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Abstract. We present the Foundational Cryptography Framework (FCF)
for developing and checking complete proofs of security for cryptographic
schemes within a proof assistant. This is a general-purpose framework
that is capable of modeling and reasoning about a wide range of crypto-
graphic schemes, security definitions, and assumptions. Security is proven
in the computational model, and the proof provides concrete bounds as
well as asymptotic conclusions. FCF provides a language for probabilistic
programs, a theory that is used to reason about programs, and a library
of tactics and definitions that are useful in proofs about cryptography.
The framework is designed to leverage fully the existing theory and ca-
pabilities of the Coq proof assistant in order to reduce the effort required
to develop proofs.
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1 Introduction

Cryptographic algorithms and protocols are becoming more numerous, special-
ized, and complicated. As a result, it is likely that security vulnerabilities will
slip by peer review. To address this problem, some cryptographers [7][16] have
proposed an increased level of rigor and formality for cryptographic proofs. It is
our hope that eventually, cryptographers will be able to describe cryptographic
schemes and security proofs using a formal language, and the proofs can be
checked automatically by a highly trustworthy mechanized proof checker.

To enable such mechanically-verified proofs, we have developed The Founda-
tional Cryptography Framework (FCF). This framework embeds into the Coq
proof assistant [I7] a simple probabilistic programming language to allow the
specification of cryptographic schemes, security definitions, and assumptions.
The framework also includes useful theory, tactics, and definitions that assist
with the construction of proofs of security. Once complete, the proof can be
checked by the Coq proof checker. Facts proven in FCF include the security of
El Gamal encryption [14], and of the encryption scheme described in Section
of this paper. We have also proven the security and correctness of the “tuple-
set” construction of [I1], and shown how this primitive can be used to construct
a searchable symmetric encryption scheme supporting single keyword queries.



This is a complex and sophisticated construction with a proof of over 15000
lines of Coq code which includes a pair of core arguments involving more than
30 intermediate games.

FCF is heavily influenced by CertiCrypt [6], which was later followed by
EasyCrypt [5]. CertiCrypt is a framework that is built on Coq, and allows the
development of mechanized proofs of security in the computational model for ar-
bitrary cryptographic constructions. Unfortunately, proof development in Cer-
tiCrypt is time-consuming, and the developer must spend a disproportionate
amount of time on simple, uninteresting goals. To address these limitations, the
group behind CertiCrypt developed EasyCrypt, which has a similar semantics
and logic, and uses the Why3 framework and SMT solvers to improve proof
automation. EasyCrypt takes a huge step forward in terms of usability and au-
tomation, but it sacrifices some trustworthiness due to that fact that the trusted
computing base is larger and the basis of the mechanization is a set of axiomatic
rules.

FCF is a foundational framework like CertiCrypt, in which the rules used
to prove equivalence of programs (or any fact) are mechanized proofs derived
from the semantics or other core definitions. An important difference between
CertiCrypt and FCF is that CertiCrypt uses a deep embedding of a probabilistic
programming language whereas FCF uses a shallow embedding (similar to [19]).
The shallow embedding allows us to easily extend the language, and to make
better use of Coq’s tactic language and existing automated tactics to reduce the
effort required to develop proofs. The result is a framework that is foundational
and easily extensible, but in which proof development effort is greatly reduced.

2 Design Goals

Based on our experience working with EasyCrypt, we formulated a set of ide-
alized design goals that a practical mechanized cryptography framework should
satisfy. We believe that FCF achieves many of these goals, though there is still
some room for improvement, as discussed in Section

Familiarity. Security definitions and descriptions of cryptographic schemes
should look similar to how they would appear in cryptography literature, and
a cryptographer with no knowledge of programming language theory or proof
assistants should be able to understand them. Furthermore, a cryptographer
should be able to inspect and understand the foundations of the framework
itself.

Proof Automation. The system should use automation to reduce the effort
required to develop a proof. Ideally, this automation is extensible, so that the
developer can produce tactics for solving new kinds of goals.

Trustworthiness. Proofs should be checked by a trustworthy procedure, and
the core definitions (e.g., programming language semantics) that must be in-
spected in order to trust a proof should be relatively simple and easy to under-
stand.



FEztensibility. It should be possible to directly incorporate any existing the-
ory that has been developed for the proof assistant. For example, it should be
possible to directly incorporate an existing theory of lattices in order to support
cryptography that is based on lattices and their related assumptions.

Concrete Security. The security proof should provide concrete bounds on the
probability that an adversary is able to defeat the scheme. Concrete bounds
provide more information than asymptotic statements, and they inform the se-
lection of values for system parameters in order to achieve the desired level of
security in practice.

Abstraction. The system should support abstraction over types, procedures,
proofs, and modules containing any of these items. Abstraction over procedures
and primitive types is necessary for writing security definitions, and for reasoning
about adversaries in a natural way. The inclusion of abstraction over proofs
and structures adds a powerful mechanism for developing sophisticated abstract
arguments that can be reused in future proofs.

Code Generation. The system should be able to generate code containing the
procedures of the cryptographic scheme that was proven secure. This code can
then be used for basic testing, prototyping, or as an executable model to which
future implementations will be compared during testing.

3 Framework Components

In a typical cryptographic proof, we specify cryptographic schemes, security
definitions, and (assumed) hard problems, and then we prove a reduction from
a properly-instantiated security definition to one or more problems that are
assumed to be hard. In other words, we assume the existence of an effective
adversary against the scheme in question, and then prove that we can construct
a procedure that can effectively solve a problem that is assumed to be hard. This
reduction results in a contradiction that allows us to conclude that an effective
adversary against the scheme cannot exist.

