
Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

How to Use Bitcoin to Incentivize
Correct Computations

Ranjit Kumaresan Iddo Bentov
Technion Technion

CCS 2014

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Formal model that incorporates coins

Ideal functionalities F?2 with coins

If party Pi has (say) secret key ski and sends it to party Pj ,
then both Pi and Pj will have the string ski.

If party Pi has coins(x) and sends y < x coins to party Pj ,
then Pi will have have coins(x− y) and Pj will coins(y).

Ideally, all the parties deem coins to be valuable assets.

We define Secure computation with coins and provide proofs using
the simulation paradigm (but not in this talk).

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Claim-or-Refund for two parties Ps,Pr (implicit in [Max11],[BBSU])

The F?CR Claim-or-Refund ideal functionality

1 The sender Ps deposits (locks) her coins(q) while specifying a
timebound τ and a circuit φ(·).

2 The receiver Pr can claim (gain possession) of the coins(q) by
publicly revealing a witness w that satisfies φ(w) = 1.

3 If Pr didn’t claim within time τ , coins(q) are refunded to Ps.

How to realize F?CR via Bitcoin

The feature that is needed is “timelock” transactions.

Technically: Bitcoin nodes agree to include a transaction with
timelock field τ only if current block index/timestamp is > τ

It is possible to have more expressive schemes that allow
not-yet-reached timelock transactions to reside on the
blockchain (or local mempool), but this is prone to DoS.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

F?
CR via Bitcoin

High-level description the F?CR implementation in Bitcoin

Ps controls TXold that resides on the blockchain.

Ps creates a transaction TXnew that spends TXold to a
Bitcoin script that can be redeemed by Ps and Pr, or only by
Pr by supplying a witness w that satisfies φ(w) = 1.

Ps asks Pr to sign a timelock transaction that refunds TXnew

to Ps at time τ (conditioned upon both Ps and Pr signing).

After Pr signs the refund, Ps can safely broadcast TXnew.

1 Ps is safe because Pr only sees hash(TXnew), and therefore
cannot broadcast TXnew to cause Ps to lose the coins.

2 Pr can safely sign because the protocol uses freshly generated
(skR, pkR) pair.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

The structure of Bitcoin transactions

How standard Bitcoin transaction are chained

TXold = earlier TX output of coins(q) is redeemable by pkA

idold = hash(TXold)

PREPAREnew = (idold, q, pkB, 0) 0 means no timelock

TXnew = (PREPAREnew, SignskA(PREPAREnew))

idnew = hash(TXnew)

Initial minting transaction specifies some pkM that belongs to
a miner, and is created via proof of work.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Realization of F?
CR via Bitcoin

The F?CR transaction

PREPAREnew = (idold, q, (pkS ∧ pkR) ∨ (φ(·) ∧ pkR), 0)
φ(·) can be SHA256(·) == Y where Y is hardcoded.

TXnew = (PREPAREnew, SignskS(PREPAREnew))

idnew = hash(TXnew)

Ps sends PREPARErefund = (idnew, q, pkS , τ) to Pr

Pr sends σR = SignskR(PREPARErefund) to Ps

Ps broadcasts TXnew to the Bitcoin network

If Pr doesn’t reveal w until time τ then Ps creates TXrefund =
(PREPARErefund, (SignskS(PREPARErefund), σR)) and
broadcasts it to reclaim her q coins

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Fairness with penalties

Definition of fair secure multiparty computation with penalties

An honest party never has to pay any penalty

If a party aborts after learning the output and doesn’t deliver
output to honest parties ⇒ every honest party is compensated

Outline of F?f – fairness with penalties for any function f

P1, . . . , Pn run secure unfair MPC for f(x1, . . . , xn) that

1 Computes shares (y1, . . . , yn) of the output y = f(x1, . . . , xn)
2 Computes Tags = (com(y1), . . . , com(yn)) =(hash(y1), . . . , hash(yn))

3 Delivers (yi,Tags) to every Pi

P1, . . . , Pn deposit coins and run fair reconstruction (fair
exchange) with penalties to swap the yi’s among themselves.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Fair exchange in the F?
CR-hybrid model - the ladder construction

“Abort” attack:
P2 claims without deposting

Fair exchange:
P1 claims by revealing w1

⇒ P2 can claim by revealing w2

Malicious coalition:
Coalition P1, P2 obtain w3 from P3

P2 doesn’t claim the top transaction

P3 isn’t compensated

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Incentivizing delegated computation

Let f be is a function with high complexity.

