
Deterministic wallets End

Deterministic wallets

Gregory Maxwell et. al.
Presented by Iddo Bentov

Bitcoin Israel Conference

February 27, 2014

Deterministic wallets End

Main ideas

One-sentence summary

Instead of generating random-independent Bitcoin addresses
in your wallet file, use just one secret value as a seed that
generates a pseudorandom (deterministic) sequence of values,
and derive a Bitcoin address from each value in this sequence.

Example: privkey1=hash(seed||1), privkey2=hash(seed||2), . . .

Twist

By using a key homomorphism feature of discrete-log based
cryptosystems (in particular ECDSA), we can generate the
public-key values of this deterministic sequence without
knowing their corresponding private-keys (and with no need to
access the master seed or any other highly sensitive data).

Deterministic wallets End

The reasons why multiple addresses are necessary

Why does a Bitcoin user need to maintain multiple addresses?

Receiving Bitcoin payments: it is needed to allocate a unique
address to each customer in order to tell who sent which
payment (the customer’s transaction cannot readily be signed
with an identity, because it may consist of multiple inputs).

Anonymity: even if you personally don’t mind being identified,
the receiver of the payment may prefer not to have her
customers associated with other organizations.

Don’t put all your eggs in one basket: if one private-key is
compromised (e.g. due to a sidechannel attack), the coins
that are controlled by your other private-keys are unaffected.

Security: if you re-use addresses, your coins are protected with
128 bits of security, rather than 160 bits (and unstructured
symmetric crypto is less prone to attacks), except while your
transaction is broadcast but not yet buried under enough PoW.

Privacy: better not reveal how many coins you possess.

Deterministic wallets End

Random-independent vs deterministic wallets under common use

Random-independent wallets:

Constant worries: the user
needs to keep creating
additional wallet backups,
as new receiving / change
addresses are being created.

The simple task of
generating a new receiving
address requires you to
access (decrypt) your most
sensitive data.

Need a good source of
randomness on lite devices
(Android phones avoid
using multiple addresses...)

Deterministic wallets:

Foolproof: backup your
grandma’s master seed just
once, and you can be sure
that she can retrieve all her
future private-keys.

Access your secret data
only when it’s absolutely
necessary, i.e. when you
spend your coins by signing
with your private-keys.

No randomness required.

Deterministic wallets End

Example with 7208 bitcoins lost due to backups mixup (+client bug)

Deterministic wallets End

Drawbacks of deterministic wallets?

The (non-)problems of deterministic wallets

Single point of failure: if your master secret (seed) is
compromised, all your coins will be stolen:

To regular users, this risk isn’t much different from stealing
their unencrypted wallet.dat file with all the private-keys.
We can do better: hierarchical sub-wallets, delegated
sub-wallets via key homomorphism (+multisig secret sharing,
deniable encryption that reveals a decoy low-value sub-wallet).

Sound crypto? Is there a related-keys attack?

Short answer: no. An existential forgery attack implies a
distinguisher between pseuodorandom and random bits.
For example, consider two 5-megabytes files f1 and f2:

seed = (128 purely random bits)
f1 = (SHA256(seed||1), SHA256(seed||2), SHA256(seed||3), . . .)
f2 = (5 megabytes of purely random bits)

If you think that it is infeasible to distinguish between f1 and
f2, then you also think that deterministic wallets are secure.

Deterministic wallets End

Public/private key homomorphism

Discrete log cryptosystems with private/public key homomorphism

ECDSA: G = (x, y), n ·G ,

n times︷ ︸︸ ︷
G+G+ . . .+G

pubkey1 = privkey1 ·G
ni ← hash(derivations nonce||i), i = 2, 3, 4, . . .

pubkey2 ← pubkey1 + n2 ·G
⇒ (privkey1+n2)·G = privkey1 ·G+n2 ·G = pubkey1+n2 ·G
⇒ privkey2 = privkey1 + n2 note: privkey2 ∈ {1, 2, . . . , order(G)}