The cryptographic schemes, security definitions, and hard problems are prob-
abilistic, and FCF provides a common probabilistic programming language (Sec-
tion for describing all three. Then we provide a denotational semantics
(Section that allows reasoning about the probability distributions that cor-
respond to programs in this language. This semantics assigns a numeric value
to an event in a probability distribution, and it also allows us to conclude that
two distributions are equivalent and we can replace one with the other (which
supports the game-hopping style of [7]).

It can be cumbersome to work directly in the semantics, so we provide a
theory of distributions (Section that can be used to prove that distributions
are related by equality, inequality or “closeness.” A program logic (Section
is also provided to ease the development of proofs involving state or looping be-
havior. To reduce the effort required to develop a proof, the framework provides
a library of tactics (Section and a library of common program elements with



associated theory (Section . The equational theory, program logic, tactics,
and programming library greatly simplify proof development, yet they are all
derived from the semantics of the language, and using them to complete a proof
does not reduce the trustworthiness of the proof.

By combining all of the components described above, a developer can pro-
duce a proof relating the probability that some adversary defeats the scheme
to the probability that some other adversary is able to solve a problem that is
assumed to be hard. This is a result in the concrete setting, in which probability
values are given as expressions, and certain problems are assumed to be hard
for particular constructed adversaries. In such a result, it may be necessary to
inspect an expression describing a probability value to ensure it is sufficiently
“small,” or to inspect a procedure to ensure it is in the correct complexity class.
FCF provides additional facilities to obtain more traditional asymptotic results,
in which these procedures and expressions do not require inspection. A set of
asymptotic definitions (Section allows conclusions such as “this probability
is negligible” or “this procedure executes a polynomial number of queries.” In
order to apply an assumption about a hard problem, it may be necessary to
prove that some procedure is efficient in some sense. So FCF provides an ex-
tensible notion of efficiency (Section and a characterization of non-uniform
polynomial time Turing machines

3.1 Probabilistic Programs

We describe probabilistic programs using Gallina, the purely functional pro-
gramming language of Coq, extended with a computational monad in the spirit
of Ramsey and Pfeffer [20], that supports drawing uniformly random bit vectors.
Listing [2] contains an example of a valid FCF program that implements a one-
time pad on bit vectors. This program accepts a bit vector argument z, samples
a random bit vector of length ¢ (where ¢ is a constant declared outside of this
function) and assigns the result to variable p, then returns p & z.

The syntax of the language is defined by an inductive type called Comp and
is shown in Listing [I} At a high-level, Comp is an embedded domain-specific
language that inherits the host language Gallina, and extends it with operations
for generating and working with random bits.

The most notable primitive operation is Rnd, which produces n uniformly
random bits. The Repeat operation repeats a computation until some decidable
predicate holds on the value returned. This operation allows a restricted form of
non-termination that is sometimes useful (e.g., for sampling natural numbers in
a specified range). The operations Bind and Ret are the standard monadic con-
structors, and allow the construction of sequences of computations, and compu-
tations from arbitrary Gallina terms and functions, respectively. However, note
that the Ret constructor requires a proof of decidable equality for the underly-
ing return type, which is necessary to provide a computational semantics as seen

3 The current release of the FCF code for version 8.4 of Coq is available from http:
//people.seas.harvard.edu/~apetcher/FCF_14.10.14.zip
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Inductive Comp : Set -> Type :=
| Ret : forall {A : Set}

{H: EqDec A}, A -> Comp A ﬂret(ﬂ ::l{a}
| Bind : forall {A B : Set}, Comp B $

-> (B -> Comp A) -> Comp A [z < ¢ f 2] =\. Z (If 8] =) = ([] b)
| Rnd : forall n, Comp (Bvector n) besupp([c])
| Repeat : forall {A : Set}, Comp A

-> (A -> bool) -> Comp A. ﬂ{071}"ﬂ::A$,2_n

Listing 1. Probabilistic Computation [Repeat ¢ P] =Az.(1p z) * ([c] x)*

Syntax -1
_ (Z(ﬂcu b))

Definition OTP (x : Bvector c) :
beP
Comp (Bvector c)
:= p <-$ {0, 1}"c; ret (p xor x)

Listing 2. An Example of a Fig.1l. Semantics of Probabilistic
Probabilistic Program Computations

later in this section. In the remainder of this paper, we will use a more natural
notation for these constructors: {0,1}" is equivalent to (Rnd n), x & c f is
the same as (Bind ¢ (fun x = f), and ret e is (Ret _ e). The framework
includes an ASCII form of this notation used in Listing [2] In the case of Ret,
the notation serves to hide the proof of decidable equality, which is irrelevant to
the programmer and is usually constructed automatically by proof search.

FCF uses a (mostly) shallow embedding, in which functions in the object lan-
guage are realized using functions in the metalanguage. In contrast, CertiCrypt
uses a deep embedding, in which the data type describing the object language
includes constructs for specifying and calling functions, as well as all of the
primitives such as bit-vectors and xor.

We have found that there are key benefits to shallow embedding. The primary
benefit is that we immediately gain all of the capability of the metalanguage,
including (in the case of Coq) dependent types, higher-order functions, modules,
etc. Another benefit is that it is very simple to include any necessary theory
in a security proof, and all of the theory that has been developed in the proof
assistant can be directly utilized. One benefit that is specific to Coq (and other
proof assistants with this property) is that Gallina functions are necessarily ter-
minating, and Coq provides some fairly complex mechanisms for proving that a
function terminates. By combining this restriction on functions with additional
restrictions on Repeat, we can ensure that a computation (eventually) termi-
nates, and that this computation corresponds with a distribution in which the
total probability mass is 1.

