Amortizing Secure Computation with Penalties

Iddo Bentov Cornell University Ranjit Kumaresan MIT

CCS 2016

Fairness with penalties

Takeaway message

- A new variant of off-chain channels:
- Off-chain channels are useful not only for (micro) payments.
 - Instantaneous fair exchange (of verifiable data), with penalties
 - Instantaneous fair secure computation, with penalties.

Takeaway message

- A new variant of off-chain channels:
- Off-chain channels are useful not only for (micro) payments.
 - Instantaneous fair exchange (of verifiable data), with penalties
 - Instantaneous fair secure computation, with penalties.

How expressive should the scripting language be?

- New use-case for an opcode that verifies arbitrary signatures.
- Different use-cases for this opcode:
 - lottery-based micropayments [Pass, shelat: CCS15]
 - anonymous transactions [Heilman, Baldimtsi, Goldberg: FC16]

Secure multiparty computation (MPC) / secure function evaluation (SFE)

Parties P_1, P_2, \dots, P_n with inputs x_1, x_2, \dots, x_n send messages to each other, and wish to *securely* compute $f(x_1, x_2, \dots, x_n)$.

Impossibility of fair MPC in the standard communication model

Fairness: if any party receives the output, then all honest parties must receive the output.

"Security with abort" is possible

- Secure MPC is possible [Yao86, GMW87, ...]
 - Security: correctness, privacy, independence of inputs, fairness
 - Even with dishonest majority, in the computational setting.

Full security is impossible

Fairness with penalties 000000000

- Fair MPC is impossible [Cle86]
 - r-round 2-party coin toss protocol is susceptible to $\Omega(1/r)$ bias.
 - ⇒ no fair protocol for XOR, barring gradual release [...]

Fairness with penalties

This presentation

- 1 Impose fairness for any SFE, without an honest majority.
- 2 For 2 parties, ℓ sequential executions of (different) fair SFE with only two \mathcal{F}_{CR}^{\star} invocations, instead of $\Omega(\ell)$ invocations.
- **3** For n parties and r-rounds reactive MPC, $O(n^2r)$ invocations.

Not in this presentation

Secure cash distribution (e.g., poker).

Formal model that incorporates coins

Fairness with penalties

000000000

Functionality \mathcal{F}_{\square} versus functionality $\mathcal{F}_{\square}^{\star}$ with coins

- If party P_i has some secret s_0 and sends it to party P_i , then both P_i and P_i will have the string s_0 .
- If party P_i has coins(x) and sends y < x coins to party P_i , then P_i will have coins(x - y) and P_i will have extra coins(y).
- With Bitcoin: the parties only send strings, but miners do PoW so that the coin transfers become irreversible.

Formal model that incorporates coins

Fairness with penalties

000000000

Functionality \mathcal{F}_{\square} versus functionality $\mathcal{F}_{\square}^{\star}$ with coins

- If party P_i has some secret s_0 and sends it to party P_i , then both P_i and P_i will have the string s_0 .
- If party P_i has coins(x) and sends y < x coins to party P_i , then P_i will have coins(x - y) and P_i will have extra coins(y).
- With Bitcoin: the parties only send strings, but miners do PoW so that the coin transfers become irreversible.
- Ideally, all the parties deem coins to be valuable assets.
- Sending coins(x) may require a broadcast that reveals at least the amount x and pseudonyms (not in ZK/anon cryptocurrency).
- We provide simulation based proofs (not in this talk).

0000000000

Claim-or-Refund for two parties P_s , P_r (implicit in [Max11], [BBSU12])

The $\mathcal{F}^{\star}_{\operatorname{CR}}$ Claim-or-Refund ideal functionality

- 1 The sender P_s deposits (locks) her coins(q) while specifying a time bound τ and a circuit $\phi(\cdot)$.
- 2 The receiver P_r can claim (gain possession) of the coins(q) by publicly revealing a witness w that satisfies $\phi(w) = 1$.
- 3 If P_r didn't claim within time τ , coins(q) are refunded to P_s .

How to realize \mathcal{F}_{CR}^{\star} via Bitcoin

- Old version: using "timelock" transactions.
- New version: OP_CHECKLOCKTIMEVERIFY (abbrv. CLTV) enables \mathcal{F}_{CR}^{\star} directly, avoiding transaction malleability attacks.

