, with the service 
itself handling a read-only query load against a database 
that only receives updates from the back-end. 

• Product pricing data (similar to popularity). 
• Data about popular products or responses to popular 
searches.   

Notice that while the inventory service manages real data, the 
other examples are best understood as forms of caches, with 
back-end databases or other kinds of back-end data sources 
sending periodic updates, and the cache handling a read-
mostly workload that originates with clients. 

Interestingly, we learned that for these kinds of services, 
timely response is often more important than a completely 
accurate response.  A timely response matters because the 
companies we spoke to are “graded” on the time it takes to 
compute an appropriate web page and return it to the end-user 
when a query is received.  Sluggish responses mean lost sales.  
Moreover, when they invest to scale up, the new hardware is 
purchased in the expectation of extra responsiveness: twice 
the number of nodes, for example, to guarantee the same 
responsiveness for twice as many clients.   

Complete accuracy for such services is an illusive goal.  
Developers explained to us that for large data centers, the raw 
incoming data is often noisy.  An inventory system, for 
example, must be designed in the expectation that sometimes, 
bar codes don’t read properly and an item is shipped without 
an appropriate debit transaction being issued, or an item is 
restocked without an “add items” transaction occurring.  
Breakage and theft may be issues.  Compensating mechanisms 
are used to identify inconsistencies and correct them (audits, 
comparison with purchase and sale databases, etc).  Thus a 
goal of perfect reliability might be overkill.   

Finally, notice that for all of the examples given, updates 
don’t need to be totally ordered.  The reasons vary: for the 
inventory service, updates commute, hence the effect of 
applying them “out of order” won’t be visible to end-users.  
Indeed, there isn’t really a notion of correct state here: if a 
query occurs concurrent with an inventory change, the 
response can equally well be based on the inventory before or 
after the update, since these systems don’t use locking, aren’t 
transactional, and aren’t trying to “guarantee” any form of 
serialization property.  The actual purchase of that very last 
discounted digital camera will run through a different system, 
in any case, and at that stage a verification can be performed 
to make sure that there are still cameras left in stock.  

For the cache services, on the other hand, while updates 
ordering does “matter”, conflicting updates would never 
occur.  The backend system that sends updates can easily be 
designed to never update the same item more often than once 
every T seconds, and so long as the multicast is reliable 
enough to get through within T seconds, out of order updates 
would never occur.  Moreover, our respondents explained that 
like the inventory example, caches are understood to be 
potentially inaccurate and compensating mechanisms are built 
into the parts of their system that book actual purchases or 
other definitive transactions.  And finally, the same point 



 

 

about the intrinsic noisiness of the query mechanism applies 
here: if a query for product popularity happens to be issued 
just as the popularity is updated, the client will probably be 
satisfied with either response; neither is “more correct”. 

C. Time-critical reliable multicast 
Our review suggests that modern data centers need a 

communications primitive with properties that were also 
needed in the French air traffic system, but implemented using 
a protocol targeted to the characteristics of modern platforms. 

 
Figure 3: RACS-induced Multicast Groups 

 
Needed is a multicast primitive that: 
1. Delivers multicasts to a target group of processes.  In 

the settings we’ve described, the numbers of groups 
could be large.  Moreover, unlike the situation the 
French achieved through careful design, in general 
settings there might be many groups, their sizes may 
vary widely, and they may overlap, with a single node 
belonging to many groups. Figure 3 shows one reason 
for such communication patterns, where nodes host 
replicas of multiple services, causing RACS to overlap. 

2. Delivers multicasts quickly even if faults occur.  The 
basic goal should be to ensure that for a given level of 
protocol overhead, as high a percentage of multicasts 
as possible will be applied to each RACS as quickly as 
is practical, insuring that queries will reflect the most 
current data. 

3. Tolerates failures that include packet loss. As Figure 1 
shows, applications need protection against loss bursts 
induced by traffic spikes, in addition to node crashes. 

4. Has probabilistic properties, perhaps even extending to 
delivery ordering and reliability. 

5. Does not attempt to recover data if the timeliness of 
delivery would be seriously compromised. 

Among these, we believe that all but the last requirement 
fall directly out of the scenarios we’ve analyzed.  But what of 
the assertion that probabilistic reliability might suffice? 

Our thinking is as follows.  First, we do want the primitive 
to try and recover lost packets.  But how hard should it try?  
After all, the presumption here is that the developer is using 
this primitive for time-critical updates and, in many cases (not 
all), doesn’t even require reliability as long as losses are 
random.  So clearly, we need a mechanism that can eliminate 

loss bursts – we’ve seen that this is a real issue.  But on the 
other hand, a mechanism that tries so hard to recover data that 
it will do so even after a long effort might be counter-
productive: for many purposes, the application might not even 
want data recovered beyond some sort of timeout, or beyond 
the next update from the data source (for example, the next 
radar image).  Doing so would just overload the 
communication channel with no-longer-wanted bytes! 