Delegator D wishes to pay worker W to compute y = f(u).

Assume that the Bitcoin scripting language is Turning
complete, or can otherwise compute f(u) given input u.

Current Bitcoin scripts are purposely not Turning complete,
and have bounded size (which implies fast running time).
Requiring higher fees for more complex scripts isn’t so simple,
because network DoS risks mean that nodes who propagate the
transaction (without getting paid) must verify the script first.
Projects like Ethereum wish to support Turing complete
scripts, where the user pays a fee for a quota of script steps
and if the quota runs out then it needs to be refilled, but
maybe a supplemental flat fee is also needed to avoid DoS, so
if (?!) it can work then users will need to pay higher fees
relative to Bitcoin.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Incentivizing delegated computation (contd.)

What we don’t want to do

D sends (f, u) to W .

D creates F?CR transaction with circuit φf,u(·) that lets W
redeem coins(q) if W reveals w such that φf,u(w) = 1, where
the circuit/script φf,u(w) is satisfied iff f(u) = w.

⇒ All nodes in the Bitcoin network need to compute f(u) when
validating this script, while only W gets paid.

Note: why the need to have a specific worker W in this scheme?

F?CR as specified is a 2-party protocol.

But the problem is inherent, see bounties...

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Definitions of verifiable computation (with trusted setup)

Public verifiable computation scheme

(ekf , vkf)← KeyGen(f, 1λ): randomized keygen algorithm that takes
the function f to be outsourced and security parameter λ; it outputs a
public evaluation key ekf , and a public verification key vkf .

(y, ψy)← Compute(ekf , u): deterministic worker algorithm that uses ekf
and the input u to output y ← f(u) and a proof ψy of y’s correctness.

{0, 1} ← Verify(vkf , u, (y, ψy)): deterministic verification algorithm that
uses vkf with input u and witness (y, ψy) to output 1 iff f(u) = y.

Efficiency KeyGen is assumed to be a one-time operation whose cost is amortized
over many calculations, and Verify is cheaper than evaluating f .

Correctness Pr

[
(ekf , vkf)← KeyGen(f, 1λ), (y, ψy)← Compute(ekf , u) :
1 = Verify(vkf , u, (y, ψy))

]
= 1

Soundness For any ppt adversary A the following is negligible in λ:
Pr

[
(u′, y′, ψ′

y)← A(ekf , vkf) : f(u′) 6= y′ ∧ 1 = Verify(vkf , u
′, (y′, ψ′

y))
]

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

F?
exitCR

Reminder: the script of F?CR is (pkS ∧ pkR) ∨ (φ(·) ∧ pkR)
The timelocked refund transaction (idnew, q, pkS , τ) is done by

satisfying the condition (pkS ∧ pkR)
Hence Ps and Pr can also decide to sign a non-timelocked
transaction (idnew, q, pkR, 0) that will satisfy this same
condition and transfer the coins(q) to Pr, so we can easily get:

The ideal functionality F?exitCR

1 The sender Ps deposits (locks) her coins(q) while specifying a
timebound τ and a circuit φ(·).

2 The receiver Pr can claim (gain possession) of the coins(q) by
publicly revealing a witness w that satisfies φ(w) = 1.

3 At any point before time τ , Ps and Pr can agree to release
the coins(q) to Pr without revealing w.

4 If Pr didn’t claim within time τ , coins(q) are refunded to Ps.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Correct scheme for incentivized delegated computation

Non-private delegated computation

1 D and W engage in secure computation to obtain
(ekf , vkf)← KeyGen(f, 1λ).

2 D sends u to W .

3 D and W invoke F?exitCR with circuit φ(·) = Verify(vkf , u, ·)
and timebound τ that lets W earn D’s coins(q) if W reveals
w = (y, ψy) such that Verify(vkf , u, (y, ψy)) = 1.

