
Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Exact Learning from Random Walk
M.Sc. Seminar

Iddo Bentov

Advisor: Prof. Nader Bshouty

Department of Computer Science
Technion – Israel Institute of Technology

November 25, 2009

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Overview

Computational Learning Theory

Goal: learn from examples an unknown target function f ∈ C
Cn ({g | g : {0, 1}n → {0, 1}} , C = ∪∞n=1Cn
Learning any boolean function out of the 22n possibilities is
exponentially hard, since the size of a random function is Ω(2n)
We assume that the class C is known to the learner.

Examples for the class C
monotone term: the class of conjunctions of unnegated
variables, e.g. f(x1, x2, x3, x4, x5) = x1 ∧ x4 ∧ x5 = x1x4x5

read-once DNF: the class of DNF formulas in which every
variable appears at most once, e.g. x1x3 ∨ x4 ∨ x2x8x9

poly-size DNF: the class of functions that can be represented
as DNF with at most nd terms, where d is a constant

k-juntas: functions that depend on at most k (out of n) variables

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The Online learning model

The Online learning model

At each trial i the learner receives an example x(i) ∈ {0, 1}n
from a teacher, and makes the prediction h(x(i)) according to
an hypothesis h that the learner updates.

i = 1, 2, 3, . . . ad infinitum

If h(x(i)) 6= f(x(i)), the teacher sends a “mistake” message
back to the learner after the ith trial.

Need to achieve exact learning: h ≡ f with probability 1− δ
after at most poly(n, sizeC(f), 1

δ) mistakes. log 1
δ
· poly(n, sizeC(f))

h(x(i)) has to be computed in poly(n, sizeC(f)) time.

Comparison with Probably Approximately Correct (PAC) learning

Online ⇒6⇐ PAC, i.e. exact learning from a malicious teacher is
strictly harder than approximate learning from a probabilistic
teacher, assuming that (P 6=NP and) one-way functions exist.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The Online learning model

The Online learning model

At each trial i the learner receives an example x(i) ∈ {0, 1}n
from a teacher, and makes the prediction h(x(i)) according to
an hypothesis h that the learner updates. i = 1, 2, 3, . . . ad infinitum

If h(x(i)) 6= f(x(i)), the teacher sends a “mistake” message
back to the learner after the ith trial.

Need to achieve exact learning: h ≡ f with probability 1− δ
after at most poly(n, sizeC(f), 1

δ) mistakes. log 1
δ
· poly(n, sizeC(f))

h(x(i)) has to be computed in poly(n, sizeC(f)) time.

Comparison with Probably Approximately Correct (PAC) learning

Online ⇒6⇐ PAC, i.e. exact learning from a malicious teacher is
strictly harder than approximate learning from a probabilistic
teacher, assuming that (P 6=NP and) one-way functions exist.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The Online learning model

The Online learning model

At each trial i the learner receives an example x(i) ∈ {0, 1}n
from a teacher, and makes the prediction h(x(i)) according to
an hypothesis h that the learner updates. i = 1, 2, 3, . . . ad infinitum

If h(x(i)) 6= f(x(i)), the teacher sends a “mistake” message
back to the learner after the ith trial.

Need to achieve exact learning: h ≡ f with probability 1− δ
after at most poly(n, sizeC(f), 1

δ) mistakes. log 1
δ
· poly(n, sizeC(f))

h(x(i)) has to be computed in poly(n, sizeC(f)) time.

Comparison with Probably Approximately Correct (PAC) learning

Online ⇒6⇐ PAC, i.e. exact learning from a malicious teacher is
strictly harder than approximate learning from a probabilistic
teacher, assuming that (P 6=NP and) one-way functions exist.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The Online learning model

The Online learning model

At each trial i the learner receives an example x(i) ∈ {0, 1}n
from a teacher, and makes the prediction h(x(i)) according to
an hypothesis h that the learner updates. i = 1, 2, 3, . . . ad infinitum

If h(x(i)) 6= f(x(i)), the teacher sends a “mistake” message
back to the learner after the ith trial.

Need to achieve exact learning: h ≡ f with probability 1− δ
after at most poly(n, sizeC(f), 1

δ) mistakes.

log 1
δ
· poly(n, sizeC(f))

h(x(i)) has to be computed in poly(n, sizeC(f)) time.

Comparison with Probably Approximately Correct (PAC) learning

Online ⇒6⇐ PAC, i.e. exact learning from a malicious teacher is
strictly harder than approximate learning from a probabilistic
teacher, assuming that (P 6=NP and) one-way functions exist.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The Online learning model

The Online learning model

At each trial i the learner receives an example x(i) ∈ {0, 1}n
from a teacher, and makes the prediction h(x(i)) according to
an hypothesis h that the learner updates. i = 1, 2, 3, . . . ad infinitum

If h(x(i)) 6= f(x(i)), the teacher sends a “mistake” message
back to the learner after the ith trial.

Need to achieve exact learning: h ≡ f with probability 1− δ
after at most poly(n, sizeC(f), 1

δ) mistakes. log 1
δ
· poly(n, sizeC(f))

h(x(i)) has to be computed in poly(n, sizeC(f)) time.

