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Convolutional Networks with Dense Connectivity

Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens van der Maaten and Kilian Q. Weinberger

Abstract—Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they
contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation
and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion.
Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our
network has % direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own
feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the
vanishing-gradient problem, encourage feature reuse and substantially improve parameter efficiency. We evaluate our proposed
architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets
obtain significant improvements over the state-of-the-art on most of them, whilst requiring less parameters and computation to achieve

high performance.

Index Terms—Convolutional neural network, deep learning, image classification

1 INTRODUCTION

ONVOLUTIONAL neural networks (CNNs) have become the

dominant machine learning approach for visual object recog-
nition. Although they were originally introduced over 20 years
ago [1f], improvements in computer hardware and network struc-
ture have enabled the training of truly deep CNNs only recently.
The original LeNet5 [2]] consisted of 5 layers, VGG featured
19 [3], and thanks to the skip/shortcut connections, Highway
Networks [4]] and Residual Networks (ResNets) [5]] have surpassed
the 100-layer barrier.

As CNNs become increasingly deep, a new research problem
emerges: information about the input or gradient that passes
through many layers it can vanish and “wash out” by the time it
reaches the end (or beginning) of the network. Many recent publi-
cations address this problem. For example, Rectified Linear Unites
(ReLU) [6] avoid gradient saturation, batch-normalization [7]
reduces covariate shift across layers by re-scaling the outputs
of its previous layer. ResNets [5] and Highway Networks [4]
bypass signal from one layer to the next via identity connections.
Stochastic depth [8]] shortens ResNets by randomly dropping
layers during training to allow better information and gradient
flow. FractalNets [9]] repeatedly combine several parallel layer
sequences with different number of convolutional blocks to obtain
a large nominal depth, while maintaining many short paths in
the network. Although these different approaches vary in network
topology and training procedure, they all share a key characteris-
tic: they create short paths from early layers to later layers.

In this paper, we propose an architecture that distills this
insight into a simple connectivity pattern: to ensure maximum
information flow between layers in the network, we connect
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Fig. 1: A 5-layer dense block with a growth rate of k¥ = 4. Each
layer takes all preceding feature-maps as input.

all layers (with matching feature-map sizes) directly with each
other. To preserve the feed-forward nature, each layer obtains
additional inputs from all preceding layers and passes on its
own feature-maps to all subsequent layers. Fig. (1] illustrates this
layout schematically. Crucially, in contrast to ResNets, we never
combine features through summation before they are passed into
a layer; instead, we combine features through concatenations.
Hence, the ¢*" layer has ¢ inputs, consisting of the feature-
maps of all preceding convolutional blocks. Its own feature-maps
are passed on to all L — ¢ subsequent layers. This introduces
L(LTJFD connections in an L-layer network, instead of just L,
as in traditional architectures. Because of its dense connectivity
pattern, we refer to our approach as Dense Convolutional Network
(DenseNet).

A possibly counter-intuitive effect of this dense connectivity
pattern is that it requires fewer parameters than traditional convo-
lutional networks, as there is no need to re-learn redundant feature
maps. Traditional feed-forward architectures can be viewed as
algorithms with a state, which is passed on from layer to layer.
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Each layer reads the state from its preceding layer and writes to the
subsequent layer. It changes the state but also passes on informa-
tion that needs to be preserved. ResNets [|5] make this information
preservation explicit through additive identity transformations.
Recent variations of ResNets [8]] show that many layers contribute
very little and can in fact be randomly dropped during training.
This makes the state of ResNets similar to (unrolled) recurrent
neural networks [[10]], but the number of parameters of ResNets is
substantially larger because each layer has its own weights. Our
proposed DenseNet architecture explicitly differentiates between
information that is added to the network and information that
is preserved. DenseNet layers are very narrow (e.g., 12 feature-
maps per layer), adding only a small set of feature-maps to the
“collective knowledge” of the network and keeping the remaining
feature-maps unchanged—enables the final classifier to base its
decision on all feature-maps in the network.

Besides better parameter efficiency, another big advantage of
DenseNets is that they are easier to train, due to their improved
information flow and gradients throughout the network. Each layer
has direct access to the gradients from the loss function and
the original input signal, facilitating an implicit form of deep
supervision [I1]. Finally, dense connections create many short
paths in the network, which have a strong regularizing effect and
reduce overfitting on smaller training sets.

We evaluate DenseNets on four highly competitive benchmark
datasets (CIFAR-10, CIFAR-100, SVHN, and ImageNet). On
these, our models exhibit their superior parameter efficiency, and
the benefits thereof, in two ways: 1. they tend to require far fewer
parameters when compared against alternative algorithms with
comparable accuracy; 2. they outperform the current state-of-the-
art results on most of the benchmark tasks as the number of model
parameters is increased.

The main results of this paper were published originally in its
conference versiorﬂ However, this longer article provides a more
comprehensive analysis and a deeper understanding of the nov-
el DenseNet architecture, e.g. hyper-parameters (Section [5) and
design choices(Section [6). In addition, we also provide detailed
instructions on how to implement the model in a memory efficient

way (Section [3.2] and [4.6).

2 RELATED WORK

The exploration of network architectures has been an integral
part of neural network research since their initial discovery. The
recent resurgence in popularity of neural networks has also revived
this research domain. The increasing number of layers in modern
networks amplifies the differences between architecture types and
motivates the exploration of different connectivity patterns as well
as the revisiting of old research ideas.

A cascade structure similar to our proposed dense connectivity
has already been studied in the neural networks literature in the
1980s [12]]. Their pioneering work focuses on fully connected
multi-layer perceptrons trained in a layer-by-layer fashion. More
recently, Wilamowski and Yu [13|] proposed fully connected
cascade networks to be trained with batch gradient descent.
Although effective on small datasets, this approach only scales
to networks with a few hundred parameters. Several recent pub-
lications [14115416l17]], have found the utilization of multi-level
features in CNNs through skip-connections effective for various

1. http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_
Densely_Connected_Convolutional_CVPR_2017_paper.pdf
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vision tasks. Parallel to our work, [18] derived a purely theoretical
framework for networks with cross-layer connections similar to
ours.

