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Abstract. We study the quality of LP-based approximation methods
for pure combinatorial problems. We found that the quality of the LP-
relaxation is a direct function of the underlying constrainedness of the
combinatorial problem. More specifically, we identify a novel phase tran-
sition phenomenon in the solution integrality of the relaxation. The solu-
tion quality of approximation schemes degrades substantially near phase
transition boundaries. Our findings are consistent over a range of LP-
based approximation schemes. We also provide results on the extent to
which LP relaxations can provide a global perspective of the search space
and therefore be used as a heuristic to guide a complete solver.
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1 Introduction

In recent years we have witnessed an increasing dialogue between the Constraint
Programming (CP) and Operations Research (OR) communities in the area of
combinatorial optimization. In particular, we see the emergence of a new area
involving hybrid solvers integrating CP- and OR-based methods.

OR has a long and rich history of using Linear Programming (LP) based re-
laxations for (Mixed) Integer Programming problems. In this approach, the LP
relaxation provides bounds on overall solution quality and can be used for prun-
ing in a branch-and-bound approach. This is particularly true in domains where
we have a combination of linear constraints, well-suited for linear programming
(LP) formulations, and discrete constraints, suited for constraint satisfaction
problem (CSP) formulations. Nevertheless, in a purely combinatorial setting, so
far it has been surprisingly difficult to integrate LP-based and CSP-based tech-
niques. For example, despite a significant amount of beautiful LP results for
Boolean satisfiability (SAT) problems (see e.g., [1-4]), practical state-of-the-art
solvers do not yet incorporate LP relaxation techniques.

In our work we are interested in studying highly combinatorial problems,
i.e., problems with integer variables and mainly symbolic constraints, such as
sports scheduling, rostering, and timetabling. CP based strategies have been
shown to outperform traditional LP/IP based approaches on these problems.
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As a prototype of a highly combinatorial problem we consider the Latin square
(or quasigroup) completion problem [5]).! A Latin square is an n by n matrix,
where each cell has one of n symbols (or colors), such that each symbol occurs
exactly once in each row and column. Given a partial coloring of the n by n cells
of a Latin square, determining whether there is a valid completion into a full
Latin square is an NP-complete problem [7]. The underlying structure of this
problem is similar to that found in a series of real-world applications, such as
timetabling, experimental design, and fiber optics routing problems [8, 9].

In this paper, we study the quality of LP based approximations for the prob-
lem of completing Latin squares. We start by considering the LP assignment
formulation [9], described in detail in section 2. In this formulation, we have n3
variables, some of them with pre-assigned values. Each variable, z;; (4,7,k =
1,2...,n), is a 0/1 variable that takes the value 1 if cell (4,7) is colored with
color k. The objective function is to maximize the total number of colored cells
in the Latin square. A natural bound for the objective function is therefore the
number of cells in the Latin squares, i.e., n2. In the LP relaxation, we relax the
constraint that the variables have to be integer, and therefore each variable can
take its value in the interval [0, 1].

We consider a variant of the problem of completing Latin squares, referred
to as Latin squares (or quasigroup) with holes. In this problem, one starts with
a complete Latin square and randomly deletes some of the values assigned to
its n? cells, which we refer to as “holes”. This problem is guaranteed to have a
completion, and therefore we know a priori that its optimal value is n?. This
problem is NP-hard and it exhibits an easy-hard-easy pattern in complexity,
measured in the runtime (backtracks) to find a completion [10].

In our study we observed an interesting phase transition phenomenon in the
solution integrality of the LP relaxation. To the best of our knowledge, this is
the first time that such a phenomenon is observed. Note that phase transition
phenomena have been reported for several combinatorial problems. However,
such results generally refer to phase transitions with respect to the solvability of
the instances, not with respect to the solution integrality for LP relaxations or
more generally with respect to the quality of approximations.

The top plot in figure 1 depicts the easy-hard-easy pattern in computational
complexity, measured in number of backtracks, for the problem of Latin squares
with holes.? The x axis in this plot corresponds to the density of holes in the
Latin square.? The left-hand side of the plot corresponds to the over-constrained
area — i.e., a region in which instances only have a few holes and therefore lots of

[

The multiplication table of a quasigroup is a Latin square. The designation of Quasi-
group Completion Problem was inspired by the work done by the theorem proving
community on the study of quasigroups as highly structured combinatorial problems.
For example, the question of the existence and non-existence of certain quasigroups
with intricate mathematical properties gives rise to some of the most challenging
search problems [6].