Comparison with Probably Approximately Correct (PAC) learning

Online ⇒6⇐ PAC, i.e. exact learning from a malicious teacher is
strictly harder than approximate learning from a probabilistic
teacher, assuming that (P 6=NP and) one-way functions exist.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The Online learning model

The Online learning model

At each trial i the learner receives an example x(i) ∈ {0, 1}n
from a teacher, and makes the prediction h(x(i)) according to
an hypothesis h that the learner updates. i = 1, 2, 3, . . . ad infinitum

If h(x(i)) 6= f(x(i)), the teacher sends a “mistake” message
back to the learner after the ith trial.

Need to achieve exact learning: h ≡ f with probability 1− δ
after at most poly(n, sizeC(f), 1

δ) mistakes. log 1
δ
· poly(n, sizeC(f))

h(x(i)) has to be computed in poly(n, sizeC(f)) time.

Comparison with Probably Approximately Correct (PAC) learning

Online ⇒6⇐ PAC, i.e. exact learning from a malicious teacher is
strictly harder than approximate learning from a probabilistic
teacher, assuming that (P 6=NP and) one-way functions exist.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The Online learning model

The Online learning model

At each trial i the learner receives an example x(i) ∈ {0, 1}n
from a teacher, and makes the prediction h(x(i)) according to
an hypothesis h that the learner updates. i = 1, 2, 3, . . . ad infinitum

If h(x(i)) 6= f(x(i)), the teacher sends a “mistake” message
back to the learner after the ith trial.

Need to achieve exact learning: h ≡ f with probability 1− δ
after at most poly(n, sizeC(f), 1

δ) mistakes. log 1
δ
· poly(n, sizeC(f))

h(x(i)) has to be computed in poly(n, sizeC(f)) time.

Comparison with Probably Approximately Correct (PAC) learning

Online ⇒6⇐ PAC, i.e. exact learning from a malicious teacher is
strictly harder than approximate learning from a probabilistic
teacher, assuming that (P 6=NP and) one-way functions exist.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Example of Online learning

Example: learning a non-monotone term, |Cn| = 3n + 1� 22n

1 start with h ≡ 0 and predict h(x(i)) = 0 until the first mistake

2 set h to the full term that is consistent with the assignment
that caused the prediction mistake, e.g. if x(i) = (1, 0, 1, 1, 0)
and f(x(i)) = 1 then set h = x1x2x3x4x5

3 predict according to the hypothesis h, and upon mistakes
remove the (irrelevant) variables that are inconsistent with h,
for example if f(0, 0, 1, 1, 1) = 1 then remove the irrelevant
variables x1 and x5, and continue to predict with h = x2x3x4

note: f(x) = 0 =⇒ h(x) = 0 because f is contained in h

⇒ Total number of prediction mistakes ≤ n + 1

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Online models that restrict the power of the teacher

UOnline - Uniform Online

The teacher has to select each example randomly uniformly.

RWOnline - Random Walk Online

Malicious teacher who is restricted to selecting successive examples
that differ by at most one bit, e.g.:
(0, 0, 0, 0, 0), (0, 0, 0, 1, 0), (1, 0, 0, 1, 0), (1, 1, 0, 1, 0), (1, 1, 0, 0, 0), ...

URWOnline - Uniform Random Walk Online

The examples are selected via the random walk stochastic process,
i.e. according to the following time-homogeneous Markov chain:

Pr(x(t+1) = y | x(t) = x) =
{

1
n+1 if Ham(y, x) ≤ 1
0 otherwise

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Motivation behind learning from a stochastic process

Practical motivation

In models such as PAC and UROnline, it is assumed that the
learner obtains independent examples from the environment.
This assumption doesn’t always hold in practice.

In particular, successive examples that are generated by a
physical process tend to differ only slightly, e.g. trajectory of
robots. Therefore, learning models based on random walk or
similar stochastic processes are more appropriate in such cases.

Theoretical motivation

Learning in adversarial settings or PAC settings appears to be
hard for many common classes. Even PAC under the uniform
distribution is conjectured to be too hard for some classes.

Passive learning in the URWOnline model is strictly harder
than active learning via MQs, but still easier than UOnline.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The current state of knowledge

Class Model Learnable? Remarks

0 poly-size DNF Proper Online No combinatorial
(h is DNF) properties

1 poly-size DNF Online, Open, if P = NP then yes,

PAC 2Õ(3√n) even for C = circuits

2 poly-size DNF UOnline, Open, no results for the

uniform-PAC nO(logn) UOnline model

3 O(log n)-juntas UOnline, Open, (d · log n)-junta is
ω(1)-juntas uniform-PAC ≈ n0.704·k nd-term DNF

4 ROM-DNF Online, PAC Open composition lemma

5 ROM-DNF UOnline Open no composition

6 RO-DNF uniform-PAC Yes no composition

7 poly-size DNF URWalk-PAC Yes MQ ≺ RW ≺ uPAC

8 O(log n)-juntas URWOnline Yes straightforward

9 RO-DNF URWOnline Yes

poly-size DNF URWOnline No? implies UOnline

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Relation between the restricted Online models