Highway Networks [4], with their gating units and bypassing
paths, were amongst the first architectures that provided a means
to effectively train end-to-end networks with more than 100 layers.
The bypassing paths are presumed to be the key factor that eases
the training of these very deep networks, which is further sup-
ported by ResNets [S]], in which pure identity mappings are used
as bypassing paths. ResNets have achieved impressive, record-
breaking performance on many challenging image recognition,
localization, and detection tasks, such as ImageNet and COCO
object detection [3)). Recently, stochastic depth was proposed as a
way to successfully train a 1202-layer ResNet [8]]. Stochastic depth
improves the training of deep residual networks by dropping layers
randomly during training. This shows that not all layers may be
needed and highlights that there is a great amount of redundancy
in deep (residual) networks. Our paper was partly inspired by that
observation.

An orthogonal approach to making networks deeper (e.g., with
the help of skip connections) is to increase the network width. The
GoogLeNet [19/20] uses an “Inception module” which concate-
nates feature maps produced by filters of different sizes. In [21]],
a variant of ResNets with wide generalized residual blocks was
proposed. In fact, simply increasing the number of filters in each
layer of ResNets can improve its performance provided the depth
is sufficient [22]]. FractalNets also achieve competitive results on
several benchmark datasets using a wide network structure [9].

Instead of drawing representational power from extremely
deep or wide architectures, DenseNets exploit the potential of the
network through feature reuse, yielding condensed models that are
easy to train and highly parameter-efficient. Concatenating feature
maps learned by different layers increases variation in the input
of subsequent layers and improves efficiency. This constitutes a
major difference between DenseNets and ResNets. Compared to
Inception networks [[19)20]], which also concatenate features from
different layers, DenseNets are simpler and more efficient.

There are other notable network architecture innovations
which have yielded competitive results. The Network in Network
(NIN) [23] structure includes micro multi-layer perceptrons into
the filters of convolutional layers to extract more complicated fea-
tures. In Deeply Supervised Network (DSN) [11]], internal layers
are directly supervised by auxiliary classifiers, which can strength-
en the gradients received by earlier layers. Ladder Networks
[24.125]] introduce lateral connections into autoencoders, producing
impressive accuracies on semi-supervised learning tasks. In [26],
Deeply-Fused Nets (DFNs) were proposed to improve information
flow by combining intermediate feature representations of differ-
ent base networks.

Since the original publication of the conference version of
this paper, many extensions of DenseNet have been proposed.
These include the Dual Path Network [27]], which is a hybrid
network architecture combining the DenseNet and ResNet; the
autoencoder DenseNet [28]] proposed for semantic segmentation
tasks; and 3D-DenseNet used for volume data segmentation [29].
Recently, a number of novel network building modules have been
proposed, e.g., group convolution [30], learned group convolution
[31]], depth-separable convolution [32] and squeeze and excitation
[33[], which are orthogonal innovations to our work and could
potentially or have already been shown to be helpful for further
improving DenseNet.


http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
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Fig. 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change

feature map sizes via convolution and pooling.

3 DENSENETS

In this section, we first describe the basic design methodology
of DenseNet EL then we discuss how to implement properly for
memory efficient training.

3.1 The DenseNet Architecture

Consider a single image X that is passed through a convolu-
tional network. The network comprises L layers, each of which
implements a non-linear transformation Hy(-), where ¢ indexes
the layer. Hy(-) can be a composite function of operations such as
Batch Normalization (BN) [7]], rectified linear units (ReLU) [6],
Pooling [2f], or Convolution (Conv). We denote the output of the
(*" layer as x;.

ResNets. Traditional convolutional feed-forward networks
connect the output of the ¢*" layer as input to the (£ + 1)*"
layer [30], which gives rise to the following layer transition:
x¢ = Hy(xp—1). ResNets [5]] add a skip-connection that bypasses
the non-linear transformations with an identity function:

(M

An advantage of ResNets is that the gradient flows directly
through the identity function from later layers to the earlier layers.
However, the identity function and the output of H, are combined
by summation, which may cancel out useful features due to the
fact the one cannot exactly recover the two input features from
the summation.

Dense connectivity. To further improve the information flow
between layers we propose a different connectivity pattern: we
introduce direct connections from any layer to all subsequent
layers. Fig. [1] illustrates the layout of the resulting DenseNet
schematically. Consequently, the ¢! layer receives the feature-
maps of all preceding layers, Xg, ...,Xs—_1, as input:

x¢ = Hy(x¢-1) +%x4-1.

x¢ = Ho([x0,%1,...,X¢-1]), 2
where [xg,X1,...,X¢—1] refers to the concatenation of the
feature-maps produced in layers O,...,¢ — 1. Because of its

dense connectivity we refer to this network architecture as Dense
Convolutional Network (DenseNet). The recursive concatenation
may create massive redundant features in GPU memory during
training if not implemented properly. We will discuss this issue in
Section 3.2

Composite function. Following [35/20], we define Hy(-) as
a composite function of three types of operations: batch normal-
ization (BN) [7], rectified linear unit (ReLU) [6] and convolution
(Conv). Specifically, each Hy(+) corresponds to the sequence: BN-
ReLU-Conv(1x1)-BN-ReLU-Conv(3x3). Here, the 1x1 convo-
lution is introduced as a bottleneck layer to reduce the number of

2. Note that unlike its conference version, this paper only presents the
DenseNet-BC architecture, i.e., DenseNet with bottleneck layer and transition
layer with compression. For notation simplicity, we use the term DenseNet to
denote this architecture.

input feature-maps. This design choice is adopted by many other
architectures to improve computational efficiency, and we find it
especially effective for DenseNet. Unless otherwise specified, each
bottleneck layer reduces the input to 4 times the number of feature-
maps produced by the subsequent 3x3 convolutional layer. To
avoid confusion, we call each Hy a basic layer, to distinguish it
from a single convolutional layer.

Pooling layers. The concatenation operation used in Eq.
is not viable when the size of feature-maps changes. However,
an essential part of convolutional networks is pooling layers
that change the size of feature-maps. To facilitate pooling in
our architecture we divide the network into multiple densely
connected dense blocks; see Fig. 2] We refer to layers between
blocks as transition layers, which do convolution and pooling.
The transition layers used in our experiments consist of a batch
normalization layer and a 1Xx1 convolutional layer followed by
a 2x2 average pooling layer. Note that the transition layers are
much “wider” compared to other basic layers, and it is inefficient
to use the expensive 3x3 convolution with stride 2 to perform
down-sampling in a DenseNet.