On the other hand, the shallow embedding approach does have some draw-
backs. The main drawback is that a Gallina function is opaque; we can only
reason about a Gallina function based on its input/output behavior. The most
significant effect of this limitation is that we cannot directly reason about the
computational complexity of a Gallina function. We address this issue in Section

The denotational semantics of a probabilistic computation is shown in Figure
The denotation of a term of type Comp A is a function in A — Q which



should be interpreted as the probability mass function of a distribution on A. In
FCF, all distributions are discrete and have finite support. In Figure[I] 15 is the
indicator function for set S. So the denotation of ret a is a function that returns
1 when the argument is definitionally equal to a, and 0 otherwise. We can view
the denotation of z < ¢; f ¢ as a marginal probability of the joint distribution
formed by ¢ and f. We know the probability of all events in ¢, but we only know
the probability of events in f conditioned on events in ¢, so we can compute
the probability of any event in this marginal distribution using the law of total
probability. The fact that random bits are uniform and independent is encoded
in the denotation of {0,1}", which is a function that ignores the argument and
returns the probability that any n-bit value is equal to a randomly chosen n-bit
value. The probability that Repeat ¢ P produces z is the conditional probability
of z given P in c—which is equivalent to the function shown in Figure

It is important to note that this language is purely functional, but the
monadic style gives programs an imperative appearance. This appearance sup-
ports the Familiarity design goal since cryptographic definitions and games are
typically written in an imperative style.

It is sometimes necessary to include some state in a cryptographic definition
or proof. This can be easily accomplished by layering a state monad on top of
Comp. However, this simple approach does not allow the development of defini-
tions in which an adversary has access to an oracle that must maintain some hid-
den state across multiple interactions with the adversary. The definition could
not simply pass the state to the adversary, because then the adversary could
inspect or modify it. So FCF provides an extension to Comp for probabilistic
procedures with access to a stateful oracle. The syntax of this extended lan-
guage (Listing[3]) is defined in another inductive type called OracleComp, where
OracleComp A B Cis a procedure that returns a value of type C, and has access
to an oracle that takes a value of type A and returns a value of type B.
Inductive OracleComp : Set -> Set -> Set -> Type :=
| 0C_Query : forall (A B : Set), A -> OracleComp A B B
| OC_Run : forall (A B C A’ B’ S : Set), EqDec S -> EqDec B -> EqDec A ->

OracleComp A B C -> S -> (S -> A -> OracleComp A’ B’ (B * S)) ->
OracleComp A’ B’ (C * S)
| OC_Ret : forall A B C, Comp C -> OracleComp A B C

| 0C_Bind : forall A B C C’, OracleComp A B C ->
(C -> OracleComp A B C’) -> OracleComp A B C’.

Listing 3. Computation with Oracle Access Syntax

The 0C_Query constructor is used to query the oracle, and 0C_Run is used to
run some program under a different oracle that is allowed to access the current
oracle. The 0C_Bind and OC_Ret constructors are used for sequencing and for
promoting terms into the language, as usual. In the rest of this paper, we overload
the sequencing and ret notation in order to use them for OracleComp as well
as Comp. We use query and run, omitting the additional types and decidable
equality proofs, as notation for the corresponding constructors of OracleComp.



[query a] = Mo s.(osa)
[runc s" 0] = Mo s.[c' (Az y.[(o'(fst x) y) o (snd x)]) (s',5)]
[ret c] = Mo s.z & ¢ ret (x,s)

[x & c; fa] = Nos.[z,s'] & [cos];[(f x)os']

Fig. 2. Semantics of Computations with Oracle Access

The denotation of an OracleComp is a function from an oracle and an or-
acle state to a Comp that returns a pair containing the value provided by the
OracleComp and the final state of the oracle. The type of an oracle that takes
an A and returns a Bis (8 -> A -> Comp(B * S)) for some type S which holds
the state of the oracle. The denotational semantics is shown in Figure

3.2 (In)Equational Theory of Distributions

A common goal in a security proof is to compare two distributions with respect to
some particular value (or pair of values) in the distributions. To assist with such
goals, we have provided an (in)equational theory for distributions. This theory
contains facts that can be used to show that two probability values are equal,
that one is less than another, or that the distance between them is bounded by
some value. For simplicity of notation, equality is overloaded in the statements
below in order to apply to both numeric values and distributions. When we say
that two distributions (represented by probability mass functions) are equal,
as in D1 = Dy, we mean that the functions are extensionally equal, that is
Vz,(Dy z) = (D2 z).

Theorem 1 (Monad Laws).
[a & ret b; fa] = [(fb)] [a & ¢;ret a] =[]

[[a<i(b<ic1;ch);03a]] = [[b(icl;a<i026;03a]]

Theorem 2 (Commutativity).

[[a&cgb(i(/*g;c?,abﬂ z[[b<i02;a<icl;63ab]]

Theorem 3 (Distribution Irrelevance). For well-formed computation c,

(va € supp([e]), [f ey = v) = [a & e: faly = v

Theorem 4 (Distribution Isomorphism). For any bijection f,
Va € supp([c2]), [a1](f =) = [c2]=
AVz € supp([cz2]), [f1 (f )] v1 = [f2 x]v2

= [a & e fra]vr = [a & co; foa] v



Theorem 5 (Identical Until Bad).
[a & ci;ret (Ba)] = [a & co;ret (Ba)]A
[a & ci;ret (Pa,Ba)|(z, false) = [a <& ¢o; ret (P a, B a)](x, false) =

|[a & ci;ret (Pa)]z—[a < co;ret (Pa)]z]| < [a<c;ret (Ba)] true

The meaning and utility of many of the above theorems is direct (such as the
standard monad properties in Theorem , but others require some explanation.
Theorem [3| considers a situation in which the probability of some event y in [[f x]
is the same for all  produced by computation c¢. Then the distribution [¢] is
irrelevant, and it can be ignored. This theorem only applies to well-formed com-
putations: A well-formed computation is one that terminates with probability 1,
and therefore corresponds to a valid probability distribution.