Online ≡ RWOnline
⇓ ⇓6⇑

UOnline
6⇐
⇒ URWOnline

For ⇒, we note that the RW stochastic process mixes rapidly

For 6⇐, we prove URWOnline learnability of O(log n)-juntas

For 6⇑, we prove URWOnline learnability of RO(M)-DNF

For ≡, we prove that RWOnline implies Online

We also prove that read-3 DNF learnability in URWOnline
implies that any DNF can be learned in UOnline (under
reasonable conditions)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Random Walk with an adversarial teacher

Definition: one variable override

We say that class C possesses the one variable override property
if for every f(x1, . . . , xn) ∈ C there exist constants c0, c1 ∈ {0, 1}
and g(x1, . . . , xn+1) ∈ C such that

g ≡
{
f xn+1 = c0

c1 otherwise

Observation regarding non-probabilistic walk

If C has the one variable override property, a malicious teacher can

1 set the certain variable that overrides the function’s value

2 choose arbitrary values for the other variables via a walk that
flips one bit at a time

3 reset this certain variable and force the learner to make a
prediction on an arbitrary assignment

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The one variable override property

Classes that possess the one variable override property

Common classes indeed possess the one variable override property

RO-DNF, decision list, decision tree, DFA:
f(x1, . . . , xn) ∈ C =⇒ g(x1, . . . , xn+1) = xn+1∨f(x1, . . . , xn)
k-term DNF, k-term RSE:
f(x1, . . . , xn) ∈ C =⇒ g(x1, . . . , xn+1) = xn+1∧f(x1, . . . , xn)
halfspace:
f(x1, . . . , xn) = [

∑n
i=1 aixi ≥ b] ∈ C =⇒

g(x1, . . . , xn+1) = xn+1 ∨ f(x1, . . . , xn)
= [(b+

∑n
i=1 |ai|)xn+1 +

∑n
i=1 aixi ≥ b]

Classes that don’t possess the one variable override property

boolean threshold functions (which are Online learnable):
f(x1, . . . , xn) = [

∑n
i=1 aixi ≥ b] where ai ∈ {0, 1}

Flipping a single variable can affect the sum by only ±1

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Reducing RWOnline to Online

Formal proof of the observation

Suppose A is a RWOnline algorithm that learns the class C with a mistake
bound T (n, sizeC(f)), and C possesses the one variable override property.

Algorithm B will learn f(x1, . . . , xn) ∈ C in the Online model, by constructing

g ≡


f xn+1 = c0

c1 otherwise

And simulating A as follows

1 receive x(t) from the teacher

2 x̃(t−1) ← (x
(t−1)
1 , x

(t−1)
2 , . . . , x

(t−1)
n , c0), x̃(t) ← (x

(t)
1 , x

(t)
2 , . . . , x

(t)
n , c0)

3 Walk from x̃(t−1) to x̃(t), asking A for predictions, and informing A of
mistakes in case it fails to predict c1 after each bit flip

4 Send (x(t), c0) to A, and let y be the answer of A on (x(t), c0)

5 Send the answer y to the teacher, and inform A in case of a mistake

Thus, A receives examples that differ by one bit, and the correct “mistake”
messages. Therefore, A learns g after at most T (n + 1, sizeC(g)) mistakes.

=⇒ worst-case mistake bound for B is 22 · T (n + 1, sizeC(g))

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The hypercube (a.k.a. the Hamming cube) as a graph

(0,0) (0,1)

(1,0) (1,1)

(0,0,0) (0,1,0)

(1,0,0)

(1,0,1)

(0,1,1)

(1,1,1)

(0,0,0,0)

(1,1,1,1)

(0,0,0,1) (0,1,0,1)

(1,0,1,0)

(0,0,1,0)

(1,1,1,0)

HYPn is a n-regular graph with 2n vertices (HYP4 illustrated)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The hypercube (a.k.a. the Hamming cube) as a graph

(0,0) (0,1)

(1,0) (1,1)

(0,0,0) (0,1,0)

(1,0,0)

(1,0,1)

(0,1,1)

(1,1,1)

(0,0,0,0)

(1,1,1,1)

(0,0,0,1) (0,1,0,1)

(1,0,1,0)

(0,0,1,0)

(1,1,1,0)

HYPn is a n-regular graph with 2n vertices (HYP4 illustrated)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The hypercube (a.k.a. the Hamming cube) as a graph

(0,0) (0,1)

(1,0) (1,1)

(0,0,0) (0,1,0)

(1,0,0)

(1,0,1)

(0,1,1)

(1,1,1)

(0,0,0,0)

(1,1,1,1)

(0,0,0,1) (0,1,0,1)

(1,0,1,0)

(0,0,1,0)

(1,1,1,0)

HYPn is a n-regular graph with 2n vertices (HYP4 illustrated)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The hypercube (a.k.a. the Hamming cube) as a graph

(0,0) (0,1)

(1,0) (1,1)

(0,0,0) (0,1,0)

(1,0,0)

(1,0,1)

(0,1,1)

(1,1,1)

(0,0,0,0)

(1,1,1,1)