Growth rate. If each function Hy produces k feature-maps as
output, it follows that the £*" layer has kx (¢—1)-+k input feature-
maps, where kg is the number of channels in the input of that
dense block. To prevent the network from growing too wide and to
improve the parameter efficiency we limit & to a small integer, e.g.,
k = 12. We refer to the hyper-parameter k as the growth rate of
the network. We show in Section [4] that a relatively small growth
rate is sufficient to obtain state-of-the-art results on the datasets
that we tested on. One explanation for this is that each layer has
access to all the preceding feature-maps in its block and, therefore,
to the network’s “collective knowledge”. One can view the feature-
maps as the global state of the network. Each layer adds k feature-
maps of its own to this state. The growth rate regulates how much
new information each layer can contribute to the global state. The
global state, once written, can be accessed from everywhere within
the network and, unlike in traditional network architectures, there
is no need to replicate it from layer to layer.

Compression. To further improve model compactness, we can
reduce the number of feature-maps at transition layers. If a dense
block contains m feature-maps, we let the following transition
layer generate |@m] output feature-maps, where 0 < 6 <1 is
referred to as the compression factor. When 6 = 1, the number of
feature-maps across transition layers remains unchanged. We set
6 = 0.5 in our experiments unless otherwise specified.

3.2

DenseNet is a novel architecture that most deep-learning frame-
works have not yet been optimized for. If implemented naive-
ly, deep-learning frameworks may copy feature maps in every
concatenation, producing many redundant copies of the same
feature maps. In turn, this may lead to prohibitively high memory

Implementation Details
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Fig. 3: DenseNet layer forward pass: original implementation (left) and efficient implementation (right). Solid boxes correspond to
tensors allocated in memory, where as translucent boxes are pointers. Solid arrows represent computation, and dotted arrows represent
memory pointers. The efficient implementation stores the output of the concatenation and pre-activation batch normalization/ReLU
operations in temporary storage buffers, whereas the original implementation allocates new memory.

consumption on GPU during training. In this subsection, we
discuss how to implement DenseNet correctly, and demonstrate
that good implementations of DenseNets are in fact very memory-
efficient.

The DenseNet computation graph is illustrated in the left-hand
side of Fig. [3| (left) for a simplified (pre-activation, no bottleneck)
layer Hy during training. This computation graph shows the com-
ponents of the layer’s composite function: 1) previous features are
concatenated, 2) a pre-activation batch normalization/ReL.U non-
linearity are applied, and then 3) a convolution operation produces
the next output feature. (The ReLU non-linearity is computed in-
place, and therefore we combine it with batch normalization for
simplicity.) We refer to the outputs of the concatenation and pre-
activation batch normalization as the intermediate feature maps
and the new convolutional feature as the output feature. Each basic
layer H, produces k feature maps, and an M -layer dense block
has k& x M output features.

3.2.1 Memory-Efficient Implementation of DenseNets

During inference, an M-layer dense block stores O(M) output
features in memory for use by the transition layer or final classifier.
The intermediate feature maps are only used to compute their
respective output feature and do not need to be stored. The GPU
memory usage is therefore linear in the depth of the network.
Although DenseNet needs to store the output features of multiple
layers during inference, it still requires less memory during infer-
ence as its layers are very “narrow”. For example, inferencing a
ResNet-50 needs to store 256 feature maps of size 56 x 56 at each
layer in its first stage; while the 121-layer DenseNet needs to store
at most 64/2 + 6 x 32 = 224 feature maps of the same size ﬂ

During training, the network needs the intermediate feature
maps not only for computing output features but also for comput-
ing parameter gradients. Most deep learning libraries will store all
the intermediate feature maps in GPU memory until the forward
and backward passes are complete. Obviously, if new space is
allocated to store the concatenated features at each layer, the
outputs of the Ith layer have M —I[+ 1 copies in the memory,
leading to a rapid growth in memory consumption.

3. This corresponds to the first dense block. Later dense blocks require less
memory as their feature maps are of lower resolution, although the number of
channels is larger.

To avoid this redundancy, we can pre-allocate a single memory
buffer that will ultimately contain all the output feature maps
of a dense block. The computation of a single layer involves
reading the relevant feature maps from the shared memory buffer,
computing the outputs of the layer, and storing those outputs in
a consecutive part of the memory buffer. In tensor libraries that
support operations on strided tensors (such as cudnn), all these
operations can be performed in-place, which leads to a memory-
efficient implementation of the feature-maps logic without requir-
ing the complex memory management that is required to make
other convolutional network architectures memory-efficient. We
illustrate the memory pattern in Fig. B] We implemented it in
LuaTorch, and found it allows us to reduce the memory usage
by more than 2x compared to a naive implementation.

3.2.2 Further Reducing Memory Usage

Although sharing the memory of concatenated features could
avoid saving redundant output features, the pre-activation batch
normalization at each layer still needs store a normalized copy
of all the previous output features. This also accounts for a
quadratic memory consumption with respect to the network depth.
Using post-activation batch normalization could circumvent this
problem, while it generally leads to significant worse results (see
Section [6.4).

Fortunately, the batch normalization layer (and the subsequent
ReLU) is much cheaper to compute compared to convolution.
Instead of storing all feature maps for the backward pass, one
could recompute normalized feature maps on-the-fly when they
are needed for gradient computations. Therefore, we only need
to allocate a global memory that are shared by all the batch
normalization layers (later BN layers simply override the outputs
of earlier ones). This strategy can be generally applied to other
architectures (as shown in [34])), while it is especially useful for
DenseNet, as it allows us to train DenseNets with very small
memory consumption. With this optimization, we are able to train
three times larger models using the same amount of memory, while
introducing little computation time overhead. Additional results
are presented in Section [£.6]

3.3 Network Configurations

On the CIFAR and SVHN datasets, the DenseNets used in our
experiments have 3 dense blocks that each have an equal numbers
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TABLE 1: DenseNet architectures for ImageNet. The growth rate for all the networks is £ = 32. Note that each “conv” layer
shown in the table corresponds to the sequence BN-ReL.U-Conv, except that the first“conv” layer with filter size 7 X 7 corresponds to

Conv-BN-ReLU.