Thus we settle on the mixture of properties just enumerated.  
Clearly, we’re no longer in the world of real-time multicast, 
virtual synchrony multicast, or best-effort hardware multicast.  
The need is for a new and different beast – indeed, a family of 
them, because even the requirements enumerated above could 
still correspond to quite a range of possible protocols (one can 
add ordering mechanisms, stronger fault-tolerance features, 
security features, additional consistency guarantees, etc). 

V. THE RICOCHET PROTOCOL 
In work reported elsewhere, we describe two examples of 

protocols that match this new specification.  One protocol, 
Slingshot [2], is aimed at settings with just a single group.  
The second, Ricochet [1], addresses scalability in the number 
and layout of groups, and is a closer fit to the full list of 
properties identified above.  In the interest of not repeating 
work published elsewhere1, we limit ourselves to a summary 
of the Ricochet protocol and describe why it fits the listed 
properties. 

Ricochet works using Lateral Error Correction, a loss 
recovery mechanism in which multicast receivers create XOR 
repair packets from incoming data packets and send them to 
other randomly selected receivers. The key contribution of 
Ricochet is that it decouples packet recovery latency from the 
data rate in any single group or at any single sender. This is in 
contrast with existing scalable multicast protocols, which are 
invariably dependent on the rate of outgoing data at a single 
sender in a single group – for those existing protocols, the 
larger the number of senders to a group and the larger the 
number of groups splitting a receiver’s bandwidth, the worse 
the latency of packet recovery. 

By generating repairs at receivers and exchanging them 
across group barriers, Ricochet achieves performance that 
depends on the aggregate rate of incoming data at a receiver 
across all groups, and is insensitive to the number of groups in 
the system or their overlap patterns [property 1]. In practice, 
Ricochet recovers most lost packets within milliseconds using 
the proactive repair traffic. The fraction of lost packets 
recovered depends on the bandwidth overhead expended by 
the protocol, which is a tunable parameter [property 2]. 
Ricochet deals with bursty loss by staggering the creation of 
XORs over time and across groups, tolerating loss bursts of 
tens of packets. Further, it has no single point of failure and 
degrades gracefully in the face of node failure [property 3]. 

 
1 We emphasize that the application analysis presented here did not appear 

in prior work and is the main original contribution of the present paper. 
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Histogram of Ricochet Recoveries (64 Groups)
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Figure 4: Ricochet versus SRM, 64 groups per node 

 
For lost packets that cannot be recovered through the 

proactive repair traffic, Ricochet optionally initiates reactive 
recovery – by sending a retransmission request to the sender 
of the data – which leads to full data reliability within a few 
hundred milliseconds. Applications that do not require more 
than two or three nines of reliability can switch off reactive 
recovery, obtaining probabilistic reliability guarantees 
[property 4 and 5]. 

Figure 4 compares Ricochet with a well-known non-time-
critical reliable multicast protocol, SRM [9]. This experiment 
was conducted on a 64-node cluster, with each node in 64 
groups of size 10 each. The presence of many groups impacts 
SRM performance severely, pushing its recovery latency into 
seconds, while Ricochet recovers packets three orders of 
magnitude faster – details of this test can be found in [1]. 

Ricochet offers probabilistic reliability – we are building 
layers over it that provide stronger properties, such as 
probabilistic ordering. Ricochet is available for download at 
http://www.cs.cornell.edu/projects/quicksilver/ricochet.html. 

VI. FUTURE WORK: THE TEMPEST SYSTEM 
Our work with time-critical communication has only just 

started.  Unlike Slingshot and Ricochet, which have been 
completed, Tempest is a future system, still being 
implemented as this paper was in preparation, with a 
completion target of mid to late 2006.  The idea is to use 
Ricochet in a platform that offers turn-key scalability to 
developers working specifically in the Web Services 

architecture.  Tempest takes a relatively standard Web 
Services application, built in Java, and linked with a library of 
our own design that offers a special Java “collection” class in 
which the application stores information that should be 
replicated within a RACS.   

The user interacts with Tempest through a drag-and-drop 
GUI that elicits a variety of information about the application: 
the interfaces it offers to the outside world, which ones are 
queries and which ones are updates, how the partitioning key 
can be found in the arguments to these procedures, etc.  With 
this information, Tempest automatically clones and partitions 
the service, deploys it onto a cluster running the Tempest 
runtime environment and tools, and than manages it 
dynamically to heal inconsistencies that can arise at runtime, 
for example after a crash or recovery, or in the event that 
Ricochet delivers a multicast to just some of the members of a 
RACS.   Ricochet itself is just a transport protocol used by 
Tempest when an update is sent to a service under its control. 

VII. CONCLUSIONS 
We revisited old work on a real air traffic control system (in 

use in France since 1996), and noticed a previously 
unremarked collection of requirements associated with data 
replication under timing constraints.  Dialog with developers 
of modern data centers revealed that similar needs have 
become common, but also that the solution used in the French 
system is not directly applicable in these new settings, 
primarily because they support a more general application 
mix.  With this in mind, we proposed a new definition for a 
time-critical reliable multicast. 

We then summarized work on implementing multicast 
protocols compatible with this new goal (over time, we think 
that a whole family of solutions could be developed), and 
pointed to an ongoing activity to integrate these kinds of 
protocols into an application development framework. 
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