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Addressing Fluidity through Mixed Technical-
Design Practices 
 

Abstract 

Ubicomp systems commonly rely on sensing and 

recognition capabilities to understand their context. 

While increasingly successful in simple environments, 

they face significant challenges addressing the fluid 

nature of less constrained, human settings. My thesis 

examines the construction of an interactive, mobile, 

sensor-based recognition system designed specifically 

for unconstrained settings. Based on the technical 

experiments and design explorations required to build 

such a system, my research makes three key 

contributions to ubicomp: 1) examines the context 

independence of statistical inference methods in 

unconstrained settings, 2) identifies challenges posed 

by dynamic settings to sensing and recognition 

technologies, and 3) proposes mixed technical-design 

approaches to advance ubicomp beyond simple 

environments. 

Problem Statement 

In its relatively short history as a field, ubiquitous 

computing (ubicomp) has come a long way. Context-

aware systems – a major target of ubicomp research 

efforts – have been quite successful in simple 

environments. Here, approaches such as sensor fusion 

and activity recognition have proven to be crucial [1]. 

One major immediate challenge for advancing into 

everyday human environments is to extend these 
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capabilities to account for the full complexity and 

dynamic nature of these environments. 

But in situ observations of human activity suggest that 

while such efforts may be necessary to advance the 

current state of the field, they may not be sufficient. 

For example, representations of context are considered 

problematic because the aspects of context and the 

relevance of their interplay only become obvious after 

the action has occurred, e.g., [7]. Bell and Dourish 

contend that dominant approaches – such as statistical 

based recognition – assume a world that is orderly, 

homogeneous and directly accessible to machine 

sensing and inference. Instead, they argue, the world 

in which current systems are deployed is messy and 

heterogeneous. Therefore, if ubicomp is to succeed in 

everyday environments, it must directly account for the 

inherent uncertainty and emergent nature of human 

contexts [2]. 

Systems probing such conceptual alternatives have so 

far steered clear of approaches involving recognition 

and instead address the complexity of human 

environments through design. For instance, systems 

designed for user awareness in the home handle this 

complexity by leveraging the uncertain, designing for 

the dwellers’ interpretation of open-ended 

representations (e.g., [6]) derived from manipulations 

of sensor readings. Such a system typically provides 

opportunities for the users to bridge the gap between 

its partial understanding of the home and the situated 

meanings that may emerge. While technically complex 

in their own right, these alternatives, then, shift the 

locus of the proposed solution from the technical details 

of the system to its interaction design. 

If one starts from the critiques that context can never 

be fully captured in a system [3], it might seem that no 

context-aware system will ever be adequate. My thesis 

explores what it takes to build a system for everyday 

human environments that takes the fluidity of such 

environments as central and yet leverages technical 

innovation. Specifically, the premise of this work is that 

we can build systems better suited for everyday 

contexts by 1) leveraging advances in sensing 

technologies and statistical classification, and by 2) 

addressing through design the disjunction between the 

fluid nature of everyday environments and the limited 

understanding available to technology. 

Research questions and approach 

But is this at all possible? If so, how can we benefit 

from better sensors and improved machine learning 

(ML) techniques to provide more information to our 

systems without running counter to the conviction that 

human contexts are characterized by contingency? 

What are the consequences and limitations of such an 

approach? 

My thesis opens up the research space around these 

questions and offers answers through the construction 

of an ubicomp system. Freaky – an interactive system 

aiming to support user awareness and reflection on fear 

in the wild – provides the basis to explore how to adapt 

existing technical and design strategies to address the 

emergent nature of emotion, activity and context in the 

construction of a system incorporating a sensor-driven 

emotion classifier. The challenge in building Freaky, 

then, is to design for the emergent, contingent, 

situated nature of human emotion and use whatever 

insights can be obtained from mining sensor data 

through statistical inference. 
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The originality of my approach and the main 

contribution of this research lie in demonstrating the 

careful coordination of technical and design strategies 

required to construct systems for everyday human 

environments.  

In the following, I present the studies making up my 

dissertation. I begin by looking at the field of AI’s 

attempts to build systems for everyday environments in 

order to identify alternative strategies for ubicomp 

systems. I continue by experimenting with statistical 

classifiers of emotion from physiological sensors and 

studying the relationship between physical context and 

classifiers’ performance. I describe the consequences of 

these findings on the interplay between Freaky’s 

design and technical specifications. I conclude with the 

expected contributions of my thesis. 