2 Each data point in this plot was generated by computing the median solution runtime
for 100 instances.

3 The density of holes is Number of Holes/n':%%. Note that if the denominator were

n?, we could talk about percentage of holes. It turns out that for scaling reasons,

the denominator is n'*° [10].
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Fig. 1. Easy-hard-easy pattern in complexity for the Latin square with holes problem
(top). Phase transition phenomenon in solution integrality for the assignment based
LP relaxation (bottom).

pre-assigned values. This is an “easy” region since it is easy for a solver to find
a completion, given that only a few holes need to be colored. The right-hand
side of the plot corresponds to the under-constrained area — i.e., a region in
which instances have lots of holes and therefore only a few pre-assigned colors.
This is also an easy region since there are lots of solutions and it is easy to find
a solution. The area between the over-constrained and the under-constrained
areas is the critically constrained area, where the cost in complexity peaks. In
this region, instances have a critical density in holes that makes it difficult for
a solver to find a completion: a wrong branching decision at the top of the
search tree may steer the search into a very large inconsistent sub-tree. The
bottom plot of figure 1 shows the phase transition phenomenon in the solution
integrality for the LP relaxation of the assignment formulation of the Latin
squares with holes problem. Each data point is the average (over 100 instances)
of the maximum variable value of the LP relaxation. We observe a drastic change
in solution integrality as we enter the critically constrained region (around 1.5 in
hole density): in the critically constrained area the average LP relaxation variable



solution values become fractional (less than 1), reaching 0.5 in the neighborhood
of the peak of the computational complexity. After this point, the average LP
relaxation variable solution values continue to become more fractional, but at a
slower rate. The intuition is that, in the under-constrained area, there are lots
of solutions, several colors can be assigned to the same cell, and therefore the
LP relaxation becomes more fractional.

Two interesting research issues are closely related to the quality of the LP
relaxation:

— What is the quality of LP based approximations?

— Does the LP relaxation provide a global perspective of the search space? Is
it a valuable heuristic to guide a complete solver for finding solutions to hard
combinatorial problems?

In order to address the first question, we study the quality of several LP based ap-
proximations. In recent years there has been considerably research in the area of
approximation algorithms. Approximation algorithms are procedures that pro-
vide a feasible solution in polynomial time. Note that in most cases it is not
difficult to devise a procedure that finds some solution. However, we are inter-
ested in having some guarantee on the quality of the solution, a key aspect that
characterizes approximation algorithms. The quality of an approximation algo-
rithm is the “distance” between its solutions and the optimal solutions, evaluated
over all the possible instances of the problem. Informally, an algorithm approx-
imately solves an optimization problem if it always returns a feasible solution
whose measure is close to optimal, for example within a factor bounded by a
constant or by a slowly growing function of the input size. More formally, given
a maximization problem [T and a constant o (0 < o < 1), an algorithm A is an
a-approximation algorithm for IT if its solution is at least « times the optimum,
considering all the possible instances of problem IT. We remark that approxima-
tion guarantees on the quality of solutions are worst-case notions. Quite often
the analysis is somewhat “loose”, and may not reflect the best possible ratio
that can be derived.

We study the quality of LP based approximations from a novel perspective:
we consider “typical” case quality, across different areas of constrainedness. We
consider different LP based approximations for the problem of Latin squares with
holes, including an approximation that uses a “stronger” LP relaxation, so-called
packing formulation. Our analysis shows that the quality of the approximations
is quite sensitive to the particular approximation scheme considered. Neverthe-
less, for the approximation schemes that we considered, we observe that as we
enter the critically constrained area the quality of the approximations drops
dramatically. Moreover, in the under-constrained area, approximation schemes
that use the LP relaxation information in a more greedy way (basically setting
the highest values suggested by the LP) performed considerably better than non
greedy approximations.

To address the second research question, i.e., to what extent the LP relaxation
provides a global perspective of the search space and therefore to what extent it
can be used as a heuristic to guide a complete solver, we performed the following
experiment: set the x highest values suggested by the LP relaxation (we varied
x between 1 and 5% of the variables, eliminating obvious conflicts); check if



the resulting instance is still completable. Interestingly, most of the instances in
the over-constrained and under-constrained area remained completable after the
setting dictated by the LP relaxation. This suggests that despite the fact that
the LP relaxation values are quite fractional in the under-constrained area, the
LP still provides global information that captures the multitude of solutions in
the under-constrained area. In contrast, in the critically constrained area, the
percentage of completable instances drops dramatically, as we set more and more
variables based on the LP relaxation.