(0,0,0,1) (0,1,0,1)

(1,0,1,0)

(0,0,1,0)

(1,1,1,0)

HYPn is a n-regular graph with 2n vertices (HYP4 illustrated)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The hypercube (a.k.a. the Hamming cube) as a graph

(0,0) (0,1)

(1,0) (1,1)

(0,0,0) (0,1,0)

(1,0,0)

(1,0,1)

(0,1,1)

(1,1,1)

(0,0,0,0)

(1,1,1,1)

(0,0,0,1) (0,1,0,1)

(1,0,1,0)

(0,0,1,0)

(1,1,1,0)

HYPn is a n-regular graph with 2n vertices (HYP4 illustrated)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The hypercube (a.k.a. the Hamming cube) as a graph

(0,0) (0,1)

(1,0) (1,1)

(0,0,0) (0,1,0)

(1,0,0)

(1,0,1)

(0,1,1)

(1,1,1)

(0,0,0,0)

(1,1,1,1)

(0,0,0,1) (0,1,0,1)

(1,0,1,0)

(0,0,1,0)

(1,1,1,0)

HYPn is a n-regular graph with 2n vertices (HYP4 illustrated)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The mixing time and hitting time on HYPn

Mixing time: after how many steps of random walk on HYPn
is the distribution of the vertex that we are at identical to the
uniform distribution?

(0,0,0,0,0)

(0,0,0,0,1)

(1,1,1,1,0)

(1,1,1,1,1)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The mixing time and hitting time on HYPn

Mixing time: after how many steps of random walk on HYPn
is the distribution of the vertex that we are at identical to the
uniform distribution?
For simple random walk, never (parity of the bits is preserved)

Pr(x(t+1) = y | x(t) = x) =
{

1
n if Ham(y, x) = 1
0 otherwise

(0,0,0,0,0)

(0,0,0,0,1)

(1,1,1,1,0)

(1,1,1,1,1)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The mixing time and hitting time on HYPn

Mixing time: after how many steps of random walk on HYPn
is the distribution of the vertex that we are at identical to the
uniform distribution?
For uniform random walk, ≈ 1

4n log n, cutoff window of size n

Pr(x(t+1) = y | x(t) = x) =
{

1
n+1 if Ham(y, x) ≤ 1
0 otherwise

(0,0,0,0,0)

(0,0,0,0,1)

(1,1,1,1,0)

(1,1,1,1,1)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The mixing time and hitting time on HYPn

Mixing time: after how many steps of random walk on HYPn
is the distribution of the vertex that we are at identical to the
uniform distribution?
For lazy random walk, ≈ 1

2n log n, proof of expectation is easy

Pr(x(t+1) = y | x(t) = x) =


1

2n if Ham(y, x) = 1
1
2 if y = x

0 otherwise

(0,0,0,0,0)

(0,0,0,0,1)

(1,1,1,1,0)

(1,1,1,1,1)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The mixing time and hitting time on HYPn

Hitting time: given two vertices, e.g. x = (0, 0, . . . , 0) and
y = (1, 1, . . . , 1), how many random walk steps on HYPn
would it take to reach from x to y?

(0,0,0,0,0)

(0,0,0,0,1)

(1,1,1,1,0)

(1,1,1,1,1)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The mixing time and hitting time on HYPn

Hitting time: given two vertices, e.g. x = (0, 0, . . . , 0) and
y = (1, 1, . . . , 1), how many random walk steps on HYPn
would it take to reach from x to y?
Answer: Ω(2n) expected time for any two different vertices
In fact, hitting time between neighbors and hitting time
between opposite vertices differ by a factor of at most (1 + 1

n)

(0,0,0,0,0)

(0,0,0,0,1)

(1,1,1,1,0)

(1,1,1,1,1)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Mixing time of the lazy random walk

The coupon collector’s problem

1
�

2
�

3
�

4
� · · ·

n−2
�

n−1
�

n
�

Consider the stochastic process on {0, 1}n where in each step
an index 1 ≤ i ≤ n is selected uniformly with probability 1

n ,
and then with probability 1

2 the ith bit is flipped.

Observe that this stochastic process is identical to the lazy
random walk stochastic process.

Let Yj be the random variable that counts the number of
steps since j − 1 unique indices were already selected until a
new unique index is selected.

Y1 ∼ Geo(1), Y2 ∼ Geo(n−1
n), . . . , Yn ∼ Geo(1

n)
All the bits are uniformly distributed after n unique indices
were selected.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Mixing time of the lazy random walk (cont.)

The coupon collector’s problem (cont.)