Layers Output Size DenseNet-121 ‘ DenseNet-169 ‘ DenseNet-201 ‘ DenseNet-265
Convolution 112 x 112 7 x 7 conv, stride 2
Pooling 56 x 56 3 X 3 max pool, stride 2
Dense Block [ 1 x1conv ] [ 1 x 1conv ] [ 1 x1conv ] [ 1 x1conv ]
(1) 36 %56 3 x 3 conv x 6 3 x 3 conv x 6 3 x 3 conv x 6 3 X 3 conv x 6
Transition Layer 56 x 56 1 x 1 conv
(1) 28 x 28 2 X 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
(2) 2828 _3><3c0nv_><12 »3><3conv_><12 _3><3conv_><12 »3><3c0nv_><12
Transition Layer 28 x 28 1 x 1 conv
2) 14 x 14 2 X 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
3) 14> 14 3 x 3 conv x 24 3 x 3 conv x 32 3 X 3 conv x 48 3 x 3 conv x 64
Transition Layer 14 x 14 1 x 1 conv
3) 7 x7 2 x 2 average pool, stride 2
Dense Block [ 1 x1conv ] [ 1 x1conv ] [ 1 x1conv ] [ 1 x1conv ]
4) TxT 3 x 3 conv x 16 3 x 3 conv x 32 3 x 3 conv x 32 3 x 3 conv x 48
Classification 1x1 7 x 7 global average pool
Layer 1000D fully-connected, softmax

of layers. Before entering the first dense block, a 3 X3 convolution
with 2 k filters is performed on the input images. By varying the
number of basic layers (M) in each block, we can create models
with different depth (L It is easy to see that L = 6 x M +4.
For convolutional layers with kernel size 3x3, each side of the
inputs is zero-padded by one pixel to keep the feature-map size
unchanged. We use 1x1 convolution followed by 2x2 average
pooling as transition layers between two contiguous dense blocks.
At the end of the last dense block, a global average pooling is
performed and then a softmax classifier is attached. The feature-
map sizes in the three dense blocks are 32x 32, 16x16, and
88, respectively. We experimented with growth rate and layer
configurations {L = 100,k = 12}, {L = 250,k = 24} and
{L=190, k=40}.

On ImageNet, we use a structure with 4 dense blocks on
224 %224 input images. The initial convolution layer comprises
2 x k convolutions of size 7 x 7 with stride 2; the number of feature-
maps in all other layers is a function of k. The exact network
configurations we used on ImageNet are shown in Table ]

4 RESULTS

We empirically demonstrate the effectiveness of DenseNet on
several benchmark datasets and compare it with state-of-the-art
network architectures, especially with ResNet and its variants.

4.1 Datasets

CIFAR. The two CIFAR datasets [37]] consist of colored natural
scene images, with 3232 pixels each. CIFAR-10 (C10) consists
of images drawn from 10 and CIFAR-100 (C100) from 100
classes. The train and test sets contain 50,000 and 10,000 images
respectively and we hold out 5,000 training images as a validation
set. We adopt a standard data augmentation scheme that is widely
used for this dataset [4L5U8)9U1112335/38]]: the images are first
zero-padded with 4 pixels on each side, then randomly cropped
to again produce 32x32 images; half of the images are then
horizontally mirrored. We denote this augmentation scheme by
a “+” mark at the end of the dataset name (e.g., C10+). For data

4. Following existing works, network depth corresponds to the number of
layers with trainable weights, e.g., convolutional layers and fully connected
layers. However, batch normalization layers are not counted.

preprocessing, we normalize the data using the channel means
and standard deviations. We evaluate our algorithm on all four
datasets: C10, C100, C10+, C100+. For the final run we use all
50,000 training images and report the final test error at the end of
training.

SVHN. The Street View House Numbers (SVHN) dataset
[39] contains 32x32 colored digit images coming from Google
Street View. The task is to classify the central digit into the
correct one of the 10 digit classes. There are 73,257 images in the
training set, 26,032 images in the test set, and 531,131 images for
additional training. Following common practice [8l11/2340/4 1]
we use all the training data without any data augmentation, and
split a validation set with 6,000 images from the training set. We
select the model with the lowest validation error during training
and report the test error. We follow [22]] and divide the pixel values
by 255 so they are in the [0, 1] range.

ImageNet. The ILSVRC 2012 classification dataset [42]] con-
sists 1.2 million images for training, and 50,000 for validation.
Each image is associated with a label from 1,000 predefined
classes. We adopt the same data augmentation scheme for the
training images as in [5|36/43[], and apply a 224 <224 center crop
to images at test time. Following common practice [S|8!36], we
report classification errors on the validation set.

4.2 Training

All the networks are trained using SGD. On CIFAR and SVHN we
train using mini-batch size 64 for 300 and 40 epochs, respectively.
The initial learning rate is set to 0.1, and is divided by 10 at 50%
and 75% of the total number of training epochs. On ImageNet, we
train models for 90 epochsE] with a mini-batch size of 256. The
learning rate is set 0.1 initially, and is lowered by a factor of 10
after epoch 30 and epoch 60.

Following [43]], we use a weight decay of 10~* and a Nesterov
momentum [44] of 0.9 without dampening. We adopt the weight
initialization introduced by [45]. For the three datasets without
data augmentation, i.e., C10, C100 and SVHN, we add a dropout
layer [46] after each convolutional layer (except the first one) and

5. Training for more epochs on ImageNet generally leads to higher accuracy.
But for a fair comparison with ResNets, we limit the training of DenseNets to
90 epochs.
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TABLE 2: Error rates (%) on CIFAR and SVHN datasets. L denotes the network depth and & its growth rate. Results that surpass
all competing methods are bold and the overall best results are blue. “+” indicates standard data augmentation (translation and/or
mirroring). * indicates results run by ourselves. All the results of DenseNets without data augmentation (C10, C100, SVHN) are
obtained using Dropout. DenseNets achieve lower error rates while using fewer parameters than ResNet. Without data augmentation,
DenseNet performs better by a large margin.