4 W executes (y, ψy)← Compute(ekf , u) and sends
w = (y, ψy) to D within time τ ′ < τ .

5 D verifies (y, ψy), then D and W release the coins(q) to W .

6 If D doesn’t release the coins(q) until time τ ′ then W will
redeem the F?exitCR transaction between time τ ′ and τ and
claim the coins(q).

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Correct scheme for incentivized delegated computation (contd.)

Due to having a trusted setup...

The work done by D to compute KeyGen(f, 1λ) will be
amortized over multiple executions for f(u1), f(u2), . . .

If D invoked KeyGen(f, 1λ) herself then a malicious D can
cause an honest W to do work without getting paid.

If D is honest or rational then she will release the coins(q) to
W upon receiving w = (y, ψy) before time τ ′, because W can
claim the coins(q) until time τ anyway.

⇒ unless D is purely malicious, all the Bitcoin nodes will validate
ordinary ECDSA signatures rather than evaluate Verify(vkf , u, ·),
which is an order of magnitude faster.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Incentivizing private delegated computation

The previous scheme makes u and f(u) public.
It is possible to use a private verification scheme (employing
homomorphic encryption).
Note: if W knows vkf then W can cheat.
Ps and Pr will run secure computation also for
Verify(vkf , u, w) where W ’s input is w = (y, ψy), which will
secret share y between Ps and Pr if ψy is a correct proof.
Then Ps,Pr will invoke F?CR to pay Pr if she reveals her share.
Full scheme also needs to ensure that inputs are consistent
across the secure computations of KeyGen and Verify.
We can avoid “rejection” attack of supplying incorrect proof
to learn information, by letting W create F?CR that pays to Ps
if she reveals the right output, and invoking secure MPC with
penalties that delivers the right output to Ps iff W supplies an
incorrect proof (else Ps gets commitment to the right output).
Honest W isn’t guaranteed payment (due to trusted setup...)

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Multilock

B.3xA.3x C.3x D.3x

A?3x B?3x C?3x D?3x

C.xB.x D.x C.xA.x D.x B.xA.x D.x B.xA.x C.x

A.3x D.3x
B.3x C.3x

time ≥ τ + 1 time ≥ τ + 1

reveal wA reveal wD
reveal wB reveal wC

1

In principle, jointly locking coins for fair exchange can work well:

1 M = “if P1, P2, P3, P4 sign this message with inputs of
coins(x) each then their 3x coins are locked into 4 outputs of
coins(x) each, where each Pi can redeem output Ti with a
witness wi that satisfies φi, and after time τ anyone can divide
an unredeemed output Ti equally to {P1, P2, P3, P4} \ {Pi}”

2 P1, P2, P3, P4 sign M and broadcast it, and after M is
confirmed, each Pi redeems coins(x) by revealing wi

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

The multilock functionality F?
ML

Hence the functionality F?ML holds the following attributes:

The atomic nature of F?ML guarantees that either all the n
parties agreed on the circuits φi(·), the timebound τ , and the
security deposit amount x, or else no coins become locked.

Each corrupt party who aborts after the coins become locked
is forced to pay coins(x

n−1) to each honest party.

If Pi reveals wi s.t. φi(wi) = 1 then wi becomes public.

The limit τ prevents the possibility that a corrupt party learns
the witness of an honest party, and then waits for an indefinite
amount of time before recovering her own coins amount.

We prove using the simulation paradigm that F?f can be securely
computed with penalties in the F?ML-hybrid model.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

F?
ML and Bitcoin

F?CR is asymmetric: Ps prepares the complete transaction,
then sends only its hash so that Pr can sign the refund before
locking Ps’s coins.

F?ML is symmetric: if a corrupt Pi obtains the complete
transaction that locks everyones coins before the refunds are
done, then Pi can cause honest parties to lose coins.