⇒ the expected mixing time is

Ex

 n∑
j=1

Yj

 =
n∑
j=1

Ex[Yj] =
n∑
j=1

n

n− j + 1
= n ·

n∑
j=1

1
j

= n ·Hn ≈ n(γ + log n) < n(1 + log n),

where Hn is the partial harmonic sum, and γ ≈ 0.577 is the Euler
constant.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Hitting time of the simple random walk

Example graph

1

2

3

4

5

Transition matrix

P =


0 1

2
1
2 0 0

1
3 0 1

3
1
3 0

1
4

1
4 0 1

4
1
4

0 1
2

1
2 0 0

0 0 1 0 0



Step


1
0
0
0
0


T

P =


0
1
2
1
2

0
0


T

Stationary distribution of simple random walk on a graph

∀y :
∑

x∈V deg(x)P (x, y) =
∑

(x,y)∈E
deg(x)
deg(x) = deg(y)

⇒ For π̃ = (deg(v1), deg(v2), . . . , deg(v|V |), it holds that π̃ = π̃P

⇒ The normalized vector π = 1
2|E| π̃ is the stationary distribution

⇒ The expected return-time for any vertex v is 2|E|
deg(v)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Hitting time of the simple random walk

Example graph

1

2

3

4

5

Transition matrix

P =


0 1

2
1
2 0 0

1
3 0 1

3
1
3 0

1
4

1
4 0 1

4
1
4

0 1
2

1
2 0 0

0 0 1 0 0



Step


1
0
0
0
0


T

P 2 =


1
6 + 1

8
1
8
1
6

1
6 + 1

8
1
8


T

Stationary distribution of simple random walk on a graph

∀y :
∑

x∈V deg(x)P (x, y) =
∑

(x,y)∈E
deg(x)
deg(x) = deg(y)

⇒ For π̃ = (deg(v1), deg(v2), . . . , deg(v|V |), it holds that π̃ = π̃P

⇒ The normalized vector π = 1
2|E| π̃ is the stationary distribution

⇒ The expected return-time for any vertex v is 2|E|
deg(v)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Hitting time of the simple random walk

Example graph

1

2

3

4

5

Transition matrix

P =


0 1

2
1
2 0 0

1
3 0 1

3
1
3 0

1
4

1
4 0 1

4
1
4

0 1
2

1
2 0 0

0 0 1 0 0



Step


2
3
4
2
1


T

P i =


2
3
4
2
1


T

Stationary distribution of simple random walk on a graph

∀y :
∑

x∈V deg(x)P (x, y) =
∑

(x,y)∈E
deg(x)
deg(x) = deg(y)

⇒ For π̃ = (deg(v1), deg(v2), . . . , deg(v|V |), it holds that π̃ = π̃P

⇒ The normalized vector π = 1
2|E| π̃ is the stationary distribution

⇒ The expected return-time for any vertex v is 2|E|
deg(v)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Hitting time of the simple random walk (cont.)

Remarkable fact that follows from πv = deg(v)
2|E|

In an infinite simple random walk on any connected graph, each
edge will be traversed the same proportion of the time.

Proof of exponential hitting time on the hypercube

HYPn is n-regular with 2n vertices and 1
2n2n edges

The expected return-time for any vertex is 2·|E|
n = 2n

hitn(i) , the expected time to reach
−→
0 = (0, 0, . . . , 0) from

an assignment with exactly i bits whose value is 1
hitn(i) is monotone increasing in i

2n = returntimen(
−→
0) = 1 + hitn(1)

⇒ hitn(1) = 2n − 1
⇒ hitn(n) > hitn(1) = 2n − 1

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Learning O(log n)-juntas

k-juntas: functions with at most k � n relevant variables.

Motivation for practical applications

Learnability in the presence of irrelevant information is a
real-world task in the field of machine learning.
For example, suppose that each query represents a long DNA
sequence, and the boolean target function is some biological
property that depends only on a small unknown active part.

Theoretical Motivation

Shed light on the learnability of poly-size DNF, which is a
major open question even for PAC under uniform distribution.
Any (d · log n)-junta is a nd-term DNF, so poly-size DNF
learnability implies O(log n)-juntas learnability.
Conversely, a decision tree with k leaves is a k-junta, therefore
learning k-juntas implies learning k-size decision trees.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Learning O(log n)-juntas from membership queries (MQs)

In passive learning models such as UOnline and uniform PAC,
learning k-juntas is an open question even for k = ω(1)
if the learner can control the examples by actively making
MQs, learning k-juntas in poly(2k, n) time becomes easy:

draw random examples, if all are positive or negative, done
discover a relevant variable by walking via MQs, and recurse

x1 x2 x3 x4 x5 x6

x(1) 1 0 0 0 0 0 f = 1
1 0 1 0 0 0 f = 1
1 0 1 1 0 0 f = 1
1 0 1 1 1 0 f = 0

x(2) 1 0 1 1 1 1 f = 0
Here the relevant variable x5 was discovered from a positive example

x(1) = (1, 0, 0, 0, 0, 0) and a negative example x(2) = (1, 0, 1, 1, 1, 1)

Deterministic MQs algorithm can also be obtained by using a
combinatorial construction known as (n, k)-universal set

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Learning O(log n)-juntas in the URWOnline model - proof outline

Similarity between MQs and URWOnline implies ≤ Õ(2k) mistakes

The learner in URWOnline cannot control the examples.

But the random walk properties can be exploited to trigger
the discovery of each of the k relevant variables.