Theorem [ is a powerful theorem that corresponds to the common informal
argument that two random variables “have the same distribution.” More for-
mally, assume distributions [c¢;] and [eco] assign equal probability to any pair of
events (f ) and x for some bijection f. Then a pair of sequences beginning with
c1 and co are denotationally equivalent as long as the second computations in
the sequences are equivalent when conditioned on (f z) and z. A special case of
this theorem is when f is the identity function, which allows us to simply “skip”
over two semantically equivalent computations at the beginning of a sequence.

Theorem [5}, also known as the “Fundamental Lemma” from [7], is typically
used to bound the distance between two games by the probability of some un-
likely event. Computations ¢; and ce produce both a value of interest and an
indication of whether some “bad” event happened. We use (decidable) predicate
B to extract whether the bad event occurred, and projection P to extract the
value of interest. If the probability of the “bad” event occurring in ¢; and ¢y is
the same, and if the distribution of the value of interest is the same in ¢; and ¢,
when the bad event does not happen, then the distance between the probability
of the value of interest in ¢; and and c; is at most the probability of the “bad”
event occurring.

3.3 Program Logic

The final goal of a cryptographic proof is always some relation on probability
distributions, and in some cases it is possible to complete the proof entirely
within the equational theory described in However, when the proof requires
reasoning about loops or state, a more expressive theory may be needed in
order to discharge some intermediate goals. For this reason, FCF includes a
program logic that can be used to reason about changes to program state as
the program executes. Importantly, the program logic is related to the theory of
probability distributions through completeness and soundness theorems which
allow the developer to derive facts about distributions from program logic facts,
and vice-versa.



The core logic is a Probabilistic Relational Postcondition Logic (PRPL), that
behaves like a Hoare logic, except there are no preconditions. The definition of
a PRPL specification is given in Definition [I} In less formal terms, we say that
computations p and q are related by the predicate @ if both p and ¢ are marginals
of the same joint probability distribution, and @ holds on all values in the support
of that joint distribution.

Definition 1 (PRPL Specification). Given p : Comp A and q : Comp B,
3(d: Comp (A4 * B)),Y(z,y) € supp([d]), Pz y A
p~q{P} & s .
[p] = [z < d;ret (fstz)] Aq] = [z < d; ret (sndz)]

Using the PRPL, we can construct a Probabilistic Relational Hoare Logic
(PRHL) which includes a notion of precondition for functions that return com-
putations as shown in Definition [2| The resulting program logic is very similar
to the Probabilistic Relational Hoare Logic of EasyCrypt [5], and it has many
of the same properties.

Definition 2 (PRHL Specification). Given p : A => Comp B and q : C ->
Comp D, {W}p ~ ¢{P} ©Vab,¥ab= (pa)~ (q¢b){P}.

Several theorems are provided along with the program logic definitions to
simplify reasoning about programs. In order to use the program logic, one only
needs to apply the appropriate theorem, so it is not necessary to produce the
joint distribution described in the definition of a PRPL specification unless a
suitable theorem is not provided. Theorems are provided for reasoning about
the basic programming language constructs, interactions between programs and
oracles, specifications describing equivalence, and the relationship between the
program logic and the theory of probability distributions. Some of the more
interesting program logic theorems are described below.

Theorem 6 (Soundness/Completeness).
p~giraba=zeob=y}l < plz=[dy
p~a{raba=z=b=y} < plz<[dy

Theorem 7 (Sequence Rule).
P~} = PV~ s{P) = (2 & pira) ~ (z & gy s x){P)

Theorem 8 (Oracle Equivalence). Given an OracleComp ¢, and a pair of
oracles, o and p with initial states s and t,

b =Azy.(fstx) = (fsty) AN P (sndx)(sndy) =
Vas' t',Ps't' = (05 a)~ (pt' a){®}) = Pst= ([c]os)~ ([c] pt){P}

Theorem [f] relates judgments in the program logic to relations on probabil-
ity distributions. Theorem [7] is the relational form of the standard Hoare logic



sequence rule, and it supports the decomposition of program logic judgments.
Theorem [ allows the developer to replace some oracle with an observationally
equivalent oracle. There is also a more general form of this theorem (omitted for
brevity) in which the state of the oracle is allowed to go bad. This more general
theorem can be combined with Theorem [5| to get “identical until bad” results
for program/oracle interactions.

3.4 Tactics and Programming Library

The framework includes several tactics that can be used to transform goals us-
ing the facts in Sections 3.2 and [3:3] An example proof in section [ uses the
comp_simp, inline first and comp_skip tactics. These tactics simplify pro-
grams (e.g. by applying left identity to remove unnecessary ret statements),
pull out nested statements by applying associativity, and remove identical state-
ments at the beginning of a pair of programs, respectively. Also included is a
more sophisticated tactic called dist_compute that attempts to automatically
discharge goals involving simple computations.

FCF also includes a library containing useful programming structures and
their related theory. For example, the library includes several sampling routines,
such as drawing a natural number from a specified range; drawing an element
from a finite list, set, or group; or sampling from an arbitrary Bernoulli distribu-
tion. These sampling routines are all computations based on the Rnd statement
provided by the language, and each routine is accompanied by a theory estab-
lishing that the resulting distribution is correct. The CompFold package contains
higher-order functions for folding and mapping a computation over a list. This
package uses the program logic extensively, and many of the theorems take a
specification on a pair of computations as an argument, and produce a speci-
fication on the result of folding/mapping those computations over a list. The
package also contains theorems about typical list and loop manipulations such
as appending, flattening, fusion/fission and order permutation.