In summary, our results indicate that LP based approximations go through
a drastic phase change in quality as we go from the over-constrained area to
the critically constrained area, closely correlated with the inherent hardness of
the instances. Overall, LP based approximations provide a global perspective
of the search space, though we observe a clear drop in quality in the critically
constrained region.

The structure of rest of the paper is as follows: in the next section we describe
two different LP formulations for the Latin square problem. In section 3 we
provide detailed results on the quality of different LP-based approximations
across the different constrainedness regions and in section 4 we study the value
of the LP relaxation as a backtrack search heuristic. Finally in section 5 we
provide conclusions and future research directions.

2 LP-based Problem Formulations

2.1 Assignment Formulation

Given a partial Latin square of order n, PLS, with partially assigned values to
some of its cells denoted by PLS;; = k, the Latin square completion problem
can be expressed as an integer program [9]:

n n n
max Z Z Z Tijk
i=1 j=1k=1
subject to

> wigk <1, ik
i=1
Zl‘ijk < 1, V’L,k‘
j=1

n
S e <1, Viyj
k=1

xijk — cell (i,7) takes symbol k Vi, 5,k
Zijr =1 Vi,j,k such that PLS;; =k
Tijk € {0, 1} Vi, 5,k
iL,j,k=1,...,n
If the PLS is completable, the optimal value of this integer program is n?2, i.
all cells in the PLS can be legally colored.

e.,



2.2 Packing Formulation

An alternate formulation for the Latin square problems is the packing formula-
tion [11,12]. The assignment formulation described in the previous section uses
variables z;;;, for each cell (i,j) and each color k. Instead, note that the cells
having the same color in a PLS form a (possibly partial) matching of the rows
and columns of the PLS. Informally, a matching corresponds to a full or partial
valid assignment of a given color to the rows (or columns) of the Latin square
matrix. For each color k, let M, be the set of all matchings of rows and columns
that extend the matching corresponding to color k in a PLS. For each color k
and for each matching M € Mp, we introduce a binary variable yx ;. Using this
notation, we can generate the following IP formulation:

maxz Z ‘M|ykJV[

k=1 MeMy
subject to
> w=1, Vk
MeMy,

Z Z yem <1, Vi, j

k=1 MeMy:(i,j) €M
v € {0,1}  VEk, M.

Once again, we consider the linear programming relaxation of this formula-
tion by relaxing the integrality constraint, i.e., the binary variables take values in
the interval [0,1]. Note that, for any feasible solution y to this linear program-
ming relaxation, one can generate a corresponding feasible solution x to the
assignment formulation, by simply computing x;;, = ZMeMk:(i,j)eM yram- This
construction implies that the value of the linear programming relaxation of the
assignment formulation (which provides an upper bound on the desired integer
programming formulation) is at least the bound implied by the LP relaxation
of the packing formulation; that is, the packing formulation provides a tighter
upper bound. Interestingly, from the solution obtained for the assignment for-
mulation one can generate a corresponding solution to the packing formulation,
using an algorithm that runs in polynomial time. This results from the fact that
the extreme points of each polytope

Po={z : Y wiju <1(G=1,...,n), Y i <1(i=1,...,n), = >0},
i=1 j=1

for each k = 1,...,n are integer, which is a direct consequence of the Birkhoff-
von Neumann Theorem [13]. Furthermore, these extreme points correspond to
matchings, i.e., a collection of cells that can receive the same color. Therefore,
given the optimal solution to the assignment relaxation, we can write it as a
convex combination of extreme points, i.e., matchings, and hence obtain a fea-
sible solution to the packing formulation of the same objective function value.
Hence, the optimal value of the packing relaxation is at most the value of the



assignment relaxation. It is possible to compute the convex combination of the
matchings efficiently. Hence, the most natural view of the algorithm is to solve
the assignment relaxation, compute the decomposition into matchings, and then
perform randomized rounding to compute the partial completion.

In the next section we study the quality of different randomized LP-based ap-
proximations for the Latin square problem based on the assignment and packing
formulations.

3 Quality of LP-based Approximations

We consider LP-based approximation algorithms for which we solve the lin-
ear programming relaxation of the corresponding formulation (assignment for-
mulation or packing formulation), and (appropriately) interpret the resulting
fractional solution as providing a probability distribution over which to set the
variables to 1 (see e.g., [14]).