Method Depth  Params C10 C10+ | C100 C100+ | SVHN
Network in Network [23] - - 10.41 8.81 35.68 - 2.35
AII-CNN [35] - - 9.08 7.25 - 33.71 -
Deeply Supervised Net [11] - - 9.69 7.97 - 34.57 1.92
Highway Network [4] - - - 7.72 - 32.39 -
FractalNet [9] 21 38.6M 10.18 5.22 35.34 23.30 2.01
with Dropout/Drop-path 21 38.6M 7.33 4.60 28.20 23.73 1.87
ResNet [5] 110 1.7M - 6.61 - - -
ResNet (reported by [8]) 110 1.7M 13.63 6.41 44.74 27.22 2.01
ResNet with Stochastic Depth [8] 110 1.7M 11.66 5.23 37.80 24.58 1.75
1202 10.2M - 491 - - -
Wide ResNet [22] 16 11.0M - 4.81 - 22.07 -
28 36.5M - 4.17 - 20.50 -
with Dropout 16 2.7M - - - - 1.64
ResNet (pre-activation) [36] 164 1.7M 11.26" 546 | 35.58% 24.33 -
1001 10.2M | 10.56* 4.62 | 33.47" 22.71 -
DenseNet (k = 12) 100 0.8M 5.92 4.51 24.15 22.27 1.76
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Fig. 4: Left: Comparison of the parameter efficiency on C10+ between DenseNet variations. Middle: Comparison of the parameter
efficiency between DenseNet and (pre-activation) ResNets. DenseNet requires about 1/3 of the parameters as ResNet to achieve
comparable accuracy. Right: Training and testing curves of the 1001-layer pre-activation ResNet [36] with more than 10M parameters

and a 100-layer DenseNet with only 0.8M parameters.

set the dropout rate to 0.2. The test errors were only evaluated
once for each task and model setting.

4.3 Classification Results on CIFAR and SVHN

We train DenseNets with different depths, L, and growth rates, k.
The main results on CIFAR and SVHN are shown in Table 2l To
highlight general trends, we mark all results that outperform the
existing state-of-the-art in boldface and the overall best result in
blue.

Accuracy. Possibly the most noticeable trend is observable
in the bottom row of Table [2] which shows that DenseNet with
L =190 and k = 40 outperforms the existing state-of-the-art
consistently on all the CIFAR datasets. Its error rates of 3.46%
on C10+ and 17.18% on C100+ are significantly lower than the
error rates achieved by wide ResNet architecture [22]. Our best
results on C10 and C100 (without data augmentation) are even
more encouraging: both are close to 30% lower than FractalNet
with drop-path regularization [9]. On SVHN, with dropout, the
DenseNet with L =100 and k =24 also surpasses the current best
result achieved by wide ResNet. However, the 250-layer DenseNet
does not further improve the performance significantly over its
shorter counterpart. This may be explained by the fact that SVHN

is a relatively easy task and very deep models tend to overfit to the
training set.

Capacity. Without compression or bottleneck layers, there is a
general trend that DenseNets perform better as L and k increase.
We attribute this primarily to the corresponding growth in model
capacity. This is best demonstrated by the column of C10+ and
C100+. On C10+, the error drops from 4.51% to 3.62% and
finally to 3.46% as the number of parameters increases from
0.8M, over 15.3M to 25.6M. On C100+, we observe a similar
trend. This suggests that DenseNets can utilize the increased rep-
resentational power of bigger and deeper models. It also indicates
that DenseNets do not suffer from overfitting or the optimization
difficulties of residual networks [5]].

Parameter Efficiency. The results in Table [2| indicate that
DenseNets utilize parameters more effectively than alternative
model architectures (in particular, ResNets). The DenseNet with
bottleneck structure and compression at transition layers is particu-
larly parameter-efficient. For example, our deepest model only has
15.3M parameters, but it consistently outperforms other models
such as FractalNet and Wide ResNets with more than 30M
parameters. We also highlight that DenseNet with L = 100 and
k = 12 achieves comparable performance (e.g., 4.51% vs 4.62%
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Model top-1 top-5
DenseNet-121 | 25.02/23.61 | 7.71/6.66
DenseNet-169 | 23.80/22.08 | 6.85/5.92
DenseNet-201 | 22.58 /21.46 | 6.34/5.54
DenseNet-264 | 22.15/20.80 | 6.12/5.29

TABLE 3: The top-1 and top-5 error rates on the ImageNet
validation set, with single-crop / 10-crop testing.

error on C10+, 22.27% vs 22.71% error on C100+) as the 1001-
layer pre-activation ResNet using 9x fewer parameters. Fig. [
(right panel) shows the training loss and test error of these two
networks on C10+. The 1001-layer deep ResNet converges to a
lower training loss value but a similar test error. We analyze this
effect in more detail below.

Overfitting. One positive side-effect of the more efficient use
of parameters is a tendency of DenseNets to be less prone to over-
fitting. We observe that on the datasets without data augmentation,
the improvements of DenseNet architectures over prior work are
particularly pronounced. On C10, the improvement denotes a 29%
relative reduction in error from 7.33% to 5.19%. On C100, the
reduction is about 30% from 28.20% to 19.64%.

4.4 Classification Results on ImageNet

We evaluate DenseNet with different depths and growth rates on
the ImageNet classification task, and compare it with state-of-the-
art ResNet architectures. To ensure a fair comparison between the
two architectures, we eliminate all other factors such as differences
in data preprocessing and optimization settings by adopting the
publicly available LuaTorch implementation for ResNet [43ﬂ We
simply replace the ResNet model with the DenseNet network and
keep all the experimental settings unchanged to match those used
for ResNets. All results were obtained with single centered test-
image crops. Fig. [B] shows the validation errors of DenseNets and
ResNets on ImageNet as a function of the number of parameters
(left) and flops (right). The results presented in the figure reveal
that DenseNets perform on par with the state-of-the-art ResNets,
whilst requiring significantly fewer parameters and computation to
achieve comparable performance. For example, a DenseNet-201
with 20M parameters model yields similar validation error as a
101-layer ResNet with more than 40M parameters. Similar trends
can be observed from the right panel, which plots the validation
error as a function of the number of FLOPs: a DenseNet that
requires as much computation as a ResNet-50 performs on par
with a ResNet-101, which requires twice as much computation.
It is also clear from these results that DenseNet performance
continues to improve measurably as more layers are added.