3.5 Asymptotic Theory and Efficient Procedures

Using the tools described in the previous sections, it is possible to complete a
proof of security in the concrete setting. That is, the probability that an adver-
sary wins a game is given as an expression which may include some value (or
set of values) n that we can interpret as the security parameter. To get a typi-
cal asymptotic security result, we must show that this expression, when viewed
as a function of 7, is negligible. To assist with these sorts of conclusions, FCF
provides a library of asymptotic definitions and theory.

An additional challenge is that the expression in the concrete security result
may contain a value describing the probability that some other procedure wins
some other game. We can apply a standard security assumption to conclude
that this value is negligible in 1, but in order to do so we need to show that
the procedure is in the appropriate complexity class. FCF utilizes an extensible



notion of complexity, and it includes a simple predicate that accepts non-uniform
worst-case polynomial time Turing machines. This predicate is constructed using
a concrete cost model that assigns numeric costs to particular Coq functions,
Comp values, and OracleComp values. The cost model for Gallina functions is
necessarily axiomatic, since there is no way to directly reason about intensional
properties of Coq functions. It includes axioms for some primitive operations
as well as a set of combinators for determining the cost of more complicated
functions. A proof must assume additional cost axioms for the set of functions
used by constructed adversaries, which is relatively small in practice. The axioms
need to be carefully inspected to ensure they accurately describe the desired
complexity class, though a similar kind of inspection is needed to ensure the
faithfullness of a cost model for a deeply-embedded language.

3.6 Code Extraction

FCF provides a code extraction mechanism that includes a strong guarantee
of equivalence between a model of a probabilistic program and the code ex-
tracted from that model. We developed a small-step operational semantics that
describes the behavior of these computations on a traditional machine (in which
the memory contains values rather than probability distributions). This opera-
tional semantics (omitted for brevity) is an oracle machine that is given a finite
list of bits representing the “random” input, and it describes how a computation
takes a single step to produce a new computation, a final value, or fails due to
insufficient input bits.

To show that this semantics is correct, we consider [c],,, the multiset of results
obtained by running a program c under this semantics on the set of all input lists
of length n. We can view [c], as a distribution, where the mass of some value a
in the distribution is the proportion of input strings that cause the program to
terminate with value a. The statement of equivalence between the semantics is
shown in Theorem

Theorem 9. If ¢ is well-formed, then 1Lm [c]n =[]

FCF contains a proof of Theorem [J] as a validation of the operational se-
mantics used for extraction. Now that we have an operational semantics, we
can simply use the standard Coq extraction mechanism to extract it along with
the model of interest and all supporting types and functions. Of course, the
trustworthiness of the extracted code depends on the correctness of Coq’s ex-
traction mechanism. Gallina does not allow infinite recursion, so the framework
includes OCaml code that runs a computation under the operational seman-
tics until a value is obtained. The final step is instantiating any abstract types
and functions with appropriate OCaml code. This extraction mechanism does
not produce production-quality code, but the code could be used for purposes
related to prototyping and testing.

This alternate semantics also provides other benefits. Because limits are
unique, if two programs are equivalent under the operational semantics, then



they are also equivalent under the denotational semantics. This allows us to
prove equivalence of two programs using the operational semantics when it is
more convenient to do so. Another benefit is that the operational semantics can
be considered to be the basic semantics for computations, and the denotational
semantics no longer needs to be trusted. Some may prefer this arrangement, since
the operational semantics more closely resembles a typical model of computa-
tion, and may be easier to understand and inspect. The operational semantics
can also be used as a basis for a model of computation used to determine whether
programs are efficient.

4 Security Proof Construction

This section uses an example to describe the process of constructing a proof of
security using the general process described at the beginning of Section [3] We
consider a simple encryption scheme constructed from a pseudorandom function
(PRF), and we prove that ciphertexts produced by this scheme are indistinguish-
able under chosen plaintext attack (IND-CPA). This example proof is relatively
simple, yet it contains many elements that one would find in a typical crypto-
graphic argument, and so it allows us to exercise all of the key functionality of
the framework. A more complex mechanized proof (e.g., the proof of [11]) may
have more intermediate games and a different set of arguments to justify game
transformations, but the structure is similar to the proof that follows. The omit-
ted details of the proof can be found in the longer form of this paper available
at http://arxiv.org/abs/1410.3735,

4.1 Concrete Security Definitions

In FCF, security definitions are used to describe properties that some construc-
tion is proven to have, as well as problems that are assumed to be hard. In the
PRF encryption proof, we use the definition of a PRF to assume that such a
PRF exists, and we use that assumption to prove that the construction in ques-
tion has the IND-CPA property. A concrete security definition typically contains
some game and an expression that describes the advantage of some adversary —
i.e., the probability that the adversary will “win” the game.

The game used to define the concrete security of a PRF is shown in Listing
[ Less formally, we say that f is a PRF for some adversary A if A cannot
effectively distinguish f from a random function. So this means that we expect
that PRF_Advantage is “small” as long as A is an admissible adversary.