Consider the generic integer program max cz subject to Az = b, z € {0, 1},
and solve its linear relaxation to obtain z*. If each variable z; is then set to 1
with probability z;*, then the expected value of the resulting integer solution is
equal to the LP optimal value, and, for each constraint, the expected value of the
left-hand side is equal to the right-hand side. Of course, we have no guarantee
that the resulting solution is feasible, but it provides a powerful intuition for
why such a randomized rounding is a useful algorithmic tool (see e.g., [14]). This
approach has led to striking results in a number of settings (e.g., [15-17]).

3.1 Uniformly at Random

Based on the Assignment Formulation. — This approximation scheme selects
an uncolored cell (¢, 7) uniformly at random, assigning a color k with probability
equal to the value of the LP relaxation for the corresponding variable z;jj.
Before proceeding to the next uncolored cell, we perform forward checking, by
invalidating the color just set for the current row and column.

Algorithm 1 Random LP Assignment
Input: an assignment LP solution x for an order n PLS.
Repeat until all uncolored cells have been considered:
Randomly choose an uncolored cell (3, j).
Set color;; < k with probability ;.
Invalidate color k for row i and column j:

LTipk < O,Vp # ]

Tqjk — 0,Vg #1

Output: the number of colored cells.
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Fig. 2. (a) Random LP Assignment Approximation and (b) Random LP Packing Ap-
proximation Quality.

Based on the Packing Formulation. — As we mentioned above we can gener-
ate a solution for the packing formulation from the assignment formulation in
polynomial time. Once we have the packing LP relaxation y, we can proceed
to color the cells. In the following we present a randomized rounding scheme.
This scheme interprets the solution for a variable yx; as the probability that
the matching M € My, is chosen for color k. The scheme selects randomly such
a matching for each color k, according to these probabilities. Note that this al-
gorithm can output matchings that overlap. In such cases, we select an arbitrary
color from the colors involved in the overlap.

Algorithm 2 Random LP Packing
Input: a packing LP solution M for an order n PLS.
Repeat for each color k:
Interpret the values of yxpr, M € My, as probabilities.
Select exactly one matching according to these probabilities.
Output: the number of colored cells.

Figure 2 plots the quality of the approximation using the algorithm Ran-
dom LP Assignment (left) and the algorithm Random LP Packing (right), as
a function of the hole density (the quality of the approximation is measured as
number of colored holes/number of initial holes ). Both plots display a similar
qualitative behavior: we see a clear drop in the quality of the approximations
as we enter the critically constrained area. The rate at which the quality of the
approximation decreases slows down in the under-constrained area. This phe-
nomenon is similar to what we observed for the solution integrality of the LP
relaxation. However, the quality of the approximation given by the algorithm
Random LP Packing is considerably better, especially in the under-constrained
area (note y-axis scales in figure 2). This was expected given that the LP relax-
ation for the packing formulation is stronger than the relaxation given by the

45



assignment formulation (see figure 3). In fact Random LP Packing is guaranteed
to be at most (1 — 1) ~ 0.63 from the optimal solution [11]. For approximations
based on the assignment formulation the known formal guarantee is a factor 0.5
from optimal [9].
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Fig. 3. Random LP Packing vs. Random LP Assignment — Average Case.

3.2 Greedy Random Approximations

Based on the Assignment Formulation. — The following rounding scheme takes
as input an assignment LP relaxation. It considers all uncolored cells uniformly
at random, and assigns to each such cell the color that has the highest value
of the LP relaxation. After each assignment, a forward check is performed, by
invalidating the color just set for the current row and column.

Algorithm 3 Greedy Random LP Assignment
Input: an assignment LP solution = for an order n PLS.
Repeat until all uncolored cells have been considered:
Randomly choose an uncolored cell (4, 7).
Find & < n that maxy, x;z.
If 23 > 0, set color;; < k, invalidate color k for row i and column j:

xipk — Ovvp 7é .7

ZTgjk — 0,Yqg #1

Output the number of colored cells.

Based on the Packing Formulation. — For the LP packing formulation, we also
consider a cell based approach. All uncolored cells are considered uniformly at
random. For one such cell (4,75), we find a color k corresponding to M € My,
Vk = 1,...,n, such that ygps is the highest value of the LP relaxation for all
matchings M that match row i to column j. We perform forward checking by
invalidating color k for row ¢ and column j (i.e., removing (4,j) from all the
matchings M € My).