It is worth noting that our experimental setup implies that
we use hyperparameter settings that are optimized for ResNets
but not for DenseNets. It is conceivable that more extensive
hyper-parameter searches may further improve the performance
of DenseNet on ImageNet.

4.5 Discussion

Superficially, DenseNets are quite similar to ResNets: Eq. (2) dif-
fers from Eq. (1) only in that the inputs to H,(+) are concatenated
instead of summed. However, the implications of this seemingly
small modification lead to substantially different behaviors of the
two network architectures.

6. https://github.com/facebook/fb.resnet.torch
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Model compactness. As a direct consequence of the input
concatenation, the feature maps learned by any of the DenseNet
layers can be accessed by all subsequent layers. This encourages
feature reuse throughout the network, and leads to more compact
models.

The left two plots in Fig. ] show the result of an experiment
that aims to compare the parameter efficiency of the various
variants of DenseNets (left) and also a comparable ResNet archi-
tecture (middle). We train multiple small networks with varying
depths on C10+ and plot their test accuracies as a function of
network parameters. In comparison with other popular network
architectures, such as AlexNet [30] or VGG-net [3]], ResNets
with pre-activation use fewer parameters while typically achieving
better results [[36]. Hence, we compare DenseNet (k = 12) against
this architecture. The training setting for DenseNet is kept the
same as in the previous section.

The graph shows that DenseNet with bottleneck layer struc-
ture and transition layer compression is consistently the most
parameter efficient among these variants. Further, to achieve the
same level of accuracy, DenseNet only requires around 1/3 of the
parameters of ResNets (middle plot). This result is in line with the
results on ImageNet we presented in Fig. [5] The right plot in Fig. 4]
shows that a DenseNet with only 0.8M trainable parameters is able
to achieve comparable accuracy as the 1001-layer (pre-activation)
ResNet [36] with 10.2M parameters.

Implicit Deep Supervision. One explanation for the improved
accuracy of dense convolutional networks may be that individ-
ual layers receive additional supervision from the loss function
through the shorter connections. One can interpret DenseNets
to perform a form of “deep supervision”. The benefits of deep
supervision have previously been shown in deeply-supervised nets
(DSN; [11]]), which have classifiers attached to every hidden layer,
enforcing the intermediate layers to learn discriminative features.

DenseNets perform a similar deep supervision in an implicit
fashion: a single classifier on top of the network provides direct
supervision to all layers through at most two or three transition
layers. However, the loss function and gradient of DenseNets are
substantially less complicated, as the same loss function is shared
between all layers.

Stochastic vs. deterministic connection. There is an in-
teresting connection between dense convolutional networks and
stochastic depth regularization of residual networks [8]. In s-
tochastic depth, layers in residual networks are randomly dropped,
which creates direct connections between the surrounding layers.
As the pooling layers are never dropped, the network results
in a similar connectivity pattern as DenseNet: There is a small
probability for any two layers, between the same pooling layers,
to be directly connected—if all intermediate layers are randomly
dropped. Although the methods are ultimately quite different, the
DenseNet interpretation of stochastic depth may provide insights
into the success of this regularizer.

Feature Reuse. By design, DenseNets allow layers access to
feature maps from all of its preceding layers (although sometimes
through transition layers). We conduct an experiment to investigate
if a trained network takes advantage of this opportunity. We first
train a DenseNet on C10+ with L = 40 and k = 12. For each
convolutional layer ¢ within a block, we compute the average
(absolute) weight assigned to connections with layer s. Fig. [f]
shows a heat-map for all three dense blocks. The average absolute
weight serves as a surrogate for the dependency of a convolutional
layer on its preceding layers. A red dot in position (¢, s) indicates
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Fig. 6: The average absolute filter weights of convolutional layers
in a trained DenseNet. The color of pixel (s, £) encodes the aver-
age L1 norm (normalized by the number of input feature maps)
of the weights connecting convolutional layer s to layer ¢ within
a dense block. The three columns highlighted by black rectangles
correspond to the two transition layers and the classification layer.
The first row encodes those weights connected to the input layer
of the dense block.

that the layer ¢ makes, on average, strong use of feature maps
produced s-layers before. Several observations can be made from
the plot:

1) All layers spread their weights over many inputs within
the same block. This indicates that features extracted by
very early layers are, indeed, directly used by deep layers
throughout the same dense block.

2) The weights of the transition layers also spread their

weight across all layers within the preceding dense block,
indicating information flow from the first to the last layers
of the DenseNet through few indirections.

The layers within the second and third dense block
consistently assign the least weight to the outputs of the
transition layer (the top row of the triangles), indicating
that the transition layer outputs many redundant features
(with low weight on average). This is in keeping with the
strong results of DenseNet where exactly these outputs
are compressed.

Although the final classification layer, shown on the very
right, also uses weights across the entire dense block,
there seems to be a concentration towards final feature-
maps, suggesting that there may be some more high-level
features produced late in the network.

3)

4)

4.6 Memory Efficient Implementation Results

We compare the memory consumption and computation time of
three DenseNet implementations during training. The naive im-
plementation allocates memory for every pre-activation batch nor-
malization operation. We compare this against a memory-efficient
implementation of DenseNets, which includes all optimizations
described in[Section 3.2] The concatenated and normalized feature
maps are recomputed as necessary during back-propagation. The
only tensors stored in memory during training are the convolution
feature maps and the parameters of the network. We test these two
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Fig. 8: Top-1 validation error on ImageNet as a function of the computational cost (measured by flops) of different DenseNets, with
varying growth rate (Left), varying width of the bottleneck layers (Middle) and varying compression ratio at transition layers (Right).

implementations in both the LuaTorch and PyTorclﬂ deep learning
frameworks.