Lessons from interactionist AI 

The field of AI addressed similar challenges in scaling 

beyond simple environments to those currently faced 

by ubicomp. Examining a key episode in the history of 

AI – the emergence of interactionist AI to circumvent 

difficulties faced by symbolic AI – yielded strategies for 

ubicomp systems aimed at everyday environments [5].  

The success behind such technical approaches was 

owed to their coupling with innovative system design 

strategies. These strategies explicitly targeted the 

system-environment-humans interplay, e.g., taking 

advantage of structural regularities in the physical 

environment, rather than explicitly handling them in 

the code, and combining the behavioral regularities in 

the users mind with the system’s capabilities to make 

up for the technology’s lack of full understanding of the 

world. In this way, the complexity of human 

environments was tackled through a carefully 

choreographed collaboration between technical and 

design elements. 

One of the technical–design strategies identified is 

particularly salient for Freaky and, more generally, for 

ubicomp systems using recognition. Complex, formal 

techniques (e.g., plans, inference engines) can be 

included in the code without reducing user experience 

to general, prior specified categories. Instead, 

shortcomings rooted in the technical approach – 

precisely the reliance on such strict categories – are 

dealt with in the design of the system. This is achieved 

by positioning the system’s understanding of the world 

as limited, yet useful, i.e., to be engaged with by the 

users, rather than relying exclusively on the 

correctness of the inference modules. 

The implication for my system is that fear recognition 

need not be perfect, as long as the gap between the 

machine interpretation of user emotion and user 

emotion is bridged in the interaction. To this end, the 

design of the system must engage the gap between 

user emotion and the machine interpretation thereof. 

The complexity of human emotion is thus addressed in 

the user-system coupling. In this way, the demands for 

perfect or close to perfect accuracy – which would 

make or break a traditional system addressing such 

complexity only through classification – are significantly 

reduced. As I show in the following section, 

physiological models of emotion are far from perfect 

predictors for real world data.  Therefore, exploring 

mixed design-technical approaches is imperative. 
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Studying the relationship between physical 

context and recognition in a complex setting 

The goal of this study was to understand what happens 

when we move into contexts that are more complex 

from the system’s perspective. Typically, emotion 

recognition from biometric readings has been 

performed with data collected in highly constrained 

environments, e.g., laboratories. In such settings, ML 

classifiers can achieve high accuracy. The assumption 

underlying such studies is that the recognition is 

context-independent and once good biometric signals, 

sensors and features are found, one may simply repeat 

the procedure in other contexts. However, a study I 

conducted in an everyday setting showed that people 

attribute their own physiological variations to a variety 

of factors [4]. One such factor is physical activity (PA). 

The question we had to investigate before building 

Freaky was whether models can detect changes in 

physiology caused by emotions, and not other factors. 

To investigate the physical context-independence of 

statistical models of emotion, we collected data in three 

different settings: #1 experiencing fear in a controlled 

environment, without PA; #2 experiencing fear 

outdoors while the person is involved in PA; and #3 

different degrees of PA, but no emotion. 

Data was collected from 4 participants in each setting, 

using three sensors: EKG, skin conductance, respiration 

volume. For training, support vector machines (SVMs) 

were used. For brevity, I skip the ML details. 

A large number of models were trained and tested 

using different combinations of the data. The choice of 

parameters and features was informed by previous 

studies and by optimizing measures such as accuracy, 

recall and precision. Here, I present only a subset of 

the results and the implications of the study: the need 

for mixed technical-design approaches. 

The context of interest for Freaky is #2: an outdoors 

setting in which the user is involved in physical activity. 

Models trained and tested with data from condition #2 

show promising results: 90.1% average accuracy (70% 

baseline, i.e., guessing ‘no fear’ all the time). Similarly 

robust results have been obtained for the controlled 

setting (#1). 

However, when testing models on data from different 

contexts, the picture painted by the classification 

results is one of serious brittleness. For example, 

models trained in condition #2 and tested on the PA 

data (condition #3) misclassify a large proportion of the 

points as fear: 62% accuracy (70% baseline). Similarly, 

models trained in condition #1 and tested on data from 

#3 also have a hard time discriminating between fear 

and PA: 51% accuracy. Other scenarios show similarly 

poor results (train on #1, test on #2; train on #2, test 

on #1). 

As a way of providing more guidance for the models, I 
included #3 data into training sets for the other cases. 
Surprisingly, the performance degrades even more, 
e.g., training with #3 and #2 data, testing on #1: the 
model didn’t find any fear points, suggesting that the 
fear patterns are context specific. Examining the gain 
ratio for the 69 features used, we found that the gain 
ration for the same attribute varies significantly 
between #1 and #2 data.  