Reminder: PREPAREnew = (idold, q, pkB , 0)

TXnew = (PREPAREnew, SignskA(PREPAREnew)), idnew = hash(TXnew)

If we have idnew = hash(PREPAREnew) then parties can
reference unsigned transactions when creating the refunds.

This also enables richer forms of contracts: if P1 can redeem
a transaction to P2 in two separate ways, then P2 can create
a future transaction that redeems coins to P3 only if P1

operated in a certain way.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

F?
ML and Bitcoin (contd.)

There is also a disadvantage: if P1 can redeem by revealing
either of two witnesses w,w′, and we reference her transaction
via idnew hash that doesn’t express which witness was
revealed, then a contract that relies on (say) w′ being revealed
cannot rely on the Bitcoin blockchain to provide this evidence.

Our Bitcoin enhancement proposal

Reference previous txid via idsimp
new = hash(PREPAREnew).

Use idnew = hash(TXnew) for the leaves of the Merkle root
that gets committed via Proof of Work.

This enables the best of both worlds (including F?ML).

No extra hash invocation required because idsimp
new must be

computed anyway before signing the incomplete transaction.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Summary of multiparty fair exchange via Bitcoin

F?ML requires O(1) Bitcoin rounds and O(n2) transaction
data (and O(n2) signature operations), while the ladder
requires O(n) Bitcoin rounds and O(n) transactions.

Recap:

Multiparty fair computation can be implemented in Bitcoin
via the ladder construction.

Multiparty fair computation can be implemented via F?ML

with an enhanced Bitcoin protocol.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

The DualEx 2-party secure computation protocol [MF06, HKE12]

Secure computation in the malicious setting, which commonly
relies on cut-and-choose or ZK proofs, is less efficient than in
the semihonest setting.

Observation

2-party semihonest secure computation by Yao’s garbled circuit
protocol preserves privacy against a malicious circuit generator as
long as:

1 OT protocol that is secure against active attacks is used for
the input wires.

2 The circuit evaluator doesn’t reveal her output to the circuit
generator.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

The DualEx 2-party secure computation protocol (contd.)

The DualEx protocol operates as follows:
1 Execute Yao’s protocol with P1 as the circuit generator so that

only the circuit evaluator P2 obtains output.
2 Execute Yao’s protocol again with swapped roles.
3 Test equality by using a protocol that is secure in the malicious

setting to compare the outputs.

Figure 1. DualEx protocol overview (informal).

The protocol is conceptually divided into three stages: the
first run, the second run, and the secure validation. For the
sake of performance, however, our implementation executes
the first two stages concurrently, using pipelining to overlap
the circuit-generation and circuit-evaluation work for each
party (see Section VI). (As long as the oblivious transfers
are done sequentially, our security proof is unaffected by
performing the two garbled-circuit executions in parallel.
The reason is that our security proof holds even against
a “worst-case” adversary who waits to receive the entire
garbled circuit from the honest party before sending any of
its own garbled gates.) We stress that the parties run each
of the first two stages to completion—even if an error is
encountered—so that no information is leaked about the
presence or absence of errors in an execution. If an error
is detected that prevents normal progress, the execution
continues using random values.

The DualEx protocol uses a specific garbled-circuit pro-
tocol with an oblivious-transfer sub-protocol secure against
malicious adversaries (see Figure 3). After an execution of
this protocol, only P2 learns the output (but is uncertain
about its correctness), while P1 learns nothing. In this
version, the result f(x, y) is revealed to P2 (Bob in the
first execution as defined in Figure 2) even if cheating by
P2 is detected during the equality-checking protocol. This
does not violate our definition of security, however for many
scenarios this property would be undesirable. Section VII
presents some heuristic enhancements to the basic protocol
that address this issue by limiting the amount of information
either party can obtain during the protocol execution.