Memory consumption. We train networks of various depth on
the CIFAR-10 dataset. All networks have a growth rate of k = 12
and are trained with a batch size of 64. In Fig.[/7] we see that the
naive implementation becomes memory intensive very quickly in
both LuaTorch and PyTorch. The memory usage of a 160 layer
network (1.8M parameters) is roughly 10 times as much as a
40 layer network (160K parameters). Training a larger network
with more than 220 layers requires over 12 GB of memory,
pushing the memory limits of a typical single GPU. On the
other hand, using all the memory-sharing operations significantly
reduces memory consumption. In LuaTorch, the 220-layer model
uses 50% of the memory required by the Naive Implementation.
Under the same memory budget (12 GB), it is possible to train a
340-layer model, which is 1.5X as deep and has 2Xx as many
parameters as the best naive implementation model. With the
PyTorch efficient implementation, we can train 500 layer networks
(13M parameters) on a single GPU. The “autograd” library in
PyTorch performs memory optimizations during training, which
likely contribute to this implementation’s efficiency.

It is worth noting that the fofal memory consumption of the
most efficient implementation does not grow linearly with depth,
as the number of parameters is inherently a quadratic function of
the network depth. This is a function of the architectural design
and part of the reason why DenseNets are so efficient. The memory
required to store the parameters is far less than the memory
consumed by the feature maps and the remaining quadratic term
does not impede model depth.

Training time. In the right panel of Fig. [/} we plot the time
per minibatch of a 100-layer DenseNet (k = 12) on a NVIDIA
Maxwell Titan-X. The efficient implementation adds roughly 15%
time overhead on LuaTorch, and 20% on PyTorch. This extra
cost is a result of recomputing the intermediate feature maps
during back-propagation. If GPU memory is limited, the time
overhead from sharing batch normalization/concatenation storage
constitutes a reasonable trade-off.

ImageNet results. We test the new memory efficient LuaTorch
implementation on the ImageNet classification dataset. The deep-
est model trained using the naive implementation was 201 layers
(20M parameters). With the efficient LuaTorch implementation
however, we are able to train two deeper DenseNet models with

7. http://github.com/torch/torch7/, http://github.com/pytorch/pytorch/

the efficient implementation, one with 265 layers (k = 32, 33M
parameters) and one with 233 layers (k = 48, 55M parameters)ﬂ

5 ARCHITECTURE HYPERPARAMETERS

We perform a series of analytical experiments to study how
hyperparameter choices associated with aspects of the network
architecture, affect the performance of DenseNets. Specifically, we
examine three hyperparameters: the growth rate &, the bottleneck
width (number of filters in the 1x1 bottleneck layer) and the
compression rate at transition layers 6.

As larger models tend to yield higher accuracy, we incorporate
the computational cost whenever we compare two models directly.
Therefore, we always train multiple DenseNets with varying depth
for each hyperparameter setting, and compare different config-
urations on the error v.s. compute (number of flops) plot. The
depth of the models ranges from 101 layers to 329 layers, with the
number of basic layers for the four dense blocks selected from the
set {[6,12,18,12], [6,12, 24, 16], [6,12, 32, 32], [6,12, 48, 32],
[6,12,64,48], [6,12, 80, 64]}.

Growth rate k. The growth rate determines the width of each
layer, i.e., the number of feature maps produced by Hy as given
in Eq.(2). We experiment with various growth rates from the set
{8,16,24,32,40}.

The results are shown in the left panel of Fig. [§] We can
observe that due to the dense connectivity, even DenseNets with
very narrow layers (e.g., k = 8) can be trained effectively.
Although each layer only produces 8 feature maps (light dotted
blue curve), the model still results in highly competitive results. In
fact, a small growth rate is essential for DenseNets to achieve
high computational efficiency. For example, to achieve a 24%
validation error, a DenseNet with growth rate 24 requires about
0.50x 1010 flops; while a similar architecture with growth rate 40
requires 0.88 x 10'° flops. However, as the networks grow deeper,
larger growth rates seem to show greater potential. This indicates
that to achieve high efficiency for a DenseNet, we should ensure
its depth and width are compatible. It is noteworthy that wider
convolutional layers can be more efficiently computed on GPUs
due to better parallelism. Therefore, a larger growth rate may
be preferred if one is more concerned about wall time efficiency
during training.

Bottleneck layer width. The convolution layer with filter size
1x1 introduced to the transformation Hy significantly improves

8. In the 233-layer model, the four dense blocks have 6, 12, 48, and 48
layers, respectively.
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Fig. 9: Comparison of DenseNet and its variant with full dense
connectivity, in terms of parameter efficiency (Left) and computa-
tional efficiency (Right).

the parameter efficiency of DenseNets. It performs dimension
reduction on the concatenated feature maps before passing them
to the more expensive 3x3 convolution layer. In all our previous
experiments, we fix the width of these bottleneck layers to m x k,
where m = 4, and k is the growth rate. To understand how the
performance of DenseNets is affected by m, we train multiple
DenseNets with m selected from the set {1, 2, 4, 8}. All the other
hyperparameters are set to their default value, except that we vary
the depth of the networks to make the error v.s. flops plot.

We show the results in the middle panel of Fig. [§] Here, the
trend is similar to what we have observed in the experiment with
varying growth rates: wider bottleneck layers (e.g., m = 8) yield
lower computational efficiency on smaller networks. Therefore,
the bottleneck layer width should also be compatible with the
network depth in order to maximize the parameter efficiency of
DenseNets.

Compression factor. In previous experiments with DenseNet-
s, each of the transition layers between two dense blocks halves
the number of channels, i.e. we have set # = 0.5 throughout.
Here we conduct an experiment to study how sensitive the model
performance is to the compression factor 6.

The results are shown in the right panel of Fig.|§} In general,
the parameter efficiency of DenseNets is quite insensitive to the
compression rate. There seems to be no significant difference
between the three curves with 8 = 0.3, 8 = 0.5 and 8 = 0.7,
when the flops is greater than 0.8x10'°. However, we do observe
that DenseNets with smaller compression factor consistently out-
perform those with larger compression factor when model size
is small. This is to some extent counterintuitive, as we would
expect a small compression factor (more reduction) to be more
beneficial in larger models, which tend to create more redundancy
in the feature maps due to the quadratically growing connections.
A possible explanation is that low level features in deep networks
are indeed actively reused by deeper layers, and keeping more
information about the input is helpful when the network has more
capacity to process.

6 DENSENET VARIANTS

Multiple variants of the DenseNet architecture are possible, which
we discuss and experiment with briefly.