These results show that models may not generalize well 
to new contexts, demonstrated by the sub baseline 
performance. However, highly context specific 
models – harnessing `local’ statistical regularities in the 
data – may work for complex settings. 
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A related aspect that had to be clarified is related to the 

ambiguity and uncertainty that are central aspects of 

emotion. Statistical classifiers, in contrast, work by 

reducing noise in the data, i.e., minimizing error. How 

are these conflicting orientations playing against each 

other in the statistical models? 

One example is labeling data points as fear and non-

fear, which proved to be straightforward in the 

controlled setting (#1), but somewhat arbitrary in the 

uncontrolled setting (#2). In the controlled setting it 

was quite obvious when the person was scared; in 

contrast, in the outdoors setting, the person’s 

experience was much more fluid. Should ‘butterflies in 

the stomach’ be counted as fear? What about ‘still 

feeling a little buzz’? These examples demonstrate that 

part when moving into less constrained environments, 

categories that appear to be clear cut in simple settings 

become much more complex. Thus, part of the 

uncertainty of real-world models is due to the nature of 

the phenomena (emotion) and thus ML methods of 

removing noise can not help with this issue. However, 

this observation extends beyond emotion recognition. 

Indeed, most aspects pertaining to everyday human 

contexts exhibit a similar ambiguity – notably for 

ubicomp efforts around activity recognition.  

These observations coupled with the distinct possibility 

of context specific models to overfitting the data 

suggest that mixed approaches must be considered: on 

the one hand, advances in sensors and ML methods are 

needed to build better models and, on the other, 

innovative design closely linked to the technical 

implementation to account for the ambiguity that’s 

inherent to the data and therefore the models. 

Technical-design (re)configurations 

This section presents work in progress on the elaborate 

technical and design coordination required to build 

Freaky. The system is conceptualized as an artificial 

companion. Freaky connects to the user via biometric 

sensors and is to be placed in a baby carrier.  

  

Figure 1. Freaky with user (left) and cast surface (right). 

The interaction design as well as the artefact’s physical 

design was directly influenced by the system’s technical 

specifications, as well as limitations. Concretely, the 

limited prediction capabilities in novel contexts called 

for highly context-specific fear models: training data 

collected in the deployment setting. Even so, the 

expected accuracy will be far from perfect as overfitting 

is likely. To acknowledge this discrepancy between the 

person’s fear and Freaky’s understanding of her fear, 

its deliberately unusual shape and surface gives the 

user a sense that Freaky might have a different, yet 

hopefully useful, understanding of fear.  

This difference between machine emotion and human 

emotion also guides the interaction design. Freaky is 
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endowed through interaction design with its own 

behaviours, as well as fear: when Freaky detects fear it 

becomes scared, starts shaking and having flash backs 

(plays sounds recorded from previous scary episodes); 

in order to return to ‘normal’, Freaky requires attention 

from the user: pressure, light and acceleration sensors 

give the system an understanding of whether the user 

is petting it, protecting it, rocking it like a baby. These 

specific user actions were chosen because they are 

likely to also calm down the user.  

Endowing Freaky with its own fear and associated 

behaviours allows the user to create a narrative about 

the machine’s fear and understandings of fear as its 

own, although linked to the user’s physiology. Through 

the overlaps, as well as differences between machine 

and user fear, the user has the opportunity to reflect on 

her own, by continuously being prompted to contrast 

her assessment of fear with Freaky’s. 

Given the focus on user reflection and discovery, it is 

important that Freaky fails to detect user fear as 

seldom as possible. This design decision triggered a 

change in the way the fear model is to be optimized: 

minimizing false negatives; in turn, this meant that the 

number of false positives is likely to increase. To avoid 

frustrating the user by frequently requiring her 

attention, I am considering changes in Freaky’s 

personality design: Freaky feeds off the user’s fear. If 

a long time has passed without detecting fear, Freaky 

becomes restless and calms down when it detects fear; 

it would only require attention when it is hungry i.e., it 

hasn’t detected fear in a long time. Currently, I am 

testing these different interaction scenarios and their 

consequences on users’ experience.  

These design scenarios illustrate the subtle and 

continuous negotiation of design and technical 

specifications required to account for the fluidity of 

emotion and context the complexity of interaction in 

real world settings. 

Contribution 

Unlike simplified environments such as laboratories or 

industrial production lines, everyday human 

environments pose context dependence issues for 

recognition technologies and exhibit an ambiguity that 

makes clear cut categorization problematic. My work 

demonstrates a mixed technical-design practice that 

couples interaction design ingenuity with technical and 

computational innovation for systems that fit better in 

everyday human environments. 
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