C. Secure Output Validation

The goal of the secure validation protocol is to verify
the correctness of the outputs Alice and Bob obtained in
the previous stages. The validation protocol consists of an
equality test between certain output-wire labels held by
each of the parties. Since half the output-wire labels chosen
by the garbled-circuit generator are never learned by the
circuit evaluator (and since output-wire labels are chosen at
random) this has the effect of preventing an adversary from

(usefully) changing their input to the equality test. In an
honest execution, on the other hand, since both executions
of the garbled-circuit sub-protocol are computing the same
function on the same inputs, the inputs to the equality test
will be equal.

The equality test will be done by first (a) computing a
hash of the inputs at both sides, and then (b) comparing the
hashes using an equality test that is secure against malicious
adversaries. (See Figure 4.) If the hash used in the first
step is modeled as a random oracle (with sufficiently large
output length), then it is possible to show that this results in

Input to Alice: the private input x.
Input to Bob: the private input y.
Output to both Alice and Bob: f(x, y), or ⊥ if
cheating is detected.
Execution:

1) Alice and Bob run the semi-honest garbled-circuit
protocol (Figure 3) where Alice plays the role of
circuit generator (P1), and Bob plays the role of
circuit evaluator (P2). Alice knows the 2`
output-wire labels she generated, WA, while Bob
learns ` output-wire labels wB and an output
vB ∈ {0, 1}`. (If both parties are honest,
wB = WvB

A .)
2) Alice and Bob invoke the semi-honest garbled

circuit protocol again, swapping roles. Alice
learns the output vA along with labels wA, while
Bob knows the label pairs WB . (If both parties
are honest, then wA = WvA

B , and also vA = vB .)
3) Alice and Bob run a “validation protocol” (i.e.,

an equality test), secure against malicious
adversaries. (See Figures 4 and 5 for one possible
instantiation.) Alice uses input WvA

A ‖wA and Bob
uses input wB‖WvB

B . If the protocol outputs true,
then Alice outputs vA and Bob outputs vB .
Otherwise, the honest party has detected
malicious behavior and outputs ⊥.

Figure 2. DualEx protocol

4

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

DualEx with penalties

The equality test leaks a single-bit predicate to the adversarial
party ⇒ the adversary A learns a single bit on average.

On one extreme A can choose to learn a single bit always.
On the other extreme A can choose to learn whether the
entire input of the honest party is a specific value.

Whenever the equality test fails A is caught, so our goal
is to force A to pay coins to the honest party in this case.

The core idea

If the equality test fails, then each party can claim coins (that the
other party deposited) if she can produce ZK proof that she sent a
correct garbled circuit when she acted as the circuit generator.

The complexity of this ZK proof depends on |f |, and cannot
be verified by using the current Bitcoin scripting language.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

DualEx with penalties: obstacle 1/4

Obstacle #1: The corrupt party should be able to claim only
if the equality test failed, otherwise if the honest party deposit
first then she can lose coins.

Remedy #1

Each party privately generates auxiliary random data.

Rewards can only be claimed if this random data is provided.

By using secure computation, this data is released to both
parties only if the equality test fails.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

DualEx with penalties: obstacle 2/4

Obstacle #2: The corrupt party can try to learn information
by providing output keys that are junk or inconsistent with the
correct garbled circuit that she constructed.

Remedy #2

We derive a garbled circuit from a random seed.

Then enforce that each party Pi must use the same seed ωi
for the committed garbled circuit and the output wires.

This means that the output wires used in the garbled circuit
and in the equality test are the same.

The enforcement is done by a protocol that is secure against
active attacks, which is also the case for the plain DualEx.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

DualEx with penalties: obstacle 3/4

Obstacle #3: The corrupt party can abort upon being
caught, before the honest party obtains the auxilary data that
she needs in order to provide ZK proof that she constructed a
correct garbled circuit and obtain her reward.

Remedy #3

We use fair secure computation with penalties for the equality
test, hence the honest party will gain even more coins from
the corrupt party if the corrupt party aborts.

Side-effect: now we also guarantee fairness (with penalties),
i.e., output delivery to both parties, unlike the plain DualEx.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

DualEx with penalties: obstacle 4/4

Obstacle #4: The corrupt party can cheat in other ways too,
namely by providing inconsistent inputs in different stages, or
causing selective failures with the inputs that she provides.