The function f_oracle simply puts the function f in the form of an oracle,
though a very simple one with no state and with deterministic behavior. The
procedure RndR_func is an oracle implementing a random function constructed
using the provided computation RndR. The expressions involving A use a coer-
cion in Coq to invoke the denotational semantics for OracleComp, and therefore
ensure that A can query the oracle but has no access to the state of the oracle.
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Variable Key D R : Set. Variable Plaintext Ciphertext Key

Variable RndKey : Comp Key. State : Set.
Variable RndR : Comp R. Variable KeyGen : Comp Key.
Variable A : OracleComp D R bool. Variable Encrypt : Key -> Ciphertext
Variable f : Key -> D -> R. -> Comp Plaintext.
Variable A1 : OracleComp
Definition f_oracle(k: Key) (x: unit) Plaintext Ciphertext
(d : D) : Comp (R * unit) := (Plaintext * Plaintext * State).
ret (f k d, tt). Variable A2 : State -> Ciphertext ->
Definition PRF_G_A : Comp bool := OracleComp Plaintext Ciphertext
k <-$ RndKey; bool.
[b, _]1 <-$2 A (f_oracle k) tt;
ret b. Definition EncryptOracle
Definition PRF_G_B : Comp bool := (k: Key)(x: unit)(p: Plaintext) :=
[b, _] <-$2 A (RndR_func) nil; ¢ <-$ Encrypt k p;
ret b. ret (c, tt).
Definition PRF_Advantage := Definition IND_CPA_SecretKey_G :=
| Pr[PRF_G_A] - Pr[PRF_G_B] |. key <-$ KeyGen ;
o s . [b, _1 <-$2
Listing 4. PRF Concrete Security (
Definition [p0, pl, s_A]l <--$3 A1l;

b <--8$$ {0, 13};
pb <- if b then pl else poO;

Variable eta : nat. c <--$$ Encrypt key pb;
Variable f : Bvector eta -> b’ <--$ A2 s_A c;
Bvector eta -> Bvector eta. ) $ ret eqb b b’
Definition PRFE_KeyGen := (EncryptOracle key) tt;
{0, 1} - eta. ret b.
Definition PRFE_Encrypt Definition
(k : Key )(p : Plaintext) := IND_CPA_SecretKey_Advantage :=
r <-$ {0, 1} - eta; | Pr[IND_CPA_SecretKey_G] - 1/2 |.
ret (r, p xor (f k r)). P .
Definition PRFE_Decrypt LlStll.flg 6. IND-CPA Concrete Security
(k : Key)(c : Ciphertext) := Definition

(snd c¢) xor (f k (fst c)).

Listing 5. Encryption using a PRF

At a high level, this definition involves two games describing two different
“worlds” in which the adversary may find himself. In one world (PRF_G_A) the
adversary interacts with the PRF, and in the other (PRF_G_B) the adversary
interacts with a random function. In each game, the adversary interacts with the
oracle and then outputs a bit. The advantage of the adversary is the difference
between the probability that he outputs 1 in world PRF_G_A and the probability
that he outputs 1 in world PRF_GB. If f is a PRF, then this advantage should
be small.

The concrete security definition for IND-CPA encryption is shown in Listing
[0} In this definition, KeyGen and Encrypt are the key generation and encryption
procedures. The adversary comprises two procedures, A1 and A2 with different
signatures, and the adversary is allowed to share arbitrary state information
between these two procedures. This definition uses a slightly different style than
the PRF definition—there is one game and the “world” is chosen at random
within that game. Then the adversary attempts to determine which world was
chosen.

In Listing[6] the game produces an encryption oracle from the Encrypt func-
tion and a randomly-generated encryption key. Then the remainder of the game,
including the calls to A1 and A2, may interact with that oracle. The code for this



definition includes some additional notation (different arrows and extra $ sym-
bols) that is only used to provide hints to the Coq parser and does not change
the behavior of the program.

4.2 Construction

The construction, like the security definitions, can be modeled in a very natural
way. Of course, one must take care to ensure that the construction has the cor-
rect signature as specified in the desired security property. The PRF encryption
construction is shown in Listing [f]

In the PRF Encryption construction, we assume a nat called eta (n) which
will serve as the security parameter. The encryption scheme is based on a func-
tion f, and the scheme will only be secure if £ is a PRF. The type of keys and
plaintexts is bit vectors of length eta, and the type of ciphertexts is pairs of
these bit vectors. The decryption function is included for completeness, but it is
not needed for this security proof.

4.3 Sequence of Games

The sequence of games represents the overall strategy for completing the proof.
In the case of PRF Encryption, we want to show that the probability that
the adversary will correctly guess the randomly chosen “world” is close to 1/2.
We accomplish this by instantiating the IND-CPA security definition with the
construction, and then transforming this game, little by little, until we have a
game in which this probability is exactly 1/2. Each transformation may add some
concrete value to the bounds, and we want to ensure that the sum of these values
is small.

Definition PRFE_Encrypt_0C (x : unit)
[lND,CPA,G}z [Gl} (p : Plaintext) : OracleComp
(Bvector eta) (Bvector eta)

~ (Ciphertext * unit) :=
PRF_Advantage r <—-$$ {0,1} - eta;

pad <--$ 0C_Query r;

$ (ret (r, p xor pad, tt)).

—~ Definition PRF_A : OracleComp
~Random List Collision (Bvector eta) (Bvector eta) bool :=
[a, n] <--$2 OC_Run A1l
PRFE_Encrypt_0C tt;
G3 [p0, pl, s_A]l <-3 a;
b <--$$ {0,1}; r <--$$ {0,1} eta;

—O0ne Time Pad pb <- if b then pl else pO0;
pad <--$ 0C_Query r;

¢ <- (r, pb xor pad);
= =112 z <--$ 0C_Run (A2 s_A c)
PRFE_Encrypt_0C n;

[b?,_] <-2 z; $ ret (egb b b’).

Fig. 3. Sequence of Games Diagram Listing 7. The Constructed Adversary
Against the PRF



The diagram in Figure [3] shows the entire sequence of games, as well as
the relationship between each pair of games in the sequence. In this diagram,
two games are related by = if they are identical, and by = if they are close.
When the equivalence is non-trivial, the diagram gives an argument for the
equivalence, which implies a bound on the distance between the games when
they are not equal. The intermediate game code is omitted for brevity, but a
detailed description of each game transformation follows.

