
Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Completeness and incompleteness in nominal Kleene algebra

Dexter Kozen a,∗, Konstantinos Mamouras b, Alexandra Silva c

a Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA
b CIS Department, University of Pennsylvania, Philadelphia, PA 19104-6309, USA
c Department of Computer Science, University College London, London WC1E 6BT, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 January 2016
Received in revised form 9 June 2017
Accepted 11 June 2017
Available online 16 June 2017

Keywords:
Kleene algebra
Nominal sets
Programming logic

Gabbay and Ciancia (2011) presented a nominal extension of Kleene algebra as a
framework for trace semantics with statically scoped allocation of resources, along with
a semantics consisting of nominal languages. They also provided an axiomatization that
captures the behavior of the scoping operator and its interaction with the Kleene algebra
operators and proved soundness over nominal languages. In this paper, we show that the
axioms proposed by Gabbay and Ciancia are not complete over the semantic interpretation
they propose. We then identify a slightly wider class of language models over which they
are sound and complete.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Nominal sets are a convenient framework for handling name generation and binding. They were introduced by Gabbay
and Pitts [1] as a mathematical model of name binding and α-conversion.

Nominal extensions of classical automata theory have recently been explored [2], motivated by the increasing need
for tools for languages over infinite alphabets. These play a role in various areas, including XML document processing,
cryptography, and verification. An XML document can be seen as a tree with labels from the (infinite) set of all unicode
strings that can appear as attribute values. In cryptography, infinite alphabets are used as nonces, names used only once in
cryptographic communications to prevent replay attacks. In software verification, infinite alphabets are used for references,
objects, pointers, and function parameters.

In this paper, we focus on axiomatizations of the regular languages and how they can be lifted in the presence of a
binding operator ν and an infinite alphabet of names. This work builds on the recent work of Gabbay and Ciancia [3],
who presented a nominal extension of Kleene algebra (KA), called nominal Kleene algebra (NKA), as a framework for trace
semantics with statically scoped allocation of resources. Gabbay and Ciancia [3] also presented an interpretation NL for NKA
over nominal languages and provided a set of six axioms (Definition 2.8) that capture the behavior of the scoping operator
ν and its interaction with the usual Kleene algebra operators. They showed that these axioms, in conjunction with the
KA axioms (Definition 2.1), are sound over NL, but left open the question of completeness. In this paper we address this
problem.

We first show (Theorem 4.1) that the axioms are not complete for the language model NL proposed by Gabbay and
Ciancia. This is due to the presence of what Gabbay and Ciancia call non-maximal planes. The issue is rather technical, but

* Corresponding author.
E-mail addresses: kozen@cs.cornell.edu (D. Kozen), mamouras@seas.upenn.edu (K. Mamouras), alexandra.silva@gmail.com (A. Silva).
URLs: http://www.cs.cornell.edu/~kozen (D. Kozen), http://www.seas.upenn.edu/~mamouras (K. Mamouras), http://www.alexandrasilva.org (A. Silva).
http://dx.doi.org/10.1016/j.jlamp.2017.06.002
2352-2208/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2017.06.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:kozen@cs.cornell.edu
mailto:mamouras@seas.upenn.edu
mailto:alexandra.silva@gmail.com
http://www.cs.cornell.edu/~kozen
http://www.seas.upenn.edu/~mamouras
http://www.alexandrasilva.org
http://dx.doi.org/10.1016/j.jlamp.2017.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2017.06.002&domain=pdf

18 D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32
x + (y + z) = (x + y) + z x(yz) = (xy)z

x + y = y + x x0 = 0x = 0

x + 0 = x + x = x 1x = x1 = x

x(y + z) = xy + xz (x + y)z = xz + yz

1 + xx∗ ≤ x∗ 1 + x∗x ≤ x∗

y + xz ≤ z ⇒ x∗ y ≤ z y + zx ≤ z ⇒ yx∗ ≤ z

Fig. 1. Axioms of Kleene algebra (KA).

we explain it in detail in §3.1 and show exactly why it causes completeness to fail. We then present in §3.2 our alternative
language model AL that is a mild modification of NL and develop some basic properties of the model. We also introduce in
§3.3 a variety of sound interpretations in which the scoping operator is interpreted as a summation operator over a fixed
set. The axioms are not complete over these models either, but for rather uninteresting reasons. However, these models
attest to the versatility of NKA.

Our main result is completeness of the axioms over AL (Theorem 4.2). Completeness is achieved by first transforming
each expression to an equivalent expression for which only the usual Kleene algebra axioms (Definition 2.1) are needed. The
steps of the transformation make use of the KA axioms along with axioms proposed by Gabbay and Ciancia (Definition 2.8)
for the scoping operator. The proof is quite long but is broken into four steps: exposing bound variables, scope configuration,
canonical choice of bound variables, and semilattice identities. In the last step, we make use of a technique of [4] that exploits
the fact that the Boolean algebra generated by finitely many regular sets consists of regular sets and is atomic. Hence,
expressions can be written as sums of atoms.

The paper is organized as follows. In §2 we recall basic material on nominal sets, Kleene algebra (KA), and nominal
Kleene algebra (NKA) of Gabbay and Ciancia [3]. In §3, we discuss various interpretations: the original language model NL
proposed in [3], our own alternative language model AL, and the summation models. We give a precise description of the
difference between NL and AL. In §4, we present our main results on incompleteness and completeness (Theorems 4.1 and
4.2, respectively). In §5 we present concluding remarks and directions for future work.

2. Background

In this section we review basic background material on Kleene algebra (KA), nominal sets, and the nominal extension of
KA (NKA) of Gabbay and Ciancia [3]. For a more thorough introduction, the reader is referred to [5,6] for nominal sets, to
[7] for Kleene (co)algebra, and to [3] for NKA.

2.1. Kleene algebra (KA)

Kleene algebra is the algebra of regular expressions. Regular expressions are normally interpreted as regular sets of
strings, but there are other useful interpretations: binary relation models used in programming language semantics, the
(min, +) algebra used in shortest path algorithms, models consisting of convex sets used in computational geometry, and
many others.

Definition 2.1 (Kleene algebra (KA)). A Kleene algebra is any structure (K , +, ·,∗ , 0, 1) where K is a set, + and · are binary
operations on K , ∗ is a unary operation on K , and 0 and 1 are constants, satisfying the axioms listed in Fig. 1, where we
define x ≤ y iff x + y = y. The top block of eleven axioms (those not involving ∗) are succinctly stated by saying that the
structure is an idempotent semiring under +, ·, 0, and 1. The term idempotent refers to the axiom x + x = x. Due to this
axiom, the ordering relation ≤ is a partial order. The remaining four axioms involving ∗ together say that x∗ y is the ≤-least
z such that y + xz ≤ z and yx∗ is the ≤-least z such that y + zx ≤ z.

2.2. Nominal sets

Nominal sets originated in the work of Fraenkel in 1922 and were originally used to prove the independence of the axiom
of choice and other axioms. They were introduced in computer science by Gabbay and Pitts [1] as a formalism for modeling
name binding in quantificational logic and the λ-calculus. Since then there has been a substantial amount of research on
nominal sets in a wide variety of fields related to logic in computer science. Recent work includes the development of new
programming languages [8,9] and their use in learning of automata [10].

In a nutshell, nominal sets are sets closed under the action of a certain group of symmetries GA (defined below) and
satisfying a certain finite-support condition. Nominal sets may be infinite, but the closure under symmetries makes them
finitely representable and tractable for algorithms.

D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32 19
Definition 2.2 (Group action and G-set). A group action of a group G on a set X is a map G × X → X , written as juxtaposition,
such that π(ρx) = (πρ)x and 1x = x for all π, ρ ∈ G and x ∈ X . Here 1 is the unit of group G .

A G-set is a set X equipped with a group action G × X → X . A function f : X → Y between G-sets is called equivariant
if it commutes with the group action; that is, for all x ∈ X and π ∈ G , f (πx) = π(f (x)). Viewing π as a map x �→ πx, we
can write f ◦ π = π ◦ f . The G-sets and equivariant functions form a category.