Suppose the learner simply always predicts h(x(t)) = f(x(t−1))
1 After ≈ k log k steps, the example x(t) is uniformly distributed.
2 If xi is a relevant variable, the example x(t) can trigger the

discovery of xi with probability ≥ 2
2k

3 With probability 1
k , the learner will discover xi at the next trial.

⇒ after O(2kk · (k log k)) trials, any relevant variable that is
still unknown would be discovered with constant probability.

After the k variables are found, the learner can construct a
truth table of size 2k, and learn f by making ≤ 2k mistakes.

k = d · log n =⇒ Õ(2d·logn) = Õ(nd) mistakes.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Learning O(log n)-juntas in the URWOnline model - extensions

Unknown k

If k is unknown to the learner, we can still achieve Õ(2k) bound.

Increment k and re-invoke the algorithm in case no relevant
variables were discovered after O(2kk2 log k) mistakes, or in case
the constructed truth table is erroneous.

Minimal sensitivity

The influence of a variable xi on f is defined as the probability that
f(x) 6= f(x⊕ ei) where x is chosen uniformly randomly from {0, 1}n

The minimal sensitivity of f is defined as the smallest influence
among all of its (relevant) variables.

If the minimal sensitivity is 1
S , then 2

2k
can be replaced with 1

S in
the analysis. If further knowledge is available, building the truth
table can replaced by an Online learning algorithm for the class,
which would be executed on the relevant variables.

Minimal sensitivity of parity functions is 1⇒ exponential speedup.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Learning read-once monotone DNF in the URWOnline model

f ∈ ROM-DNF, e.g. f(x1, x2, . . . , x9) = x1x3 ∨ x4 ∨ x2x8x9

Learning algorithm and data structure for ROM-DNF

Initialize Txi ← {x1, x2, . . . , xn} for every xi, i.e. assume that
the variables in the term that contains xi are {x1, x2, . . . , xn}
Whenever possible, we make a prediction that would eliminate
variables from these term sets in case the prediction is wrong.

For example, if f(x(t−1)) = 0, xi flipped 0→ 1, and Txi is
unsatisfied at trial t, we predict h(x(t)) = 0, and if we are
mistaken we can remove the superfluous variables from Txi

x1 x2 x3 x4 x5 x6

x(t−1) 0 1 0 1 0 0 f = 0
x(t) 1 1 0 1 0 0 f = 1

Suppose Tx1 = {x1, x4, x5, x6} ⇒ we remove x5, x6 from Tx1

and also remove x1 from Tx5 and from Tx6

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Learning read-once monotone DNF in the URWOnline model (cont.)

Learning algorithm and data structure for ROM-DNF (cont.)

If we could eliminate variables after every mistake, we would
obtain O(n2) mistake bound for adversarial RWOnline

This would imply Online learnability of ROM-DNF (and DNF)

As expected, there is a case where we have to make mistakes
without guaranteed removal of variables from the term sets:

f(x(t−1)) = 1, Txi(x
(t−1)) = 1, xi flipped 1→ 0, and for

every k, Txk(x(t)) = 0
We know that the term of xi was satisfied at trial t− 1 and is
unsatisfied at trial t, but we don’t know whether any of the
terms is also satisfied. Extremes: f = ∧ni=1xi vs f = ∨ni=1xi

Therefore the algorithm alternates between two modes.

Mode “A” assumes that the sets Txi are correct ⇒ predicts 0
Mode “B” assumes that surplus variables in the sets Txi
prevent the algorithm from seeing satisfied terms ⇒ predicts 1

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

The read-once monotone DNF learning algorithm

1 MODE ← “A”, and for each variable xi, 1 ≤ i ≤ n, create the set Txi ← {x1, x2, . . . , xn}
2 Trial t: determine f(x(t−1)) by checking if the teacher returned “mistake”, let xi be the flipped variable

3 If Txi = ∅ (meaning: xi isn’t relevant), then predict h(x(t)) = f(x(t−1))

4 Otherwise, if f(x(t−1)) = 0

(a) If xi flipped 1→ 0, then predict 0

(b) Otherwise, xi flipped 0→ 1

i. If Txi (x
(t)) = 1, then predict 1

On mistake do: Txi ← ∅, and update the other term sets by removing xi from them.
ii. Otherwise, predict 0

On mistake do: update the set Txi by removing the unsatisfied variables of x(t) from it, since
they are unneeded, and update the rest of the term sets by removing xi from any term set Txk
such that xk was an unneeded variable in Txi

5 Otherwise, f(x(t−1)) = 1

(a) If xi flipped 0→ 1, then predict 1

(b) Otherwise, xi flipped 1→ 0

i. If some Txk (x(t)) = 1, then predict 1

On mistake do: for each k such that Txk (x(t)) = 1, do Txk ← ∅, and remove the irrelevant
variable xk from the rest of the term sets

ii. Otherwise, if Txi (x
(t−1)) = 0, then predict 1

On mistake do: update the set Txi by removing the unsatisfied variables of x(t−1) from it,
since they are unneeded, and update the rest of the term sets by removing xi in any term set
Txk such that xk was an unneeded variable in Txi

iii. Otherwise, if MODE = “A”, then predict 0
On mistake do: MODE ← “B”

Otherwise, MODE = “B”, then predict 1
On mistake do: MODE ← “A”

6 Goto 2

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Analysis of the ROM-DNF algorithm in the URWOnline model

For one of the modes “A” or “B”, we bound the ratio between
the number of assignments that could cause noninformative
mistakes and the number of assignments that could cause
informative mistakes during any stage of the learning process.
Therefore, in URWOnline we make progress in learning the
target function f by analysing examples after O(n log n) trials.