Remedy #4

We deploy a secure computation protocol against active
attacks for the sending the input wires too (instead of just
using OT).

This computations makes sure that the seed that derives the
input wires is the same as the seed that derives the committed
garbled circuit ⇒ this garbled circuit has the same input wires.

We prove security against all possible attacks via simulation.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

The full protocol for DualEx with penalties

Input from P1: m,x1, ω1.
Input from P2: m,x2, ω2.
Output to both P1 and P2:
• Create U1 ← iGb(1λ, ω1,m) and U2 ← iGb(1λ, ω2,m).

• Compute g′1 = com(ω1; ρ1) and g′2 = com(ω2; ρ2) where
ρ1, ρ2 are picked uniformly at random.

• Output (Ux1‖x22 , g′2, ρ1) to P1 and (Ux1‖x21 , g′1, ρ2) to P2.

Figure 1: Secure key transfer subroutine KT.

Input from P1: `1 = `,w1, ω1, ρ1, r1, h2, g
′
2.

Input from P2: `2 = `,w2, ω2, ρ2, r2, h1, g
′
1.

Output to both P1 and P2:
• If `1 6= `2 or H(r1) 6= h1 or H(r2) 6= h2 or com(ω1; ρ1) 6=
g′1 or com(ω2; ρ2) 6= g′2, output bad and terminate.

• Create W1 ← oGb(1λ, ω1, `) and W2 ← oGb(1λ, ω2, `).

• Check if ∃v1, v2 ∈ {0, 1}` such that Wv1
1 = w2 and

Wv2
2 = w1. If the check fails output bad and termiante.

• Check if ∃v ∈ {0, 1}` such that Wv
1 = w2 and Wv

2 = w1.
If check fails output (r1, r2). Else, output v.

Figure 2: Secure equality validation subroutine SV.

Inputs: P1, P2 respectively hold inputs x1, x2 ∈ {0, 1}m.
Preliminaries. Let (com, dec) be a perfectly binding commit-
ment scheme. Let NP language L be such that u = (a, b) ∈ L
iff there exists α, β such that a = Gb(1λ, f, α) and b =
com(α;β). Let (K,P,V) be a non-interactive zero knowl-
edge scheme for L. Let crs ← K(1λ) denote the common
reference string. Let H be a collision-resistant hash function.
Protocol: For each i ∈ {1, 2}, Pi does the following: Let
j ∈ {1, 2}, j 6= i.
1. Pick ωi at random and compute Gi ← Gb(1λ, f, ωi).
2. Send (input, sid, ssid, (m,xi, ωi)) to FKT. If the output

fromFKT is abort, terminate. Else let output equal (U′
j , g

′
j).

3. Send Gi to Pj and receive Gj from Pj .
4. Compute wi ← Eval(Gj ,U′

j).
5. Choose random ri and send hi = H(ri) to Pj .
6. Let Xi = (Gj , g

′
j , hj), and let φi(w;Xi) = 1 iff w = (α,

β) such that V(crs, (Gi, g′i), α) = 1 and H(β) = hj . Send
(deposit, sid, ssid, i, j, φi(·;Xi), τ, coins(q)) to F?CR.

7. If no corresponding deposit message was received from
F?CR on behalf of Pj , then wait until round τ +1 to receive
refund message from F?CR and terminate.

8. Send (input, sid, ssid, (`i,wi, ωi, ri, hj , g
′
j), coins(d)) to

F?SV. Let zi denote the output received from F?SV. Do: (1)
If zi = ⊥, then terminate. (2) Else if zi = z, then out-
put z and terminate. (3) Else if zi = (r1, r2), then com-
pute πi ← P(crs, (Gi, g′i), ωi) and send (claim, sid, ssid,
j, i, φj , τ, q, (πi, rj)) to F?CR, receive (claim, sid, ssid, j,
i, φj , τ, coins(q)) and terminate.