Definition 2.3 (fix x and Fix A). Let X be a G-set. For x ∈ X and A ⊆ X , define the subgroups

fix x = {π ∈ G | πx = x} Fix A =
⋂

x∈A

fix x = {π ∈ G | ∀x ∈ A πx = x}.

If X is a G-set, then so is its powerset, with π A = {πx | x ∈ A} for A ⊆ X . In general, fix A = {π ∈ G | π A = A} and Fix A
are different: fix A fixes A setwise, whereas Fix A fixes A pointwise.

Let A be a fixed countably infinite set of atoms. The permutations of A, that is, the bijective functions π : A → A, form
a group in which the identity permutation is the unit element, inverse is functional inverse, and multiplication is function
composition.

Definition 2.4 (Nominal sets). Let GA be the group of all finite permutations of A, that is, permutations generated by trans-
positions (a b). The group GA acts on A in the obvious way, making A into a GA-set. If X is another GA-set, we say that
A ⊆ A supports x ∈ X if Fix A ⊆ fix x; in other words, any finite permutation that fixes A pointwise also fixes x. An element
x ∈ X has finite support if there is a finite set A ⊆A that supports x. A nominal set is a GA-set X such that every element of
X has finite support.

It can be shown that if A, B ⊆ A and A ∪ B �= A, then Fix(A ∩ B) is the smallest subgroup of GA containing both Fix A
and Fix B . Thus if A and B are finite and support x, then so does A ∩ B . It follows that if x is finitely supported, there is a
unique ⊆-minimal set that supports it.

Definition 2.5 (Support, freshness). Let X be a nominal set and x ∈ X . The support of x, denoted supp x, is the unique setwise
minimal finite subset of A that supports x. We write a#x and say a is fresh for x if a /∈ supp x.

The standard example of a nominal set is the set of λ-terms over variables A. The set of free variables of a λ-term is its
support. Any permutation of the variables that fixes the free variables is considered to fix the term; this captures the idea
of α-equivalence in the framework of nominal sets. A variable is fresh for a λ-term if it has no free occurrence in that term.

One can show that A supports x iff π A supports πx. In particular, suppπx = π supp x, thus the function supp is equiv-
ariant. Also, for x ∈ X , Fix supp x ⊆ fix x ⊆ fix supp x, and both inclusions can be strict.

2.3. Nominal Kleene algebra (NKA)

Definition 2.6 (Syntax of NKA). The abstract syntax of nominal Kleene algebra (NKA) expressions over an alphabet � of
primitive letters is defined by the following grammar:

e ::= a ∈ � | e + e | ee | e∗ | 0 | 1 | νa.e.

Thus expressions are just KA expressions with the addition of the binding construct νa.e. The scope of the binding νa in
νa.e is e. By convention, we take the precedence of the binding operator νa to be lower than product and star but higher
than sum; thus in products, scopes extend as far to the right as possible. For example, νa.ab νb.ba should be read as
νa.(ab νb.(ba)) and not (νa.ab)(νb.ba). The set of NKA expressions over � is denoted Exp� .

For a finite set A = {a1, . . . , an} ⊆A, we will use the notation ν A.e as a shorthand for νa1.νa2. · · ·νan.e.

Definition 2.7 (ν-strings and �ν). A ν-string over an alphabet � is an expression with no occurrence of +, ∗ , or 0, and no
occurrence of 1 except to denote the null string, in which case we use ε instead:

x ::= a ∈ � | xx | ε | νa.x.

Two ν-strings that are equivalent modulo associativity of multiplication are considered equal. The set of ν-strings over � is
denoted �ν .

The free variables FV(e) of an expression or ν-string e are defined inductively as usual. We write e[a/x] for the result of
substituting a for variable x in e.

The following six axioms were proposed by Gabbay and Ciancia [3] to describe how the binding operator ν interacts
with the KA operators.

20 D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32
Definition 2.8 (Nominal axioms [3]).

(N1) νa.(d + e) = νa.d + νa.e (N4) a#e ⇒ νb.e = νa.(a b)e
(N2) νa.νb.e = νb.νa.e (N5) a#e ⇒ (νa.d)e = νa.de
(N3) a#e ⇒ νa.e = e (N6) a#e ⇒ e(νa.d) = νa.ed.

Intuitively, (N1) says that variable binding commutes with +; (N2) says that binding of two variables can be done in
either order; (N3) says that a binding is useless if nothing is bound; (N4) says that a fresh name can be swapped in for a
bound variable (this is essentially α-conversion); and (N5) and (N6) say that a scope may be extended on the right or left
provided no free variable is captured.

3. Models

Definition 3.1 (Nominal Kleene algebra (NKA)). A nominal Kleene algebra (NKA) over atoms A is a structure (K , +, ·,∗ , 0, 1, ν)

with binding operation ν : A × K → K such that

• K is a nominal set over atoms A; that is, there is a group action GA × K → K such that all elements of K have finite
support;

• the KA operations and ν are equivariant in the sense that

π(x + y) = πx + π y π(xy) = (πx)(π y) π0 = 0

π(x∗) = (πx)∗ π(νa.e) = ν(πa).(πe) π1 = 1

for all π ∈ GA; that is, the action of every π ∈ GA is an automorphism of K ; and
• all the KA and nominal axioms (Definitions 2.1 and 2.8, respectively) are satisfied.

3.1. Nominal language model

Now we describe an interpretation NL : ExpA → P(A∗) that interprets NKA expressions over A as certain subsets of A∗ ,
the set of finite-length strings over A. This is the nominal language model introduced in [3]. Our definition is equivalent
to that of [3] but broken into a two-step process involving an intermediate interpretation I over ν-strings. As noted in [3],
care must be taken when defining the product of languages to avoid capture.

First we give an intermediate interpretation I : ExpA →P(Aν) of expressions as sets of ν-strings over A.

Definition 3.2. Define I : ExpA → P(Aν) to be the homomorphic interpretation in which the regular operators +, ·, ∗, 0,
and 1 have their usual set-theoretic interpretations, and

I(νa.e) = {νa.x | x ∈ I(e)} I(a) = {a}.
We thus maintain the scoping of ν-subexpressions in the ν-strings.

For example,

I(νa.a) = {νa.a}
I(νa.νb.(a + b)) = {νa.νb.a, νa.νb.b}

I(νa.(νb.ab)(a + b)) = {νa.(νb.ab)a, νa.(νb.ab)b}
I(νa.(ab)∗) = {νa.ε, νa.ab, νa.abab, νa.ababab, . . .}
I((νa.ab)∗) = {ε,νa.ab, (νa.ab)(νa.ab), (νa.ab)(νa.ab)(νa.ab), . . .}.

Finally, we describe the map NL :Aν →P(A∗) on ν-strings and NL : ExpA →P(A∗) on NKA expressions. Given a ν-string
x, first α-convert so that all bindings in x are distinct and different from all free variables in x, then delete all binding
operators νa to obtain a string x′ ∈ A

∗ . For example, (νa.ab)(νa.ab)(νa.ab)′ = abcbdb. Here we have α-converted to obtain
(νa.ab)(νc.cb)(νd.db), then deleted the binding operators to obtain abcbdb. The choice of variables in the α-conversion
does not matter as long as they are distinct and different from the free variables. Then for each ν-string x and expression e,
define

NL(x) = {πx′ | π ∈ Fix FV(x)} NL(e) =
⋃

x∈I(e)

NL(x), (3.1)

where x′ is the string obtained from x as described above.

D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32 21
The set NL(x) is the plane x′ �

FV(x) in the terminology and notation of [3].1 Thus we let the bound variables range
simultaneously over all possible values in A they could take on, as long as they remain distinct and different from the free
variables, and we accumulate all strings obtained in this way. For example,

NL(νa.a) = A

NL(νa.νb.(a + b)) = A

NL(νa.(νb.ab)b) = {acb | a, c ∈ A, a, c,b distinct}
NL(νa.(ab)∗) = {(ab)n | n ≥ 0, a ∈A, a �= b}
NL((νa.ab)∗) = {a1ba2b · · ·anb | n ≥ 0, ai ∈A, all ai �= a j, ai �= b}.