6.1

In a DenseNet, as described so far, layers in different dense
blocks are only indirectly connected via a transition layer. This
transition layer is necessary because layers in different dense
blocks have incompatible feature map sizes. One possible variant
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Fig. 10: Comparison of DenseNet and its variants with partial
dense connectivity, in terms of parameter efficiency (Left) and
computational efficiency (Right).

of the DenseNet layout is to obtain full dense connectivity (FDC),
and truly connect each layer with every other layer. We can
achieve such a configuration by incorporating a downsampling
step via pooling directly into connections between layers with
different feature map sizes. This is also equivalent to simplifying
the transition layer to a simple pooling operation without 1 x 1
convolution and compression.

We give a comparison of the network with FDC and the
original DenseNet in Fig. 0] It can be observed that DenseNet
with transition layers performs significant better in terms of both
parameter and computational efficiency. These results suggest
that the Ix1 convolution in transition layers may be helpful in
compressing redundant features.

6.2 Partial Dense Connection

The DenseNet architecture introduces a quadratic number of
connections to the network. It is a fair question to ask if all of
these are indeed necessary. In this subsection, we experiment with
some variants of DenseNet, which only keep part of the dense
connections. Specifically, we consider three settings: (1) each layer
is connected to the most recent M layers; (2) an odd (even) layer
is connected to all previous even (odd) layers in that dense block;
and (3) each layer is connected to the 2th layer before iﬂ ,
1 =0,1,2,.... Similar to the setting in last subsection, we train
multiple networks with varying depth for each architecture and use
parameter and computational efficiency as the main performance
criteria.

Fig. [I0] shows the results of these three architectural variants,
as well as the error rate of the standard DenseNet structure. The
first variant has dense connections with a span of less than 4, 8
or 12 layers. As shown by the green curve in [TI0] this connec-
tivity pattern tends to yield higher validation error than standard
DenseNets. When the depth becomes large, the network cannot
be trained effectively and the validation error stops decreasing
as the network becomes deeper (the training error follows a
similar trend). These results demonstrate that earlier features are
indeed utilized and necessary for deeper layers in a DenseNet,
and the long range connections are critical for effectively training
very deep models. The second variant features only half of the
number of connections of standard DenseNets. From the cyan
curve in [T0] one can observe that this connectivity pattern leads
to slightly worse parameter efficiency, while it has a higher
computational efficiency when depth is not very large. For deeper
models this advantage disappears. The third variant networks also
under-perform standard DenseNets, especially with larger model

9. A similar design choice was also investigated in [47].
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Pre/Post-activation Batch Norm Pre/Post-activation Batch Norm

2 —— Post-activation —- lPost—activlation
_ 8 | —A— DenseNet (Default) 28 | —4— DenseNet (Default)
227 .\ Loz ‘\
g A g
5 26 526 A
: sl X
=25 N 225
< ©
2 =t
g 24 \ - S 24 \ ~
28 23 ~
22 e —
1 2 3 4 5 2%.4 0.6 0.8 1.0 1.2
#parameters 1e7 #flops 1e10
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in terms of parameter efficiency (Left) and computational efficien-
cy (Right).

sizes. This set of experiments further support our hypothesis that
dense connections strengthen the information/gradient flow in the
network, and enable training of deep models effectively.

6.3 Exponentially Increasing Growth Rate

The standard DenseNet use a constant growth rate throughout the
whole network. Compared to other network architectures, e.g., the
VGG [3]] and ResNet [5], which doubles the number of feature
channels after each down-sampling layer, DenseNets/DenseNets
tend to allocate fewer parameters towards processing low res-
olution feature maps. Such a design is oriented more towards
parameter efficiency than computational efficiency, as pointed out
by [48]].

In Fig. ﬂ;fl we compare the standard DenseNet structure with
a variant that doubles the growth rate after each transition layer.
Standard DenseNets have a constant growth rate of 32, while for
the latter network, the growth rate in the jth dense block has a
growth rate of kg x 2771 (j = 1,2, 3, 4). According to the results,
the DenseNet with exponentially increasing growth rate has lower
efficiency in terms of parameter efficiency (left panel of Fig. [TT)),
while it is much more competitive on the error v.s. flops plot
(right panel of Fig.[TT)). This suggests that using larger growth rate
for deeper dense blocks should be preferred in scenarios where
computation is the major concern.

6.4 Post-activation Batch Normalization

The DenseNet architecture utilizes pre-activation batch normal-
ization. Unlike conventional architectures, pre-activation networks
apply batch normalization and non-linearities before the convo-
lution operation rather than after. Though this might seem like
a minor change, it makes a big difference in DenseNet perfor-
mance. Batch normalization applies a scaling and a bias to the

11

input features. If each layer applies its own batch normalization
operation, then each layer applies a unique scale and bias to
previous features. For example, the Layer 2 batch normalization
might scale a Layer 1 feature by a constant large than 1, while
Layer 3 might scale the same feature by a small positive constant.
This provides Layer 2 and Layer 3 with the flexibility to up-
weight and down-weight a same feature independently. Note
that this would not be possible if all layers shared the same
batch normalization operation, or if normalization occurred after
convolution operations. Fig. [I2] provides a comparison between
DenseNets with pre- and post- activation batch normalization.
There is a clear trend that the former leads to significantly higher
efficiency. However, pre-activation batch normalization generally
leads to substantially higher memory footprint during training. If
GPU memory is limited, we can apply the memory optimization
strategy described in Section[3.2]

7 CONCLUSION

We proposed a new convolutional network architecture, which we
refer to as Dense Convolutional Network (DenseNet). It intro-
duces direct connections between any two layers with the same
feature-map size. Whilst following a simple connectivity rule,
DenseNets naturally integrate the properties of identity mappings,
deep supervision, and diversified depth. They allow feature reuse
throughout the network and can consequently learn more compact
and, according to our experiments, more accurate models.

We showed that DenseNets scale naturally to hundreds of
layers, while exhibiting no optimization difficulties. In our ex-
periments, DenseNets tend to yield consistent improvement in
accuracy with growing number of parameters, without any signs
of performance degradation or overfitting. Under multiple settings,
DenseNets achieve state-of-the-art results across several highly
competitive datasets. Moreover, DenseNets require substantially
fewer parameters and less computation than prior work at compa-
rable accuracy levels.
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