Algorithm 4 Greedy Random LP Packing
Input: a packing LP solution y for an order n PLS.
Repeat until all uncolored cells have been considered:
Randomly choose an uncolored cell (4, 7).
Find a matching M € M;Vk =1,...,n, such that ¢ is matched to j in M, with
the highest value of the LP relaxation.
If such a matching exists, set color;; < k and invalidate color k for row i and

column j:
VM’ € My,Vp # j, remove (i, p) from M’

VM’ € My,Vq # i, remove (q, ) from M’
Output: the number of colored cells.
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Fig. 4. (a) Greedy Random LP Assignment and (b) Greedy Random LP Packing.

Figure 4 plots the quality of the approximation using the algorithm Greedy
Random LP Assignment (left) and the algorithm Greedy Random LP Packing
(right). Again, both plots display a similar qualitative behavior: we see a clear
drop in the quality of the approximations as we enter the critically constrained
area. In addition, and contrarily to the results observed with the random approxi-
mations discussed earlier, both plots show that the quality of the approximation
increases in the under-constrained area. Recall that these approximations are
greedy, picking the next cell to color randomly and then just setting it to the
highest value suggested by the LP. This seems to suggest that the information
provided by the LP is indeed valuable, which is further enhanced by the fact
that forward checking is performed after each color assignment to remove incon-
sistent colors from unassigned cells. Interestingly, in the under-constrained area,
the quality of the Random LP Packing approximation is slightly worse than the
the Random LP Assignment approximation. (See figure 5(a).) The intuition is
that, because this approximation “optimizes” the entire matchings per color, it
is not as greedy as the approximation based on the assignment formulation and
therefore it does not take as much advantage of the look-ahead as the Greedy
Random LP Assignment does.
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3.3 Greedy Deterministic Approximations

We now consider deterministic approximations that are even greedier than the
previous ones: they pick the next cell/color to be set by finding the cell/color
with the highest LP value.

Based on the Assignment Formulation. — Greedy Deterministic LP Assignment
considers the uncolored cell values of the LP relaxation in decreasing order. After
each assignment, forward check ensures the validity of the future assignments,
so that the end result is a valid extension of the original PLS.

Algorithm 5 Greedy Deterministic LP Assignment
Input: an assignment LP solution x for an order n PLS.
Repeat until all uncolored cells have been considered:
Find max ;5 such that (4, j) is an uncolored cell.
Set color;j « k.
Invalidate color k for row i and column j:

LTipk < Ovvp # ]

Zgjk — 0,Vqg #1

Output: the number of colored cells.

Based on the Packing Formulation. — Now we turn out attention to a deter-
ministic rounding scheme for the packing LP formulation. We describe a greedy
rounding scheme. We consider the matchings M € My, Vk = 1,...,n, in de-
creasing order of the corresponding yias values. At each step we set the color
for the uncolored cells corresponding to the current matching. For each such
cell (4, 7), we perform forward checking by invalidating the color k for row 7 and
column j.
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Algorithm 6 Greedy Deterministic LP Packing
Input: a packing LP solution y for an order n PLS.
Repeat until no more options (i.e., max = 0) or all cells colored:

Find the matching M € My, Vk = 1,...,n, that has the highest value of the
LP relaxation.

If such a matching exists, set color; ; < k, V(4,j) such that cell (¢,7) is not
colored and i is matched to j in M. Invalidate color k for row ¢ and column j:

VM' € My,Vp # j, remove (i, p) from M’

VM' € My,Vq # i, remove (q,j) from M’

Output: the number of colored cells.

Figure 5(b) compares the quality of the approximation Greedy Determinis-
tic LP Assignment against the approximation Greedy Deterministic LP Pack-
ing. What we observed before for the case of the greedy random approxima-
tions is even more clear for greedy deterministic approximations: in the under-
constrained region, Greedy Deterministic LP Assignment clearly outperforms
Greedy Deterministic LP Packing. The intuition is that a similar argument as
the one mentioned for the random greedy approximations explains this phe-
nomenon. Greedy Deterministic LP Packing sets the color for more cells at the
same time (i.e., all the uncolored cells in the considered matching), as opposed
to Greedy Deterministic LP Assignment and even Greedy Random LP Packing,
which consider just one uncolored cell at each step. Thus, both the Greedy Deter-
ministic LP Assignment and the Greedy Random LP Packing perform forward
checking after setting each cell. This is not the case for Greedy Deterministic
LP Packing: this approximation performs forward checking only after setting a
matching. In figure 6, we compare the performance of the approximations that
perform the best in each of the cases considered against a purely blind random
strategy. We see that the greedy approximations based on the LP assignment
formulation perform better. Overall, all the approximations we have tried out-
perform the purely blind random strategy. We remark that, the quality of the
purely random strategy improves as the problem becomes "really easy” (i.e., the
right hand side end of the graph). In this small region, the pure random method
slightly outperforms the Random LP approximations: as the problem becomes
easier (i.e., many possible solutions), the LP solution becomes more fractional
and thus is less likely to provide satisfactory guidance.