As mentioned, the fresh variables used in the α-conversion do not matter, thus for any y ∈ NL(x),

NL(x) = {π y | π ∈ Fix FV(x)}. (3.2)

For ν-strings x, y ∈ A
ν , write x ≡ y if x and y are equivalent modulo the nominal axioms (Definition 2.8). The following

lemma says that the nominal axioms alone are sound and complete for equivalence between ν-strings in the nominal
language model.

Lemma 3.3. For x, y ∈A
ν , x ≡ y if and only if NL(x) = NL(y).

Proof. Soundness (the left-to-right implication) holds because each nominal axiom preserves NL, as is not difficult to check.
For completeness (the right-to-left implication), suppose NL(x) = NL(y). We must have FV(x) = FV(y), because if a ∈ FV(x) −
FV(y), then NL(y) would contain a string with no occurrence of a, whereas all strings in NL(x) contain an occurrence of a.
Now α-convert x and y using (N4) so that all bound variables are distinct and different from the free variables, and extend
all scopes to the entire string using (N5) and (N6), so that x ≡ ν A.x′ and y ≡ νB.y′ for some x′, y′ ∈ A

∗ . By (3.2), x′ = π y′
for some π ∈ Fix FV(x) = Fix FV(y), so x ≡ π y, and π y ≡ y by α-conversion. �
Lemma 3.4. For any x ∈A

∗ and A, B ⊆ FV(x),

A ⊆ B ⇔ NL(ν A.x) ⊆ NL(νB.x)

(in the notation of [3], A ⊆ B ⇔ x
�

B ′ ⊆ x

�

A′ , where A′ = FV(x) − A and B ′ = FV(x) − B).

Proof. If A ⊆ B , then B ′ ⊆ A′ , so Fix A′ ⊆ Fix B ′ . Then

NL(ν A.x) = {πx | π ∈ Fix A′} ⊆ {πx | π ∈ Fix B ′} = NL(νB.x).

Conversely, if a ∈ A − B , then x[b/a] ∈ NL(ν A.x) − NL(νB.x), where b is any element of A − FV(x). �
Lemma 3.5. Let y ∈ NL(e) and A ⊆ FV(y) maximal such that NL(ν A.y) ⊆ NL(e) (in the notation of [3], this is y

�

A′ ∝ NL(e), where
A′ = FV(y) − A). Then ν A.y ∈ I(e), and ν A.y is the unique ν-string up to nominal equivalence for which this is true.

Proof. Let x1, . . . , xn ∈ I(e) be all ν-strings such that y ∈ NL(xi). There are only finitely many of these. Then

NL(ν A.y) ⊆ NL(x1) ∪ · · · ∪ NL(xn) ⊆ NL(e).

Using the nominal axioms (Definition 2.8), we can move the quantification in each xi to the front of the string and α-convert
so that the quantifier-free part is y. This is possible because y ∈ NL(xi). Thus we can assume without loss of generality that
each xi = ν Ai .y for some Ai ⊆ FV(y).

Let z ∈ NL(ν A.y) such that (FV(z) − FV(ν A.y)) ∩ FV(ν Ai .y) =∅ for 1 ≤ i ≤ n. Since

NL(ν A.y) ⊆ NL(x1) ∪ · · · ∪ NL(xn) = NL(ν A1.y) ∪ · · · ∪ NL(ν An.y),

we must have z ∈ NL(ν Ai .y) for some i. But then FV(ν A.y), FV(ν Ai .y) ⊆ FV(z) and FV(ν Ai .y) ⊆ FV(ν A.y) by choice of z,
therefore A ⊆ Ai . Since A was maximal, A = Ai . �

Lemma 3.5 gives the essential content of [3, Theorem 3.16]. This is important for us because it says that the set NL(e)
uniquely determines the maximal elements of I(e) up to nominal equivalence (Lemma 3.7 below).

1 We do not present the construction of [3], as it is rather involved; however, we will occasionally provide translations for the benefit of readers who
are familiar with that work.

22 D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32
Definition 3.6. Let Î(e) = {x ∈ I(e) | NL(x) is maximal in NL(e)}.

Lemma 3.7. NL(e1) = NL(e2) if and only if Î(e1) = Î(e2) modulo the nominal axioms (Definition 2.8).

Proof. Suppose NL(e1) = NL(e2). By Lemma 3.5, each y ∈ NL(e1) is contained in a unique maximal NL(ν A.y), and ν A.y ∈
Î(e1). As NL(e1) = NL(e2), these planes are also contained in NL(e2). Symmetrically, the maximal planes of NL(e2) are
contained in NL(e1). Since the two sets contain the same set of maximal planes, they must be equal, therefore Î(e1) = Î(e2)

modulo the nominal axioms.
For the reverse implication, note that

NL(e) =
⋃

x∈I(e)

NL(x) =
⋃

x∈ Î(e)

NL(x)

by the fact that every plane of e is contained in a maximal one. Then

NL(e1) =
⋃

x∈ Î(e1)

NL(x) =
⋃

x∈ Î(e2)

NL(x) = NL(e2). �

3.2. Alternative nominal language model

In this section we present a new language-theoretic interpretation, denoted AL, which is an alternative to the interpre-
tation NL of Gabbay and Ciancia [3] described in §3.1. The two interpretations are quite close, except that AL distinguishes
between free and bound names.

Let � and A be countably infinite disjoint sets. For this section, we let the letters a, b, c, . . . range over A, x, y, z, . . . over
�, and u, v, w, . . . over (� ∪A)∗ . Binding with ν is only over �.

A language is a subset A ⊆ (� ∪A)∗ such that π A = A for all π ∈ GA . The set of languages is denoted L.

Definition 3.8. The operations of nominal KA (Definition 2.6) are defined on L as follows:

A + B = A ∪ B AB = {uv | u ∈ A, v ∈ B, FV(u) ∩ FV(v) ∩A = ∅}
A∗ =

⋃

n

An νx.A = {w[a/x] | w ∈ A, a ∈A− FV(w)}, x ∈ �

0 = ∅ 1 = {ε}.
In words, νx.A is the set of strings obtained by substituting a ∈ A for x in strings w ∈ A for all possible choices of

a ∈ A and w ∈ A, subject to the condition that a does not already occur in w . Set concatenation AB is like the usual set
concatenation operator of formal language theory in which words from A are concatenated with words from B , except here
the two words may not have any letters of A in common.

Lemma 3.9. The set L is closed under the set-theoretic operations of Definition 3.8.

Proof. For sum, π(
⋃

n An) = ⋃
n π An = ⋃

n An . For product,

π(AB) = {π(uv) | u ∈ A, v ∈ B, FV(u) ∩ FV(v) ∩A = ∅}
= {(πu)(π v) | u ∈ A, v ∈ B, FV(πu) ∩ FV(π v) ∩ πA = ∅}
= {uv | u ∈ π A, v ∈ π B, FV(u) ∩ FV(v) ∩A =∅}
= (π A)(π B) = AB.

The case of A∗ follows from the previous two cases. The cases of 0 and 1 are trivial. Finally, for νx.A, we have

π(νx.A) = {π(w[a/x]) | w ∈ A, a ∈A− FV(w)}
= {(π w)[πa/x] | w ∈ A, a ∈A− FV(w)}
= {w[a/x] | π−1 w ∈ A, π−1a ∈A− FV(π−1 w)}
= {w[a/x] | w ∈ π A, a ∈ πA− πFV(π−1 w)}
= {w[a/x] | w ∈ A, a ∈ A− FV(w)} = νx.A. �

We can interpret nominal KA expressions as languages in L. The interpretation map AL : Exp� →L is the unique homo-
morphism with respect to the language operations of Definition 3.8 such that AL(x) = {x}. Note that in this context, atoms
a ∈A do not appear in expressions or ν-strings.

D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32 23
Theorem 3.10. The nominal axioms (Definition 2.8) hold under the interpretation AL.

Proof. The proofs of AL(νx.(d + e)) = AL(νx.d) ∪ AL(νx.e) and AL(νx.ν y.e) = AL(ν y.νx.e) are straightforward. For the axiom
νx.(d + e) = νx.d + νx.e,

AL(νx.(d + e)) = {w[a/x] | w ∈ AL(d + e), a ∈ A− FV(w)}
= {w[a/x] | w ∈ AL(d) ∪ AL(e), a ∈A− FV(w)}
= {w[a/x] | w ∈ AL(d), a ∈ A− FV(w)}

∪ {w[a/x] | w ∈ AL(e), a ∈A− FV(w)}
= AL(νx.d) ∪ AL(νx.e).