At trial t, let f = f1 ∨ f2 where

f1 = T̂ f1 ∨ T̂
f
2 ∨ · · · ∨ T̂

f
k1

with a` , |T̂ f` | are the terms in f

where for every term T̂ f` there exists a variable xj in that term

such that Txj = T̂ f` . These terms that have been discovered.

f2 = T f1 ∨ T
f
2 ∨ · · · ∨ T

f
k2

with b` , |T f` | are the terms in f

where for every term T f` and every variable xj in that term, we

have that Txj is a proper super-term of T f` . For each xi that
belongs to such a term, the set Txi contains surplus variables.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Analysis of the ROM-DNF algorithm in the URWOnline model (cont.)

NA , the number of noninformative assignments in mode “A”

NB , the number of noninformative assignments in mode “B”

NA ≤ |{x(t) ∈ {0, 1}n | f1(x(t)) = 0 and f2(x(t)) = 1}|

= c2d
(

k2∏
i=1

2bi −
k2∏
i=1

(2bi − 1)

)
NB ≤ |{x(t) ∈ Xn | f1(x(t)) = 0 and f2(x(t)) = 0}|

= c2d
k2∏
i=1

(2bi − 1)

c =
∏k1
i=1(2ai − 1) is the number of assignments for f1(x) = 0

d denotes the number of irrelevant variables

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Analysis of the ROM-DNF algorithm in the URWOnline model (cont.)

N , the number of informative assignments

Consider case (4(b)ii) of the algorithm

f1(x(t)) = 0
exactly one term of f2 satisfies x(t)

one superfluous variable of the corresponding term set is 0∑k
j=1

∏k
i 6=j(2

bi − 1) is the number of assignments in which
exactly one of the terms in f2 is satisfied.

At least half of these assignment have at least one superfluous
variable set to 0, because f is monotone.

⇒ N ≥ 1
2c2

d
∑k2

j=1

∏k2
i 6=j(2

bi − 1)

NA
N ≤

2(
Qk2
i=1 2bi−

Qk2
i=1(2bi−1))Pk2

j=1

Qk2
i 6=j(2

bi−1)
, NB

N ≤
2
Qk2
i=1(2bi−1)Pk2

j=1

Qk2
i 6=j(2

bi−1)

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Analysis of the ROM-DNF algorithm in the URWOnline model (cont.)

wi := 2bi − 1, α :=

Qk
i=1(wi + 1)−

Qk
i=1 wiPk

j=1

Qk
i6=j wi

, β :=

Qk
i=1 wiPk

j=1

Qk
i 6=j wi

β =

Qk
i=1 wi“Qk

i=1 wi

”Pk
i=1

1
wi

=
1Pk

i=1
1
wi

α =

Qk
i=1(wi + 1)−

Qk
i=1 wi“Qk

i=1 wi

”Pk
i=1

1
wi

=
1Pk

i=1
1
wi

 Qk
i=1(wi + 1)Qk

i=1 wi
− 1

!

= β

kY
i=1

„
1 +

1

wi

«
− 1

!

≤ β

kY
i=1

e
1
wi − 1

!
= β

„
e

Pk
i=1

1
wi − 1

«
= β(e

1
β − 1)

min

„
NA

N
,
NB

N

«
= 2 min(α, β) ≤ 2 min(β(e

1
β − 1), β) = 2

1

log 2
< 2× 1.443 < 3

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Extending the ROM-DNF algorithm to handle non-monotone RO-DNF

The analysis takes a penalty since the bound for N assumes that f is monotone.
Initialize Txi to {x̃1, x̃2, x̃3, . . . , x̃n}, meaning that we do not know yet whether
the variables of the term that contains xi are negated or not.
Always predict h(x(t)) = f(x(t−1)) when xi flips and Txi contain variables that
are marked as unknown. If we make a mistake on such predictions, we can
immediately update variables in relation to xi as follows.

if f(x(t)) = x
(t)
i then Txi ← (Txi \ {x̃i}) ∪ {xi}

else Txi ← (Txi \ {x̃i}) ∪ {x̄i}
for each j 6= i

if f(x(t)) = x
(t)
i

if x̄i ∈ Txj then Txj ← Txj \ {x̄i} else Txj ← (Txj \ {x̃i}) ∪ {xi}

else f(x(t)) 6= x
(t)
i

if xi ∈ Txj then Txj ← Txj \ {xi} else Txj ← (Txj \ {x̃i}) ∪ {x̄i}

for each j 6= i

if x
(t)
j = 1

if x̄j ∈ Txi then Txi ← Txi \ {x̄j} else Txi ← (Txi \ {x̃j}) ∪ {xj}

else x
(t)
j = 0

if xj ∈ Txi then Txi ← Txi \ {xj} else Txi ← (Txi \ {x̃j}) ∪ {x̄j}

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Could any poly-size DNF be Learned in the URWOnline model?