4 LP as a Global Search Heuristic

Related to the quality of the LP based approximations is the question of whether
the LP relaxation provides a good global perspective of the search space and
therefore can be used as a heuristic to guide a complete solver for finding solu-
tions to hard combinatorial problems. To address this question we performed the
following experiment: set the « highest values suggested by the LP relaxation (we
varied z between 1 and 5% of the variables, eliminating obvious conflicts); run a
complete solver on the resulting instance and check if it is still completable. In
order to evaluate the success of the experiment, we also set x values uniformly at
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random (avoiding obvious row/column conflicts) and then check if the resulting
instance is completable.

Figure 7 displays the percentage of satisfiable instances after setting 1 hole
(left) and after setting 5% of the holes (right), based on the highest value of the
LP relaxation (assignment formulation) against the purely random strategy. As
expected, the percentage of satisfiable instances when using the LP guidance is
clearly higher than when using a random strategy.

Interestingly, the information provided by the LP seems quite robust, both
in the over-constrained and under-constrained area, with nearly 100% of the
instances satisfiable after the setting. On the other hand, in the critically con-
strained area, the information provided by the LP relaxation is less accurate,
even in the case of setting just one hole; in the critically constrained area several
instances become unsatisfiable.* As we set more and more values based on the LP

4 Recall that we are using the Latin square with holes and therefore we know that

each instance is completable (satisfiable).

4



relaxation, the percentage of unsatisfiable instances in the critically constrained
area increases dramatically.

5 Conclusions

We have studied the quality of LP based approximations for purely combina-
torial problems. Our first results show that the quality of the approximation is
closely correlated to the constrainedness of the underlying constraint satisfaction
problem. In fact, we see that solution quality sharply degrades in the critically
constrained areas of the problem space. This abrupt change in solution qual-
ity directly correlates with a phase transition phenomenon observed in solution
integrality of the LP relaxation. At the phase transition boundaries, the LP so-
lutions become highly fractional. The phase transition in LP solution integrality
coincides with the peak in search cost complexity.

We considered two different LP formulations for the Latin square problem;
an assignment based and a packing based formulation. The packing formulation
is provably stronger than the assignment based formulation. This is reflected
in terms of the quality of random approximations, i.e., approximations that
uniformly at random pick the next cell to be colored and assign it a randomly,
weighted according to the LP relaxation values.

There are different ways, however, of interpreting the LP relaxation values.
For example, in a more greedy approach, we assign colors to cells starting with
the highest LP relaxation values. Such a greedy scheme is beyond formal analysis
at this point. However, empirically we found that in this approach the assign-
ment based formulation gives higher quality assignments (more colored cells)
than the packing based formulation. So, interestingly, a tighter LP formulation
does not necessarily lead to better approximations when constructing solutions
incrementally.

Finally, we considered the quality of LP relaxation when used as a global
search heuristic. In particular, we considered setting some initial cells based on
the LP relaxation (using the highest values in the LP relaxation of the assign-
ment formulation). We then checked whether the partial Latin square could still
be completed. We found that outside the critically constraint problem regions
the LP relaxation provides good guidance. However, on critically constrained
problems, even when just one cell is colored, we see that the relaxation starts
making some mistakes. When setting 5% of the cells based on the LP relax-
ation, the error rate becomes substantial in the critical area. These results show
that although LP relaxations can provide useful high-level search guidance, on
critically constrained problems, it makes sense to combine LP guidance with a
randomized restart strategy to recover from potential incorrect settings at the
top of the search tree.

LP relaxations are traditionally used for search space pruning. In this set-
ting, a tighter LP formulation provides more powerful pruning. However, our
results indicate that when LP relaxations are used in approximation schemes
or as a global search heuristic, the situation is more complex, with the tightest
LP bounds not necessarily leading to the best approximations and/or search
guidance.
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