For the axiom νx.ν y.e = ν y.νx.e,

AL(νx.ν y.e) = {w[a/x] | w ∈ AL(ν y.e), a ∈A− FV(w)}
= {w[a/x] | w ∈ {u[b/y] | u ∈ AL(e), b ∈A− FV(u)}, a ∈A− FV(w)}
= {u[b/y][a/x] | u ∈ AL(e), b ∈A− FV(u), a ∈A− FV(u[b/y])}
= {u[a/x][b/y] | u ∈ AL(e), a ∈A− FV(u), b ∈A− FV(u[a/x])}
= AL(ν y.νx.e).

For the remaining axioms, assume x /∈ FV(e).

AL(νx.e) = νx.AL(e) = {w[a/x] | w ∈ AL(e), a ∈A− FV(w)}
= {w | w ∈ AL(e), a ∈A− FV(w)}
= AL(e).

The next-to-last equation holds since FV(w) ∩ � ⊆ FV(e), therefore x /∈ FV(w), so w[a/x] = w .

AL(ν y.e) = ν y.AL(e)

= {w[a/y] | w ∈ AL(e), a ∈ A− FV(w)}
= {((x y)w)[a/x] | (x y)w ∈ AL((x y)e), a ∈ A− FV((x y)w)}
= {w[a/x] | w ∈ AL((x y)e), a ∈ A− FV(w)}
= AL(νx.(x y)e).

AL((νx.d)e) = {uv | u ∈ AL(νx.d), v ∈ AL(e), FV(u) ∩ FV(v) ∩A = ∅}
= {uv | u ∈ νx.AL(d), v ∈ AL(e), FV(u) ∩ FV(v) ∩A = ∅}
= {uv | u ∈ {w[a/x] | w ∈ AL(d), a ∈ A− FV(w)}, v ∈ AL(e),

FV(u) ∩ FV(v) ∩A = ∅}
= {w[a/x]v | w ∈ AL(d), a ∈A− FV(w), v ∈ AL(e),

FV(w[a/x]) ∩ FV(v) ∩A =∅}
= {w[a/x]v | w ∈ AL(d), a ∈A− FV(w v), v ∈ AL(e),

FV(w) ∩ FV(v) ∩A= ∅} (3.3)

= {u[a/x]v | u ∈ AL(d), v ∈ AL(e), FV(u) ∩ FV(v) ∩A = ∅,

a ∈A− FV(uv)}
= {(uv)[a/x] | u ∈ AL(d), v ∈ AL(e), FV(u) ∩ FV(v) ∩A = ∅,

a ∈A− FV(uv)}
= {w[a/x] | w ∈ {uv | u ∈ AL(d), v ∈ AL(e), FV(u) ∩ FV(v) ∩A =∅},

a ∈A− FV(w)}
= {w[a/x] | w ∈ AL(de), a ∈A− FV(w)} = νx.AL(de) = AL(νx.de).

24 D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32
All steps are straightforward except (3.3), which requires an argument. We consider two cases: either x ∈ FV(w) or x /∈
FV(w). In the former case, we argue that

a ∈A− FV(w) and FV(w[a/x]) ∩ FV(v) ∩A = ∅

⇔ a ∈A− FV(w v) and FV(w) ∩ FV(v) ∩A= ∅.

For the left-to-right implication, since x ∈ FV(w), we have a ∈ FV(w[a/x]) ∩ A, and since FV(w[a/x]) ∩ FV(v) ∩ A = ∅, it
must be that a /∈ FV(v), therefore a ∈A − (FV(w) ∪ FV(v)) = A − FV(w v). Also, FV(w) ∩ FV(v) ∩A =∅, since FV(w[a/x]) ∩
FV(v) ∩A =∅ and FV(w) ∩A ⊆ FV(w[a/x]) ∩A.

For the right-to-left implication, since

a ∈A− FV(w v) = A− (FV(w) ∪ FV(v)),

we have a ∈A − FV(w) and a ∈A − FV(v), therefore

FV(w[a/x]) ∩ FV(v) ∩A = (FV(w) ∪ {a}) ∩ FV(v) ∩A

= (FV(w) ∩ FV(v) ∩A) ∪ ({a} ∩ FV(v) ∩A)

=∅∪∅ = ∅.

In the latter case (x /∈ FV(w)), the equation (3.3) reduces to

{w v | w ∈ AL(d), a ∈ A− FV(w), v ∈ AL(e), FV(w) ∩ FV(v) ∩A = ∅}
= {w v | w ∈ AL(d), a ∈A− FV(w v), v ∈ AL(e), FV(w) ∩ FV(v) ∩A =∅},

which is clearly true, as a is irrelevant.
Similarly, AL(e(νx.d)) = AL(νx.ed). �
The following lemma is analogous to Lemma 3.3. It implies that on ν-strings, AL and NL are equivalent in deductive

power (under the obvious modification that expressions are over � and not A). However, for AL, we have a third equivalent
condition (iii) that does not hold for NL.

Lemma 3.11. For u, v ∈ �ν , the following are equivalent:

(i) u ≡ v
(ii) AL(u) = AL(v)

(iii) AL(u) ∩ AL(v) �= ∅.

Proof. Certainly (i) implies (ii) by soundness (Theorem 3.10), and (ii) implies (iii) since both AL(u) and AL(v) are nonempty.
To show (iii) implies (i), as in the proof of Lemma 3.3, we can assume without loss of generality that u = ν A.u′ and
v = νB.v ′ for some u′, v ′ ∈ �∗ with no useless binders. By (iii), u′ and v ′ must contain the same free and bound variables
(up to α-conversion) and in the same order, otherwise there could be no common string obtained by substituting distinct
elements of A for the bound variables. We can thus rearrange the binders and α-convert using (N2) and (N4) to show
equivalence. �

We can also define I : Exp� → �ν and Î : Exp� → �ν exactly as in §3.1 for the nominal language model, again with the
modification that expressions are over � and not A.

Lemma 3.12. AL(e) = ⋃
w∈I(e) AL(w).

Proof. This can be proved by a straightforward induction on the structure of e. We argue the case of products and binders
explicitly.

AL(e1e2) = {uv | u ∈ AL(e1), v ∈ AL(e2), FV(u) ∩ FV(v) ∩A = ∅}
= {uv | u ∈

⋃

p∈I(e1)

AL(p), v ∈
⋃

q∈I(e2)

AL(q), FV(u) ∩ FV(v) ∩A = ∅}

=
⋃

p∈I(e1)
q∈I(e2)

{uv | u ∈ AL(p), v ∈ AL(q), FV(u) ∩ FV(v) ∩A = ∅}

=
⋃

p∈I(e1)
q∈I(e2)

AL(pq) =
⋃

r∈I(e1e2)

AL(r).

D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32 25
AL(νx.e) = νx.AL(e)

= {w[a/x] | w ∈ AL(e), a ∈A− FV(w)}
= {w[a/x] | w ∈

⋃

p∈I(e)

AL(p), a ∈A− FV(w)}

=
⋃

p∈I(e)

{w[a/x] | w ∈ AL(p), a ∈A− FV(w)}

=
⋃

p∈I(e)

νx.AL(p) =
⋃

p∈I(e)

AL(νx.p) =
⋃

w∈I(νx.e)

AL(w). �

Lemma 3.13. Every plane AL(ν A.w) in AL(e) is maximal; that is, I(e) = Î(e).

Proof. Replace each x ∈ A in w with a distinct element of A to get w ′ . Then AL(ν A.w) = {π w ′ | π ∈ GA}. This is maximal,
as all finite permutations of A are allowed. �

Lemma 3.13 characterizes the key difference between the nominal language model NL of [3] described in §3.1 and the
alternative nominal language model AL of this section. It explains why the axioms are complete for the alternative model
but not for the model of §3.1. In the model of §3.1, there are non-maximal planes, and these are “hidden” by the maximal
planes, whereas this cannot happen in the alternative model, as all planes are maximal.