⇒ privkeyi = privkey1 + ni, pubkeyi = pubkey1 + ni ·G

3 DSA: pubkey1 = gn1 mod p, gn1+n2 = gn1gn2 = pubkey1 · gn2

7 RSA: pubkey1 = (pq, e), privkey1 = d

7 Lattices, typically: pubkey1 = A ∈ Fn×k
p , privkey1 = S ∈ Fn×k′

p

Deterministic wallets End

The default hierarchical structure of a deterministic wallet

Deterministic wallets End

Homomorphic derivations

Use case of homomorphic key delegation

As a merchant, you probably run a server computer so that each
customer connects to this server and receives a Bitcoin payment
address. The server can store only a master public key (and
chaincode), and derive the payment addresses for the customers.
⇒ If the server is breached by hackers, they cannot steal any coins.

The danger with homomorphic key derivations

pubkeyi+1 ← pubkeyi + ni ·G (ni is the chaincode)

Suppose that privkeyi+1 is compromised, and that the
chaincodes are public or known to the attacker somehow.

Solve for x: x+ ni = privkeyi+1 mod order(G)

⇒ if a single private key is compromised, all the other keys in
the wallet become compromised too.

This isn’t the case with random-independent wallet keys...

Deterministic wallets End

Non-homomorphic derivations

How to mitigate the risks of homomorphic derivations

Use a simple non-homomorphic derivation:
privkeyi+1 ← hash(chaincode||i+ 1)

This way, if privkeyi+1 is compromised, only the sub-wallet
that is rooted at privkeyi+1 becomes known to the attacker.

In the example with the server computer, the merchant may
wish to use non-homomorphic derivation for the root of the
server’s sub-wallet. Hence, if the server is breached, an
attacker who obtained a private key (from elsewhere!) can
only steal the coins in the server’s sub-wallet.

The default hierarchical structure uses non-homomorphic
derivations for “accounts” at depth 1, and homomorphic
derivations in each account.

Deterministic wallets End

Brain wallets and paper wallets

Brain wallet 2.0 ? Paper wallet 2.0 ?

Brain wallet 2.0: Instead of a random master seed, the user
can derive the root node at depth 0 via a passphrase.

This way, the user can re-gain access to all of her coins by
scanning the tree structure of her hierarchical wallet (trivial to
do with the default structure).

Example with “security through obscurity”:
seed = SHA3(SHA256(SHA256(SHA256(passphrase)))).

We can do better, see: self-descriptive strengthened keying, or
halting password puzzles.

If you send bitcoins to a private key that is derived as
SHA256(dictionary word), the coins will be stolen instantly...

For paper wallet 2.0, the user should print a seed of at least
128 random bits, and at most 512 random bits.

Deterministic wallets End

Multi-signature scripts w.r.t. homomorphic derivations

The hierarchal deterministic wallet standard is a standard for
generating cryptographic keys, rather than a standard for
generating Bitcoin scripts.

BIP16+BIP32 ?

For extra security, suppose that you wish to be able to redeem
your coins via a script of the following kind:
OP CHECKSIG(pubkey1, ·) AND OP CHECKSIG(pubkey2, ·)
For example, privkey1 may reside on your laptop and
privkey2 may reside on your smartphone.

The server that derives the (P2SH) payment addresses for
your customers can store two public root nodes (i.e. each
node consists of a public key and a chaincode), and assemble
a script of the needed format for each customer.

Deterministic wallets End

Future plans

BIP32 6= BIP32.5

Vanilla ECDSA makes use of a random value k for each
signature that you create.

It is better to have deterministic signatures (Android bug...),
both because of insufficient randomness on lite devices, and to
test implementations across systems.

Basically k = hash(privkey||message)

The Bitcoin developers plan to switch to deterministic
signatures (this is unrelated to deterministic wallets).

Stealth addresses

Allows having a single public address, where each user can
anonymously derive a payment address from this single
address.

This is done via Diffie-Hellman key exchange...

Deterministic wallets End

Thank you.

version 2.01 (without pauses)

	Deterministic wallets
	Deterministic wallets

	End
	End