Required assumptions with regard to the read-3 DNF algorithm

Conservative Online - the learning algorithm doesn’t modify
the hypothesis after successful predictions (this typically holds)

White box that is susceptible to manual inclusion of knowledge

The new knowledge should be retained and utilized if it is
consistent with the target function f
For example, adding terms from f to a list of terms or circuit
that is maintained by h
Holds for our RO-DNF algorithm in the URWOnline model

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Learning read-3 DNF in URWOnline implies learning any DNF in UOnline

Suppose f(x1, x2, . . . , xn) = T1 ∨ T2 ∨ . . . ∨ Tq is a general DNF formula that
consists of q terms, and define

R3(f, k) , f ′(
z }| {
x11, x12, . . . , x1k,

z }| {
x21, x22, . . . , x2k, . . . ,

z }| {
xn1, xn2, . . . , xnk)

= T̃1 ∨ T̃2 ∨ . . . ∨ T̃q ∨ x11x̄12 ∨ x12x̄13 ∨ . . . ∨ x1(k−1)x̄1k ∨ x1kx̄11

∨ x21x̄22 ∨ x22x̄23 ∨ . . . ∨ x2(k−1)x̄2k ∨ x2kx̄21

∨ . . .

∨ xn1x̄n2 ∨ xn2x̄n3 ∨ . . . ∨ xn(k−1)x̄nk ∨ xnkx̄n1

where each T̃i contains only variables from {x1i, x2i, . . . , xni}, corresponding to
the variables from {x1, x2, . . . , xn} that Ti contains.

R3(f, k) is a read-3 DNF formula of size O(q + kn), and for k ≥ q we have

R3(f, k) ≡


1 ∃i0, i1, i2 : xi0i1 6= xi0i2
f(x11, x21, . . . , xn1) otherwise

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Simulating the read-3 DNF algorithm in the UOnline model

The simulation of RWR3-L by UDNF-L

Let RWR3-L(n, δ) be the read-3 DNF algorithm for the
URWOnline model that is assumed to exist.

UDNF-L(n, δ) will insert RWDNF-L(kn, δ2) the knowledge to
predict 1 on all queries in which ∃xi0i1 6= xi0i2 , e.g. by adding
the kn needed terms to the RWDNF-L(kn, δ2) white box.

UDNF-L(n, δ) will simulate RWDNF-L(kn, δ2) on R3(f, k) by

Taking each uniformly distributed query that is received from
the actual teacher
Choosing randomly uniformly an index 1 ≤ i ≤ kn as if it was
the last to flip
Duplicating each variable k times
Invoking RWDNF-L(kn, δ2) on each such expanded query

Returning the prediction of RWDNF-L(kn, δ2) to the teacher

Updating the hypothesis according to the RWDNF-L(kn, δ2)
algorithm in case of a prediction mistake

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Correctness of the simulation

When is this simulation correct?

Because RWDNF-L(kn, δ2) neither makes mistakes nor
updates its state whenever ∃xi0i1 6= xi0i2 , this simulation
makes the assumption that every time that the random walk
stochastic process reaches an assignment for which
@xi0i1 6= xi0i2 , and RWDNF-L(kn, δ2) makes a prediction
mistake on it, that assignment is uniformly distributed.

We prove that this assumption holds with a very high
probability, by using the fact that the expected hitting time
on the hypercube is exponential.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Analysis of the simulation

Y , {number of steps on x11, . . . , xnk (without xd1, . . . , xdk) until all were selected}
Z , {number of steps on xd1, . . . , xdk until reaching xd1 = xd2 = . . . = xdk flipped}

Let Y ′ denote the number of steps on {x11, . . . , xnk} \ {xd1, . . . , xdk} until

{xd1, . . . , xdk} reached the exact opposite assignment.

Here we assume k ≥ 9n.

Pr(A1
bad-dist) ≥ Pr(A1

bad-dist|Y
′ > 25n) · Pr(Y ′ > 25n)

≥ Pr(Y < 25n) · Pr(Y ′ > 25n)

≥ (1−
Ex[Y]

25n
) · Pr(Y ′ > 25n)

> (1−
9n2 log(9n2)

25n
) · Pr(Y ′ > 25n|Z > 25n) · Pr(Z > 25n)

> (1−
1

24n
) · Pr(Y ′ > 25n|Z = 25n) · Pr(Z > 25n)

Notice that for X ∼ NegBin(25n, 1
n

), we have

Pr(Y ′ ≤ 25n|Z = 25n) = Pr(X ≤ 2 · 25n),

Ex[X] = 25n(n− 1), Var[X] = 25n(n− 1)n.

Online learning Adversarial RW Hypercube k-juntas ROM-DNF poly-size DNF

Thank you.

version 0.54

	Online learning
	Online learning

	Adversarial RW
	RWOnline

	Hypercube
	Hypercube

	k-juntas
	k-juntas

	ROM-DNF
	ROM-DNF

	poly-size DNF
	poly-size DNF
	end