3.3. Summation models

We end this section with a description of several other interesting models in which ν is interpreted as some form of
summation operator: a summation model over the free KA, a summation model over languages, a summation model over
an arbitrary KA, and an evaluation model. The axioms are sound over these models, but not complete. We include these
models as a testament to the versatility of NKA.

3.3.1. Summation model over the free KA
It is sound to interpret νx as a summation operator

∑
a∈F e[a/x]. Let K be the free KA on generators X (regular expres-

sions over X modulo the KA axioms (Definition 2.1)) and let F ⊆ K . For x ∈ X , interpret

νx.e =
∑

a∈F

e[a/x] x#e ⇔ x /∈ FV(e),

where e[a/x] is the expression obtained by substituting a for x in e. This can be interpreted in any KA in which the sums
exist; and in any KA when F is finite. This is a sound interpretation, as all the nominal axioms are satisfied:

∑

a

(d + e)[a/x] =
∑

a

d[a/x] +
∑

a

e[a/x] x /∈ FV(e) ⇒
∑

a

e[a/x] = e

∑

a

∑

b

e[b/y][a/x] =
∑

b

∑

a

e[a/x][b/y] x /∈ FV(e) ⇒ (
∑

a

d[a/x])e =
∑

a

(de)[a/x]

x /∈ FV(e) ⇒
∑

a

e[a/y] =
∑

a

e[x/y][a/x] x /∈ FV(e) ⇒ e(
∑

a

d[a/x]) =
∑

a

(ed)[a/x].

3.3.2. Language summation model
In particular, let A be a set of letters, finite or infinite. We wish to interpret expressions as subsets of A∗ by a map

L : ExpA →P(A∗). Let the regular operators have their usual set-theoretic interpretations, and let

L(νx.e) =
⋃

a∈A
L(e[a/x]) L(a) = {a}, a ∈A.

3.3.3. Summation model over an arbitrary KA K
More generally, let K be an arbitrary KA and let K [X] be the set of polynomials over indeterminates X with coefficients

in K . This is the direct sum (coproduct) of K with the free KA on generators X . Let F ⊆ K be finite. Let e �→ e[a/x] be the
evaluation morphism that for x ∈ X evaluates e ∈ K [X] at x = a. We can interpret

νx.e =
∑

a∈F

e[a/x] x#e ⇔ e ∈ K [X − {x}] ⇔ e[0/x] = e.

This is also a sound interpretation:

26 D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32
∑

a

(d + e)[a/x] =
∑

a

d[a/x] +
∑

a

e[a/x] e[0/x] = e ⇒
∑

a

e[a/x] = e

∑

a

∑

b

e[b/y][a/x] =
∑

b

∑

a

e[a/x][b/y] e[0/x] = e ⇒
∑

a

e[a/y] =
∑

a

e[x/y][a/x]

e[0/x] = e ⇒ (
∑

a

d[a/x])e =
∑

a

(de)[a/x] e[0/x] = e ⇒ e(
∑

a

d[a/x]) =
∑

a

(ed)[a/x].

3.3.4. Evaluation model
In fact the set F in the model of §3.3.3 can be a singleton {a}; in this case, νx.e is just evaluation e �→ e[a/x].

(d + e)[a/x] = d[a/x] + e[a/x] e[a/y][a/x] = e[a/x][a/y]
e[0/x] = e ⇒ e[a/x] = e e[0/x] = e ⇒ e[a/y] = e[x/y][a/x]
e[0/x] = e ⇒ (d[a/x])e = (de)[a/x] e[0/x] = e ⇒ e(d[a/x]) = (ed)[a/x].

4. Completeness and incompleteness

In this section we prove our main theorems.

Theorem 4.1 (Incompleteness over NL). The language interpretation NL of Gabbay and Ciancia (§3.1) satisfies equations that are not
consequences of the axioms of NKA (Definitions 2.1 and 2.8).

Proof. As is easily verified, the inequality a ≤ νa.a holds in NL, since

NL(a) = {a} ⊆A = NL(νa.a).

However, this equation does not hold in any of the summation models of §3.3, nor under the interpretation AL. Since the
axioms are sound for these models, all consequences of the axioms hold in them, thus a ≤ νa.a is not a consequence of the
axioms. �

Henceforth, we let a, b, . . . as well as x, y, . . . range over �. It is also the case that none of the summation models provide
a free nominal KA, as νa.aa ≤ νa.νb.ab holds in all the summation models but not in our language model AL. However, the
axioms of NKA are complete for NL if one restricts to closed terms, as the closed terms of NL and AL coincide.

Theorem 4.2 (Completeness over AL and nominal Kleene algebras). The axioms of nominal Kleene algebra (Definitions 2.1 and 2.8)
are sound and complete for the equational theory of nominal Kleene algebras (Definition 3.1) and for the equational theory of the
alternative language interpretation AL of §3.2.

Theorem 4.2 says that if two NKA expressions e1 and e2 are equivalent in the alternative language interpretation of
§3.2 in the sense that AL(e1) = AL(e2), then e1 and e2 are provably equivalent in equational logic from the axioms of NKA
(Definitions 2.1 and 2.8). The remainder of §4 is devoted to the proof of this result.

To prove Theorem 4.2, we show that every expression can be put into a certain canonical form that will allow us to apply
the KA axioms to prove equivalence. The construction consists of four main steps, expounded in the next four subsections:
exposing bound variables (§4.1), scope configuration (§4.2), canonical choice of bound variables (§4.3), and determining semilattice
identities (§4.4). Each step will involve a construction that is justified by the axioms.

For the purposes of exposition, we write (
a

e)
a

instead of νa.e so that it is easier to see the scope boundaries. In this

notation, the nominal axioms take the following form:

νa.(d + e) = νa.d + νa.e (
a

d + e)
a
= (

a
d)

a
+ (

a
e)

a
(4.1)

νa.νb.e = νb.νa.e (
a
(
b

e)
b
)
a
= (

b
(
a

e)
a
)
b

(4.2)

a#e ⇒ νa.e = e a#e ⇒ (
a

e)
a
= e (4.3)

a#e ⇒ νb.e = νa.(a b)e a#e ⇒ (
b

e)
b
= (

a
(a b)e)

a
(4.4)

a#e ⇒ (νa.d)e = νa.de a#e ⇒ (
a

d)
a

e = (
a

de)
a

(4.5)

a#e ⇒ e(νa.d) = νa.ed a#e ⇒ e (
a

d)
a
= (

a
ed)

a
. (4.6)

D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32 27
We remark that writing scope boundaries of ν-expressions as letters (
a

and)
a

is merely a notational convenience. Although it

appears to allow us to violate the invariant that starred expressions and ν-expressions are mutually well-nested, in reality
this is not an issue, as all our transformations are justified by the axioms, which maintain this invariant.

4.1. Exposing bound variables

Definition 4.3 (ν∗-strings). Define a ν∗-string to be a string of

• letters a,
• well-nested scope delimiters (

a
and)

a
, and

• starred expressions e∗ whose bodies e are (inductively) sums of ν∗-strings.

Definition 4.4 (Exposure). We say that the bound variables of a ν∗-string are exposed if

(i) the first and last occurrence of each bound variable occur at the top level in the scope of their binding operator,2 and
(ii) the bound variables of all ν∗-strings in the bodies of starred subexpressions are (inductively) exposed.

For example, a typical ν∗-string is (
a
(
b

abb(ab (
a

ab)
a
+b (

b
ba)

b
)∗ba)

b
)
a
. The bound variables are exposed in this expression

because the first and last occurrences of a and b occur at the top level. Inside the starred subexpression, the bound variables
in the two ν∗-strings are exposed because there are no starred subexpressions.

The purpose of exposing bound variables is to create a barrier for scope delimiters (
a

and)
a

as they move inward. This

will become clear in §4.2.

Lemma 4.5. Every expression e can be transformed to an equivalent sum of ν∗-strings e′ whose bound variables are exposed. Moreover,
the value of the interpretation I : ExpA →P(Aν) defined in §3.1 is invariant under the transformation.

Proof. It is straightforward to see how to use the nominal axiom (4.1) in the left-to-right direction and the distributivity
and 0 and 1 laws of Kleene algebra to write every expression as a sum of ν∗-strings.