We begin by instantiating the IND-CPA definition with the construction and
simplifying to produce game G1. This equivalence is obvious, and the proof can
be completed using Coq’s reflexivity tactic.

Next we replace the function £ with a random function, and the distance
between G1 and G2 is exactly the advantage of some adversary against a PRF.
The adversary against the PRF (Listing [7)) is constructed from A1 and A2.
PRFE_Encrypt_0C is an encryption oracle that interacts with the PRF as an
oracle. PRF_A provides this encryption oracle to A1 and A2 (the two adversary
procedures in the IND-CPA definition) using the 0C_Run operation. This proof
can be completed by performing simple manipulations and then unifying with
PRF_Advantage.

Now we replace the random function output used to encrypt the challenge
ciphertext with a bit vector selected completely at random to produce game G3.
We show that G2 and G3 are “close” by demonstrating that these games are
“identical until bad” in the sense of Theorem [Bl The “bad” event of interest is
the event that the randomly-generated PRF input used to encrypt the challenge
plaintext is also used to encrypt some other value during the interaction between
the adversary and the encryption oracle. There are two separate adversary pro-
cedures, and each one is capable of encountering r during its interaction with
the oracle. To get an expression for the probability of the “bad”event, we assume
natural numbers ¢; and ¢2, and that A1 performs at most ¢; queries and A2 per-
forms at most g2 queries. FCF includes a library module called RndInList that
includes general-purpose arguments related to the probability of encountering a
randomly selected value in a list of a certain length, and the probability of en-
countering a certain value in a list of randomly-generated elements of a certain
length. Using these arguments, we conclude that the distance between G2 and
G3 is a1/27 + a2/27.

The previous equivalences are proven using the program logic described in
Section Once the random functions are removed, there are no more issues
related to state, and the remainder of the proof can be completed by reasoning
on the probability distributions using the theory from Section

In G3, the encryption of the challenge plaintext is by one-time pad, so we
can replace the resulting ciphertext with a randomly-chosen value to produce
G4. FCF contains a generic one-time-pad argument that we can apply to show
that G3 is equivalent to G4. This step is relatively simple so we include the
full code of the proof (Listing [§]) for illustration. The one-time pad argument
expects the game to be in a particular form, so we develop another intermediate
game (G3-1), and we start by proving that G3 is equivalent to G3_1. These games



only differ by associativity, so a simple repeated proof script establishes their
equivalence. The second proof in Listing [§] focuses on the appropriate context,
and then applies the one-time pad argument for xor. The custom tactics used
in this proof are described in Section |3.4

In G4, the challenge bit is independent of all

Thg‘r’?z'g] Gi;cg;l[a:c_”ll;"“ other values in the game, so we can move the sam-
pling of this bit to the end of the game to produce
unfold G3, G3_1. G5. The proof of equivalence is by repeated applica-

repeat (comp_simp;

inline_first; tion of the commutativity theorem (Theorem .
_skip). .
Qed,comp SRR Finally, we develop the proof that the adversary
, wins Game 5 with probability exactly 1/2. This proof
Theorem G3_1_G4_equiv: . . .
PriG3_1] == Pr[G4]. proceeds by discarding all of the statements in the
game before the coin flip. Then what remains is a
unfold G3_1, G4. . . .
do 4 (comp_skip; very simple game that flips a coin and compares the
comp_simp). result to a fixed value. A provided tactic can auto-
apply xor_OTP_eq. . . .1 .
reflexivity. matically determine that the probability that this
Qed. game returns true is 1/2.
Listing 8. Proof of By combining the equivalences of each pair of in-

Equivalence of G3 and G4  termediate games, we get the final concrete security

result shown in Listing[0] It is important to note that
the statement of this theorem does not reference any of the intermediate games.
The sequence of games was only a tool that we used to get the final result, and
this sequence does not need to be inspected in order to trust the result.

Theorem PRFE_IND_CPA_concrete :
IND_CPA_SecretKey_Advantage PRFE_KeyGen PRFE_Encrypt Al A2 <=
PRF_Advantage ({0,1}"eta) ({0,1}"eta) f PRF_A + (ql / 2"eta + g2 / 2" eta).

Listing 9. Concrete Security Result

This completes the proof of security in the concrete setting. We have also
developed an asymptotic security proof based on this result, but a discussion of
this proof is omitted for brevity.

5 Comparison to EasyCrypt

This section attempts to evaluate FCF against the design goals listed in Section
[2] and to contrast with both CertiCrypt and EasyCrypt.

All three of these frameworks provide concrete bounds, so this criterion is
not discussed further. And, all three frameworks use a relatively familiar syntax
for security definitions and constructions. We believe that, based on our experi-
ence working with cryptographers, they can easily understand these definitions
(e.g., Listing [4)) after spending a few minutes familiarizing themselves with the
notation.

Regarding proof automation, FCF lies somewhere between CertiCrypt and
EasyCrypt. EasyCrypt achieves a significant level of automation by using SMT




solvers to discharge simple logical goals, but higher-level goals still need to be
addressed manually by applying tactics. FCF achieves a similarly high level of
automation through the use of existing and custom Coq tactics. These tactics are
not as powerful as modern SMT solvers, so the developer may need to manually
address some goals in FCF that would be discharged automatically in EasyCrypt.
However, the semantics of programs in FCF is computational, so Coq is able to
immediately compute an expression describing the probability distribution for
any program. This allows some simple equivalences to be discharged immediately
using the semantics and tactics provided by FCF.