$\mathcal{F}_{\mathrm{CR}}^{\star}$ via Bitcoin with <code>CLTV</code> (operational since \approx December 2015)

```
Pseudocode: pk_S, pk_R, h_0, \tau are hardcoded if (block# > \tau) then P_s can spend the coins(q) by signing with sk_s else P_r \text{ can spend the coins}(q) \text{ by } signing with sk_r AND supplying w such that \operatorname{Hash}(w) = h_0 \leftarrow \operatorname{this\ is\ }\phi(\cdot)
```

Bitcoin script

IF <timeout> CHECKLOCKTIMEVERIFY OP_DROP < pk_s > CHECKSIGVERIFY ELSE HASH256 < h_0 > EQUALVERIFY < pk_r > CHECKSIGVERIFY ENDIF

Fairness with penalties (non-reactive)

Fairness with penalties

0000000000

Definition of fair secure multiparty computation with penalties

- An honest party never has to pay any penalty
- If a party aborts after learning the output and doesn't deliver output to honest parties ⇒ every honest party is compensated

Fairness with penalties (non-reactive)

Definition of fair secure multiparty computation with penalties

- An honest party never has to pay any penalty
- If a party aborts after learning the output and doesn't deliver output to honest parties ⇒ every honest party is compensated

Outline of \mathcal{F}_f^\star – fairness with penalties for any function f

- P_1, \ldots, P_n with x_1, \ldots, x_n run secure *unfair* SFE for f that
 - **1** Computes random $y_1 \oplus y_2 \oplus \cdots \oplus y_n = y$ for $y = f(x_1, \dots, x_n)$
 - 2 Computes Tags = $(com(y_1), \ldots, com(y_n)) = (hash(y_1), \ldots, hash(y_n))$
 - **3** Delivers (y_i, Tags) to every P_i

to swap the y_i 's among themselves.

• P_1, \ldots, P_n deposit coins and run fair exchange with penalties

Fair exchange in the $\mathcal{F}_{\mathrm{CR}}^{\star}$ -hybrid model - the ladder construction

"Abort" attack:

Fairness with penalties

000000000

 P_2 claims without deposting

P_1 —	w_2	$\longrightarrow P_2$
1	q, au	7 1 2
P_2 —	w_1	$\longrightarrow P_1$
$\begin{bmatrix} r_2 & \end{bmatrix}$	q, au	7 1 1

Fair exchange:

 P_1 claims by revealing w_1

 $\Rightarrow P_2$ can claim by revealing w_2

$$P_1 \xrightarrow{\begin{array}{c} W_1 \wedge W_2 \\ q, \tau_2 \end{array}} P_2$$

$$P_2 \xrightarrow{\begin{array}{c} W_1 \\ q, \tau_1 \end{array}} P_1$$

Malicious coalition:

Coalition P_1, P_2 obtain w_3 from P_3 P_2 doesn't claim the top transaction P_3 isn't compensated

$$P_{1} \xrightarrow{\begin{array}{c} V_{1} < \tau_{2} < \tau_{3} \\ \hline P_{1} \xrightarrow{\begin{array}{c} W_{1} \wedge W_{2} \wedge W_{3} \\ \hline q, \tau_{3} \end{array} \end{array}} P_{2}$$

$$P_{2} \xrightarrow{\begin{array}{c} W_{1} \wedge W_{3} \\ \hline q, \tau_{2} \end{array} } P_{3}$$

$$P_{3} \xrightarrow{\begin{array}{c} W_{1} \\ q, \tau_{1} \end{array}} P_{1}$$

Fair exchange in the $\mathcal{F}_{\mathrm{CR}}^{\star}$ -hybrid model - the ladder construction (contd.)