Exposing the bound variables is a little more difficult. It may appear at first glance that one can simply unwind e∗ as
1 + e + ee∗e and then unwind the starred subexpressions of e inductively, but this is not enough. For example,

(a + b)∗ = 1 + a + b + (a + b)(a + b)∗(a + b)

= 1 + a + b + a(a + b)∗a + a(a + b)∗b + b(a + b)∗a + b(a + b)∗b,

and the subexpression a(a + b)∗a does not satisfy (i). The following more complicated expression is needed:

(a + b)∗ = 1 + a + b + aa∗a + bb∗b + ab + ba (4.7)

+ aa∗ab + aa∗ba∗a + baa∗a + abb∗b + bb∗ab∗b + bb∗ba (4.8)

+ aa∗abb∗b + aa∗b(a + b)∗ab∗b + aa∗b(a + b)∗ba∗a (4.9)

+ bb∗a(a + b)∗ab∗b + bb∗a(a + b)∗ba∗a + bb∗baa∗a. (4.10)

Line (4.7) covers strings containing no a’s or no b’s or one of each. Line (4.8) covers strings containing one a and two or
more b’s or one b and two or more a’s. Lines (4.9) and (4.10) cover strings containing at least two a’s and at least two b’s.

For the general construction, we first argue the case of (a1 +· · ·+an)∗ . Write down all strings containing either zero, one,
or two occurrences of each letter. For each such string, insert a starred subexpression in each gap between adjacent letters.
The body of the starred expression inserted into a gap will be the sum of all letters a such that the gap falls between two
occurrences of a.

For example, the second term of (4.9) is obtained from the string abab. There are three gaps, into which we insert the
indicated starred expressions:

a b a b
↑ ↑ ↑
a∗ (a + b)∗ b∗

In the first gap we inserted a∗ because the gap falls between two occurrences of a but not between two occurrences of b.
In the second gap we inserted (a + b)∗ because the gap falls between two occurrences of a and two occurrences of b.

2 “Top level” means not inside a starred subexpression. Inside a starred expression e∗ , “top level” means not inside a starred subexpression of e.

28 D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32
This construction covers all strings whose first and last occurrences of each letter occur in the order specified by the
original string before the insertion. If a letter occurs twice before the insertion, then after the insertion those two occur-
rences are the first and last, and they occur at the top level. If a letter occurs once before the insertion, then that is the
only occurrence after the insertion, and it is at the top level. If a letter does not occur at all before the insertion, then it
does not occur after.

For the general case e∗ , we first perform the construction inductively on all starred subexpressions of e, writing e∗ =
(e1 + · · · + en)∗ where each top-level ν∗-string ei satisfies conditions (i) and (ii) of Definition 4.4. Now take the sum f =
f1 + · · · + fk constructed above for (a1 + · · · + an)∗ (in the example (4.7)–(4.10), n = 2 and k = 19) and substitute ei for ai
in f to obtain f [ei/ai]. We claim that this expression is of the desired form. Any ν∗-string generated by (e1 + · · · + en)∗
is generated by some ei1 ei2 · · · eim , which is a substitution instance of a = ai1 ai2 · · ·aim , which in turn is generated by some
f i . For any letter c, let ei j be the leftmost expression in ei1 · · · eim in which c occurs. Then the first occurrence of ai j in f i
occurs at the top level, the first occurrence of c in ei j occurs at the top level, and c does not occur in ei1 · · · ei j−1 . Therefore
that occurrence of c is the first occurrence in f i[ei/ai] and occurs at the top level.

The value of the interpretation I : ExpA →P(Aν) defined in §3.1 is preserved by the transformation, that is, I(e) = I(e′),
because the only operations that were performed were justified by the KA axioms and (4.1), all of which preserve I . Note
that the axioms (4.2)–(4.6) do not preserve I , but we have not used those in the transformation. �
4.2. Scope configuration

For this part of the construction, we first α-convert using (4.4) to make all bound variables distinct and different from
any free variable. This is commonly known as the Barendregt variable convention.

Now we transform each ν∗-string to ensure that every top-level left delimiter (
a

occurs immediately to the left of an

occurrence of a that it binds:

· · · (
a

a · · · (
b

b · · · (
c

c · · ·)
c
· · ·)

b
· · ·)

a
· · · (4.11)

That occurrence is at the top level due to the preprocessing step of §4.1. We do this without changing the order of any
occurrences of variables in the string, but we may change the order of quantification.

Starting at the left end of the string, scan right, looking for top-level left delimiters. For all top-level left delimiters that
we see, push them to the right as long as we do not encounter a variable bound by any of them. Stop when such a variable
is encountered. For example,

· · · (
a
· · · (

b
· · · (

c
· · ·b · · ·)

c
· · ·)

b
· · ·)

a
· · · ⇒ · · · (

a
(
b
(
c

b · · ·)
c
· · ·)

b
· · ·)

a
· · ·

Here we are using the nominal axiom (4.6) in the right-to-left direction to skip over letters and starred expressions. If such
a variable is encountered, it will be at the top level because of the preprocessing step of §4.1.

In this example, we must keep the (
b

to the left of that occurrence of b, but we wish to move the (
a

and (
c

past the b. The

c can be moved in using (4.6), but to move the a in, we must exchange the order of quantification of a and b. To do this, we
push the corresponding right delimiter of b up to the right delimiter of a using the nominal axiom (4.5) in the left-to-right
direction.

· · · (
a
(
b
(
c

b · · ·)
c
· · ·)

b
· · ·)

a
· · · ⇒ · · · (

a
(
b
(
c

b · · ·)
c
· · ·)

b
)
a
· · ·

This is always possible, as there is no free occurrence of b to the right of the)
b

due to the Barendregt variable convention.

Now we can exchange the order of quantification using the nominal axiom (4.2).

· · · (
a
(
b
(
c

b · · ·)
c
· · ·)

b
)
a
· · · ⇒ · · · (

b
(
a
(
c

b · · ·)
c
· · ·)

a
)
b
· · ·

This allows us to move the (
a

and (
c

in past the b and continue.

· · · (
b
(
a
(
c

b · · ·)
c
· · ·)

a
)
b
· · · ⇒ · · · (

b
b (

a
(
c
· · ·)

c
· · ·)

a
)
b
· · ·

When looking for the first occurrence of a variable bound to a left delimiter, perhaps no such occurrence is encountered
before seeing a right delimiter. In this case there is nothing bound, so we can just forget the binding altogether.

· · · (
a
(
b
(
c
)
c
· · ·b · · ·)

b
· · ·)

a
· · · ⇒ · · · (

a
(
b
· · ·b · · ·)

b
· · ·)

a
· · ·

This uses the nominal axiom (4.3).

D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32 29
If there exists an occurrence of a bound to (
a
· · ·)

a
, then the leftmost one occurs at the top level due to the construction of

§4.1. Thus, when we are done, any remaining left delimiters (
a

in the string occur immediately to the left of an occurrence

of a that is bound to that delimiter, as illustrated in (4.11).
Now we finish up the construction by moving the right delimiters to the left as far as possible using (4.5) in the

right-to-left direction without exchanging order of quantification. Because of the preprocessing step of §4.1, the rightmost
occurrence of any variable quantified at the top level occurs at the top level. Thus every right delimiter)

a
occurs either

immediately to the right of an occurrence of a bound to that delimiter or immediately to the right of another right delimiter
)
b

with smaller scope.

At this point we have transformed the expression so that every ν∗-string satisfies the following properties:

(i) every ν-subformula is of the form νa.ae; that is, the leftmost symbol of every scope is a variable bound by that scope;
and

(ii) the rightmost boundary of every scope is as far to the left as possible, subject to (i).

The position of the scope delimiters is canonical, because scopes are as small as possible: the left delimiters are as far to
the right as they can possibly be, and the right delimiters are as far to the left as they can possibly be given the positions
of the left delimiters.

Let us denote by ′′ : ExpA → ExpA the transformation of this subsection (§4.2) combined with the transformation of the
previous subsection (§4.1) that exposes bound variables. The construction is reflected in the semantics, as expressed by the
following lemma.