Regarding trust in eztensional properties, FCF and CertiCrypt are founda-
tional, meaning that the program logic is constructed definitionally from the
semantics. In contrast, the relationship between EasyCrypt’s semantics and pro-
gram logic is not mechanized. The trusted computing base of EasyCrypt includes
the EasyCrypt front end (the OCaml code that implements EasyCrypt) and the
Why3 verification condition generator and one or more SMT solvers (if the proof
includes a tactic that invokes the SMT solvers), whereas the TCB of FCF and
CertiCrypt includes only the Coq type checker. EasyCrypt provides no support
for reasoning about intensional properties such as execution time, whereas Cer-
tiCrypt and FCF do, though FCF provides this suport using a trusted set of
axioms.

EasyCrypt and CertiCrypt are based on simply-typed, first-order languages
which are deeply-embedded into higher-order languages. This design makes it dif-
ficult to directly support abstraction, extension, and reuse, though these frame-
works include elements which support these goals to some extent. In contrast,
FCF uses a shallow embedding and the advanced features of Coq, such as de-
pendent types, modules, notation, and higher-order functions, to support ab-
straction, extensiblity, and reuse. We believe that having such a rich language
for describing games, assumptions, and arguments is critical for scaling to larger
protocols.

FCF supports code generation with a semantics that is proven to be equiv-
alent to the semantics used to reason about the probabilistic behavior of pro-
grams. That is, a program extracted from an FCF model is guaranteed to pro-
duce the correct probability distribution when the input bits provided to it
are uniformly distributed, assuming the extraction mechanism of Coq preserves
meaning. There has been some initial work [3] in producing implementations
that correspond to EasyCrypt models, but there is no formal relationship be-
tween the semantics of the implementation and the semantics used to reason
about the model.

EasyCrypt and FCF solve the same problem in slightly different ways and
with different sets of strengths and weaknesses. It is too early to tell which sorts
of proofs will benefit from one approach over the other.



6 Related Work

There has been a large amount of work in the area of verifying cryptographic
schemes in recent years. In this section we will describe some of this related
work, focusing on systems that attempt to establish security in the computa-
tional model. CertiCrypt [6] and EasyCrypt [B] have been thoroughly discussed
previously in this paper.

There are several other examples of frameworks for cryptographic security
proofs implemented within proof assistants. The most similar work is that of
Nowak [19], who was the first to develop proofs of cryptography in Coq using
a shallow embedding in which programs have probability distributions as their
denotations. FCF builds on this work by adding more tools for modeling and
reasoning such as procedures with oracle access (Section 7 a program logic
(Section , and asymptotic reasoning (Section |3.5)).

The work of [2] is a Coq library utilizing a deeply-embedded imperative pro-
gramming language. This library is a predecessor to CertiCrypt, and it includes
some important elements that were later adopted by CertiCrypt. Notably, the
probabilistic programming language in this work is given a semantics in which
program states are distributions, and the semantics describes how these distri-
butions are transformed by each command in the language. Though this library
lacks some of the features of CertiCrypt such as oracles, unrestricted loops, and
the Probabilistic Relational Hoare Logic.

Verypto [9] is a fully-featured framework built on Isabelle [18] that includes a
deep embedding of a functional programming language. To allow state informa-
tion to remain hidden from adversaries, Verypto provides ML-style references,
in contrast to the oracle system provided by FCF. To date, Verypto has only
been used to prove the security of simple constructions, but this work uses an
interesting approach that deserves more exploration.

CryptoVerif [I0] is a tool based on a concurrent, probabilistic process cal-
culus that is only able to prove properties related to secrecy and authenticity.
CryptoVerif is highly automated to the extent that it will even attempt to lo-
cate intermediate games, and so proof development in CryptoVerif requires far
less effort compared to FCF or EasyCrypt. However, there are a large number
of proofs that could be completed in FCF or EasyCrypt that are impossible in
CryptoVerif due to its specialized nature and lack of interactive proof develop-
ment features.

Refinement types [8] have been used by Fournet et al [I5] to develop proofs of
security for cryptographic schemes in the computational model. In this system,
a security property is specified as an ideal functionality (in the sense of the re-
al/ideal paradigm), and constructions have these properties by assumption. This
approach allows the proofs of security to be fairly simple, but many important
facts are assumed rather than mechanized, and no concrete security claims are
proved.

Computational soundness [I] provides another mechanism for verifying cryp-
tographic schemes. This approach attempts to derive security in the computa-



tional model from security in the symbolic model by showing that any likely
execution trace in the computational model also exists in the symbolic model. It
is possible to mechanize such a proof as described in [4]. This approach is limited
to classes of schemes for which computational soundness results have been dis-
covered. Another limitation with this approach is that it can only produce proofs
in the asymptotic setting—there is no way to prove concrete security claims.

Protocol Composition Logic (PCL) [I2] provides a logic and proof system for
verifying cryptographic schemes in the symbolic model. The system is based on
a process calculus and allows reasoning about the results of individual protocol
steps. More recent work [13] has extended this logic to allow for proofs in the
computational model. In computational PCL, formulas are interpreted against
probability distributions on traces and a formula is true if it holds with over-
whelming probability. This approach is similar to computational soundness in
that low-probability traces are ignored, and proofs of concrete security claims
are impossible.

7 Conclusion and Future Work

Our contribution is a complete mechanized framework for specifying and check-
ing cryptographic proofs within a proof assistant. Our framework compares fa-
vorably to the current state of the art, and provides many new benefits, such as
extensibility through a foundational approach, a powerful language for describ-
ing schemes and arguments, and the ability to extract excutable code. Next we
intend to demonstrate the scalability of FCF by describing a mechanized proof
of security of a complex searchable symmetric encryption scheme ([I1]).
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