Figure 3: Realizing DualEx with penalties.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

DualEx with penalties: summary

We set out to accomplish 2-party computation with

1 security against active attacks.
2 efficiency of semihonest protocols.

We still make blackbox use of protocols that are secure
against active attacks for the KT and SV invocations.

The complexity of the functionalities KT and SV that ensure
input/output consistency depends only on the input/output
size of f , and not on the circuit complexity of f .

For example, output size = 1 bit implies the least amount of
secure computation in SV.

Conclusion: if |f | � |input|+ |output|, and both parties are
honest, then the complexiity is essentially the same as that of
the plain DualEx protocol.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Bitcoin Bounties

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Bounty schemes

The bounty maker M wishes to reward any bounty collector
C upon producing a witness w that satisfies φ(w) = 1.

Requirements of a noninteractive bounty protocol (informal)

C can collect the reward even if M no longer exists.

M cannot revoke the bounty before a witness w is found.

M cannot deny payment to C once C reveals a correct w.

Race-free: another collector C ′ cannot claim the reward after
seeing the witness w that C claimed the reward with.

Private versus public bounties

Private bounty: only M learns the witness w.

Public bounty: everyone learns the witness w.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Why noninteractive bounty protocols are complicated

ZK contingent payments [Max11]

Two parties M,C0 can run the following interactive ZK protocol:

1 C0 proves in ZK to M that she knows w such that φ(w) = 1
and AESk(w) = c and hash(k) = h, then sends (c, h) to M .

2 M creates a transaction that lets C0 redeem coins if she signs
with her secret key skC0 and provides x s.t. hash(x) = h.

The inherent problem with noninteractive bounties

When the identity C0 is known, we can require (asymmetric)
signature of C0 by hardcoding pkC0 in the transaction script.

When the identity C is unknown, a transaction whose only
condition is φ(w) = 1 can be hijacked once it is broadcasted
and replaced with another transaction (with higher fee) that
sends the coins elsewhere, before being buried under PoW.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Public bounty scheme

Public bounty protocol for the circuit φ(x, ·) = 1

1 M creates secret keys sk, sk′ such that sk′ = puzz(sk, t) can
decrypt sk after t time by solving a timelock puzzle.

2 M uses witness encryption to create ψ = encφ(x, sk
′) that

can be decrypted with a witness w that satisfies φ(x,w) = 1.

3 M publishes the cipertext ψ, and broadcasts a transaction
that can be redeemed by signing with sk and providing w
such that φ(x,w) = 1.

4 C computes w, then computes sk′ ← decφ(ψ,w), then
computes sk from sk′ in t time, and redeems the transaction.

If any collector C ′ sees the transaction that C broadcasted
and tries to race for the reward, then C will have a head start
of t time, and the PoW blocks that are solved during this time
should make C’s transaction irreversible.

Realizable with current Bitcoin scripts? Depends on φ(x, ·).

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Private bounty scheme

Private bounty protocol for the circuit φ(x, ·) = 1

1 M creates a garbled circuit GC for φ(x, ·) such that I are the
input labels of GC and e0 is the output label of GC that
corresponds to the value 1.

2 M creates a fresh secret key sk and uses witness encryption
to create ψ = encφ(x, sk||I).

3 M publishes the cipertext ψ, and broadcasts a transaction
that can be redeemed by signing with sk and supplying input
labels that make GC produce the output label e0.

4 C computes w, then computes (sk, I)← decφ(ψ,w), then
redeems the transaction by using sk and the input labels that
correspond to w.

5 M reconstructs w by using I and the input labels that C
supplied.

Any other collector C ′ would still not know I, w, sk.

Fairness with Penalties Delegated Computation Multiparty Fair Exchange Efficient 2PC Bounties End

Thank you.

version 0.47 (without pauses)

	Fairness with Penalties
	Fairness with Penalties

	Delegated Computation
	Delegated Computation

	Multiparty Fair Exchange
	Multiparty Fair Exchange

	Efficient 2PC
	Efficient 2PC

	Bounties
	Bounties

	End
	End