Lemma 4.6. Let I : ExpA →P(Aν) be the intermediate interpretation of Definition 3.2. Then

I(e′′) = {w ′′ | w ∈ I(e)}.
Proof. We have already argued in the proof of Lemma 4.5 that I(e) = I(e′), where ′ is the transformation of §4.1 that
exposes bound variables. Each of the transformation steps in the construction of this subsection commutes with the inter-
pretation I , as can be shown formally by induction on the structure of the expression, thus

I(e′′) = {w ′′ | w ∈ I(e′)} = {w ′′ | w ∈ I(e)}. �
Lemma 4.7. Any two equivalent NKA expressions, after transforming them by ′′, generate the same set of ν-strings up to renaming of
bound variables. That is, if AL(e1) = AL(e2), then I(e′′

1) and I(e′′
2) are equal up to renaming of bound variables.

Proof. We have AL(ei) = ⋃
w∈I(ei)

AL(w) for i ∈ {1, 2} by Lemma 3.12 and AL(ei) = AL(e′′
i) for i ∈ {1, 2} by Theorem 3.10.

Putting these together, if AL(e1) = AL(e2), then
⋃

w∈I(e′′
1)

AL(w) =
⋃

w∈I(e′′
2)

AL(w).

By Lemma 3.11, inequivalent ν-strings have disjoint interpretations under AL, therefore I(e′′
1) and I(e′′

2) must be equal
modulo ≡; that is, for all u ∈ I(e′′

1), there exists v ∈ I(e′′
2) such that u ≡ v and vice versa.

But we also have I(e′′
i) = {w ′′ | w ∈ I(ei)} by Lemma 4.6, therefore all elements of I(e′′

1) and I(e′′
2) are in ′′-normal form,

which is unique. Thus if u ≡ v , then u and v are α-equivalent. Therefore I(e′′
1) = I(e′′

2) up to α-equivalence. �
4.3. Canonical choice of bound variables

Now we would like to transform the expression so that the bound variables are chosen in a canonical way. This will
ensure that if two expressions are equivalent, then they generate the same ν-strings, not just up to renaming of bound
variables, but absolutely. This part of the construction will thus relax the Barendregt variable convention, so that variables
can be bound more than once and can occur both bound and free in a string.

Choose a set of variables disjoint from the free variables of the expression and order them in some arbitrary but fixed
order a0, a1, Moving through the expression from left to right, maintain a stack of variable names corresponding to the
scopes we are currently in. When a left scope delimiter (

a
is encountered, and we are inside the scope of n ν-formulas,

the variables a0, . . . , an−1 will be on the stack. We rename the bound variable a to an using the nominal axiom (4.4) for
α-conversion and push an onto the stack. When a right scope delimiter is encountered, we pop the stack. This construction
guarantees that every ν-string generated by the expression satisfies:

• For every symbol in the string, if the symbol occurs in the scope of n nested ν-expressions, then those expressions bind
variables a0, . . . , an−1 in that order from outermost to innermost scope.

30 D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32
It follows that two semantically equivalent expressions so transformed generate exactly the same set of ν-strings. We have
shown

Lemma 4.8. Let ′′′ be the composition of the constructions of §4.1–4.3. If AL(e1) = AL(e2), then I(e′′′
1) = I(e′′′

2).

4.4. Determining semilattice identities

After transforming expressions by the constructions ′′′ of §4.1–4.3, we know by Lemma 4.8 that if e1 and e2 are equiv-
alent, then they generate the same sets of ν-strings; that is, I(e′′′

1) = I(e′′′
2), where I is the map defined in Definition (3.2).

Now we wish to show that any two such expressions can be proved equivalent using the KA and nominal axioms in con-
junction with the following congruence rule for ν-formulas:

e1 = e2

νa.e1 = νa.e2
. (4.12)

In order to do this, there is one more issue that must be resolved. To introduce this issue, let us first assume for
simplicity that e1 and e2 are of ν-depth one; that is, they only contain bindings of one variable a. There may be several
subexpressions in e1 and e2 of the form νa.d, but all with the same variable a. We will relax this restriction later.

Any substring of the form νa.w of a ν-string generated by e must be generated by a subexpression of the form νa.d.
However, there may be several different subexpressions of this form, and the string νa.w could be generated by more than
one of them. In general, the sets of ν-strings generated by the ν-subexpressions could satisfy various semilattice identities,
and we may have to know these identities in order to prove equivalence.

For example, consider the two expressions c1 + c2 and d1 + d2 + d3, where

c1 = νa.a(aa)∗ d1 = νa.a(aaa)∗

c2 = νa.aa(aa)∗ d2 = νa.aa(aaa)∗ (4.13)

d3 = νa.aaa(aaa)∗.

The expression ci generates all nonnull ν-strings with i mod 2 a’s and di generates all nonnull ν-strings with i mod 3
a’s. Both c1 + c2 and d1 + d2 + d3 generate all nonnull ν-strings of a’s, but in different ways. If c1 + c2 occurs in e1 and
d1 + d2 + d3 occurs in e2, we would have to know that they are equivalent to prove the equivalence of e1 and e2.

To determine all semilattice identities such as c1 + c2 = d1 + d2 + d3 that hold among the ν-subexpressions, we ex-
press every ν-subexpression in e1 or e2 as a sum of atoms of the Boolean algebra of sets of ν-strings generated by these
ν-subexpressions. An atom of a Boolean algebra is a minimal nonzero element. In a finite Boolean algebra, every element
can be written as a disjunction of atoms. The family of regular sets over a fixed finite alphabet forms a Boolean algebra
under the usual set-theoretic Boolean operations, as the regular sets are closed under union, intersection, and complement.
Any finite collection of regular sets generates a finite subalgebra. The atoms are the minimal nonzero elements of this
subalgebra.

In the example above, the atoms of the generated Boolean algebra are the sets of strings generated by bi = νa.ai(a6)∗ ,
1 ≤ i ≤ 6 (bi generates strings with i mod 6 a’s). Rewriting the expressions (4.13) as sums of atoms, we would obtain

c1 = b1 + b3 + b5 d1 = b1 + b4

c2 = b2 + b4 + b6 d2 = b2 + b5

d3 = b3 + b6.

The equivalences are provable in pure KA plus the nominal axiom (4.1). Then c1 + c2 and d1 + d2 + d3 become

c1 + c2 = (b1 + b3 + b5) + (b2 + b4 + b6)

d1 + d2 + d3 = (b1 + b4) + (b2 + b5) + (b3 + b6),

which are clearly equivalent.
Now we observe that any ν-string νa.w generated by e1 or e2 is generated by exactly one atom. Moreover, if νa. f

is an atom and νa.w ∈ I(νa. f), and if νa.w is generated by νa. f in the context u(νa.w)v ∈ I(νa.e1), then for any other
νa.z ∈ I(νa. f), we have u(νa.z)v ∈ I(νa.e1) as well. This says that we may treat νa. f as atomic. In fact, once we have
determined the atoms, if we like we may replace each atom νa. f by a single letter aνa. f in e1 and e2, and the resulting
expressions are equivalent, therefore provable. Then a proof of the two expressions with the letters aνa. f can be transformed
back to a proof with the atoms νa. f by simply substituting νa. f for aνa. f . However, note that it is not necessary to do the
actual substitution; we can carry out the same proof on the original expressions with the νa. f .

For example, suppose e1 = c∗
1(c2c∗

1)
∗ and e2 = (d1 + d2 + d3)

∗ , for which we have I(e1) = I(e2). We expand the subex-
pressions c1, c2 and d1, d2, d3 using the atoms b1, . . . , b6 to obtain

D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32 31
e1 = (b1 + b3 + b5)
∗((b2 + b4 + b6)(b1 + b3 + b5)

∗)∗

e2 = ((b1 + b4) + (b2 + b5) + (b3 + b6))
∗.

Because of the pairwise disjointness of the atoms, these expressions must be equivalent as pure KA expressions, regarding
the bi as atomic letters, therefore can be proved equivalent in pure KA.

For expressions of ν-depth greater than one, we perform the above construction inductively, innermost scopes first. We
use the KA axioms and the semilattice identities on depth-n ν-subexpressions to determine the semilattice identities on
depth-(n − 1) ν-subexpressions, then use the nominal axiom (4.1) and the rule (4.12) to prepare these semilattice identities
for use on the next level.

This completes the proof of Theorem 4.2.

5. Conclusion

We have presented results on completeness and incompleteness of nominal Kleene algebra as introduced by Gabbay and
Ciancia [3]. There are various directions for future work.

The normalization procedure presented in this paper yields a decision procedure that, although effective, is likely to be
prohibitively expensive in practice due to combinatorial explosions in the preprocessing step of §4.1 and in the intersection
of regular expressions in §4.4. In a companion paper [11], we have explored the coalgebraic theory of nominal Kleene
algebra with the aim of developing a more efficient coalgebraic decision procedure, which would be of particular interest for
the applications mentioned in the introduction. Coalgebraic decision procedures have been devised for the related systems
KAT and NetKAT [12–14] and have proven quite successful in applications, and we suspect that a similar approach may bear
fruit here.

Another interesting direction would be to follow recent work by Joanna Ochremiak [15] involving nominal sets over
atoms equipped with both relational and algebraic structure. This is an extension of the original work of Gabbay and Pitts
in which atoms can only be compared for equality.

The proof we have provided is concrete and does not explore the rich categorical structure of nominal sets. It would be
interesting to rephrase the proof in more abstract terms, which would also be more amenable to generalizations such as
those mentioned above.

Acknowledgements

We are grateful to Jamie Gabbay for bringing the original NKA paper to our attention. We would also like to thank
Filippo Bonchi, Paul Brunet, Helle Hvid Hansen, Bart Jacobs, Tadeusz Litak, Daniela Petrişan, Damien Pous, Ana Sokolova, and
Fabio Zanasi for many stimulating discussions, comments, and suggestions. Finally, we would like to thank the anonymous
reviewers for valuable suggestions that significantly improved the presentation and for bringing the work of Laurence and
Struth [4] to our attention.

This research was performed at Radboud University Nijmegen and supported by the Dutch Research Foundation (NWO),
project numbers 639.021.334 and 612.001.113, the National Security Agency, and the National Science Foundation under
grants CCF-1535952 and CCF-1637532.

References

[1] M. Gabbay, A.M. Pitts, A new approach to abstract syntax involving binders, in: 14th IEEE Symp. Logic in Computer Science, 1999, pp. 214–224.
[2] M. Bojanczyk, B. Klin, S. Lasota, Automata theory in nominal sets, Log. Methods Comput. Sci. 10 (3:4) (2014) 1–44, http://dx.doi.org/

10.2168/LMCS-10(3:4)2014.
[3] M.J. Gabbay, V. Ciancia, Freshness and name-restriction in sets of traces with names, in: Foundations of Software Science and Computation Structures,

14th International Conference, FOSSACS 2011, in: Lect. Notes Comput. Sci., vol. 6604, Springer, 2011, pp. 365–380.
[4] M.R. Laurence, G. Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, in: P. Höfner, P. Jipsen, W. Kahl,

M.E. Müller (Eds.), 14th Int. Conf. Relational and Algebraic Methods in Computer Science, RAMiCS 2014, in: Lect. Notes Comput. Sci., vol. 8428, Springer,
2014, pp. 65–82.

[5] M.J. Gabbay, Foundations of nominal techniques: logic and semantics of variables in abstract syntax, Bull. Symb. Log. 17 (2) (2011) 161–229.
[6] A.M. Pitts, Nominal Sets: Names and Symmetry in Computer Science, Camb. Tracts Theor. Comput. Sci., vol. 57, Cambridge University Press, 2013.
[7] A. Silva, Kleene Coalgebra, Ph.D. thesis, University of Nijmegen, 2010.
[8] E. Kopczynski, S. Torunczyk, LOIS: syntax and semantics, in: Proc. 44th ACM SIGPLAN–SIGACT Symp. Principles of Programming Languages, POPL’17,

2017, pp. 586–598.
[9] B. Klin, M. Szynwelski, SMT solving for functional programming over infinite structures, in: R. Atkey, N. Krishnaswami (Eds.), Proc. 6th Workshop on

Mathematically Structured Functional Programming, MFSP 2016, in: EPTCS, vol. 207, Open Publishing Association, 2016, pp. 57–75.
[10] J. Moerman, M. Sammartino, A. Silva, B. Klin, M. Szynwelski, Learning nominal automata, in: Proc. 44th ACM SIGPLAN–SIGACT Symp. Principles of

Programming Languages, POPL’17, 2017, pp. 613–625.
[11] D. Kozen, K. Mamouras, D. Petrisan, A. Silva, Nominal Kleene coalgebra, in: M.M. Halldórsson, K. Iwama, N. Kobayashi, B. Speckmann (Eds.), Proc. 42nd

Int. Colloq. Automata, Languages, and Programming, Part II, ICALP 2015, in: Lect. Notes Comput. Sci., vol. 9135, EATCS, Springer, Kyoto, Japan, 2015,
pp. 290–302.

[12] F. Bonchi, D. Pous, Checking NFA equivalence with bisimulations up to congruence, in: Proc. 40th ACM SIGPLAN–SIGACT Symp. Principles of Program-
ming Languages, POPL’13, ACM, 2013, pp. 457–468.

http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6761626261792D7069747473s1
http://dx.doi.org/10.2168/LMCS-10(3:4)2014
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6761626261793A6672656E7273s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6761626261793A6672656E7273s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6C617572656E63652D737472757468s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6C617572656E63652D737472757468s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6C617572656E63652D737472757468s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6761626261793A666F756E746Cs1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib5069747473414D3A6E6F6D736E73s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib53696C76613130s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6C6F6973s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6C6F6973s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6E6C616D626461s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6E6C616D626461s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6C6561726E696E672D706F706Cs1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib6C6561726E696E672D706F706Cs1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib4B4D5053313561s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib4B4D5053313561s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib4B4D5053313561s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib426F6E636869506F75733132s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib426F6E636869506F75733132s1
http://dx.doi.org/10.2168/LMCS-10(3:4)2014

32 D. Kozen et al. / Journal of Logical and Algebraic Methods in Programming 91 (2017) 17–32
[13] N. Foster, D. Kozen, M. Milano, A. Silva, L. Thompson, A coalgebraic decision procedure for NetKAT, in: Proc. 42nd ACM SIGPLAN–SIGACT Symp.
Principles of Programming Languages, POPL’15, ACM, Mumbai, India, 2015, pp. 343–355.

[14] D. Pous, Symbolic algorithms for language equivalence and Kleene algebra with tests, in: Proc. 42nd ACM SIGPLAN–SIGACT Symp. Principles of Pro-
gramming Languages, POPL’15, ACM, Mumbai, India, 2015, pp. 357–368.

[15] J. Ochremiak, Nominal sets over algebraic atoms, in: P. Höfner, P. Jipsen, W. Kahl, M.E. Müller (Eds.), 14th Int. Conf. Relational and Algebraic Methods
in Computer Science, RAMiCS 2014, in: Lect. Notes Comput. Sci., vol. 8428, Springer, 2014, pp. 429–445.

http://refhub.elsevier.com/S2352-2208(17)30117-7/bib464B4D5354313561s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib464B4D5354313561s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib506F75733135s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib506F75733135s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib4F636872656D69616B3134s1
http://refhub.elsevier.com/S2352-2208(17)30117-7/bib4F636872656D69616B3134s1

	Completeness and incompleteness in nominal Kleene algebra
	1 Introduction
	2 Background
	2.1 Kleene algebra (KA)
	2.2 Nominal sets
	2.3 Nominal Kleene algebra (NKA)

	3 Models
	3.1 Nominal language model
	3.2 Alternative nominal language model
	3.3 Summation models
	3.3.1 Summation model over the free KA
	3.3.2 Language summation model
	3.3.3 Summation model over an arbitrary KA K
	3.3.4 Evaluation model

	4 Completeness and incompleteness
	4.1 Exposing bound variables
	4.2 Scope conﬁguration
	4.3 Canonical choice of bound variables
	4.4 Determining semilattice identities

	5 Conclusion
	Acknowledgements
	References