Fair exchange:

Bottom two levels:

 P_1, P_2 get compensated by P_3

Top two levels:

Fairness with penalties

000000000

 P_3 gets her refunds by revealing w_3

$$P_{1} \xrightarrow{\begin{array}{c} W_{1} \wedge W_{2} \wedge W_{3} \\ q, \tau_{3} \end{array}} P_{3}$$

$$P_{2} \xrightarrow{\begin{array}{c} W_{1} \wedge W_{2} \wedge W_{3} \\ q, \tau_{3} \end{array}} P_{3}$$

$$P_{3} \xrightarrow{\begin{array}{c} W_{1} \wedge W_{2} \wedge W_{3} \\ q, \tau_{3} \end{array}} P_{2}$$

$$P_{3} \xrightarrow{\begin{array}{c} W_{1} \wedge W_{2} \\ 2q, \tau_{2} \end{array}} P_{2}$$

$$P_{2} \xrightarrow{\begin{array}{c} W_{1} \\ q, \tau_{1} \end{array}} P_{1}$$

Full ladder:

Comparison with other ways to achieve fairness

Gradual release

Fairness with penalties 000000000

- Release the output bit by bit...
- Even with only 2 parties, the number of rounds depends on a security parameter.
- Complexity blowup because the protocol must ensure that the parties don't release junk bits.
- Assumptions on the computational power of the parties, sequential puzzles to avoid parallelization.

Fairness with penalties

- With Bitcoin, the PoW miners do all the heavy lifting.
- Still, we don't want to wait for on-chain PoW confirmations...

Amortized protocol – what we achieve

- Unbounded number of sequential MPC executions, with off-chain fair exchange (with penalties) of the outputs, as long as all parties are honest.
- Resembles optimistic fair exchange, but with no trusted party.

Main idea

Since the (commitments to the) output values are not known in advance, the \mathcal{F}_{CR}^{\star} on-chain transactions require the parties to reveal signatures of indexed messages.

The general case: amortized reactive secure-MPC

Fairness with penalties

- Multistage protocol: after each stage of the computation some intermediate outputs are revealed to the parties.
 - Example: the top card of the deck is revealed to all parties.
- One-shot protocol is not the natural formulation:
 - A circuit that takes into account all the possible variables is highly inefficient.
 - Those variables may depend on external events (say, you receive a phone call regarding an unrelated financial loss).
- → must be dropout-tolerant:
 - After a stage that reveals information, corrupt parties must be penalized if they abort.
 - In fact, the corrupt parties must be penalized unless they continue the next stage of the computation.

Fairness with penalties

Ingredient #1: see-saw construction (2-party m-rounds illustration)

Roof Deposit.

$$P_1 \xrightarrow{\operatorname{TT}_{m,2}} P_2 \qquad (\mathsf{Tx}_{m,2})$$

See-saw deposits. For r = m - 1 to 1:

$$P_{2} \xrightarrow{\operatorname{TT}_{r+1,1}} P_{1} \qquad (\mathsf{Tx}_{r+1,1})$$

$$P_{1} \xrightarrow{\operatorname{TT}_{r,2}} P_{2} \qquad (\mathsf{Tx}_{r,2})$$

$$P_1 \xrightarrow{\operatorname{TT}_{r,2}} P_2 \qquad (\mathsf{Tx}_{r,2})$$

Floor deposit.

$$P_2 \xrightarrow{\operatorname{TT}_{1,1}} P_1 \qquad (\mathsf{Tx}_{1,1})$$

Ingredient #2: circuits that verify signed data

- ullet On-chain $\mathcal{F}_{\mathrm{CR}}^{\star}$ circuits that verify a signed transcript of an execution.
- For a feasibility result, consider signatures that are created inside the secure computation.

$$\begin{split} \phi_{j,i}^{\mathsf{lock}}(\mathsf{TT},\mathsf{id},\sigma;mvk) &= \mathsf{tv}_{i-1}^{(\mathsf{id})}(\mathsf{TT}) \bigwedge \mathsf{SigVerify}(mvk,(j,i,\mathsf{id}),\sigma) \\ \\ \phi_{i}(\mathsf{TT},\mathsf{id};mvk) &= \mathsf{tv}_{i}^{(\mathsf{id})}(\mathsf{TT}) \\ \\ \phi_{j,i}^{\mathsf{unlock}}(\mathsf{TT},\mathsf{id},\sigma;mvk) &= \mathsf{tv}_{i}^{(\mathsf{id})}(\mathsf{TT}) \bigwedge \mathsf{SigVerify}(mvk,(j,i,\mathsf{id}),\sigma) \end{split}$$

where
$$\text{TT} = (T_1^{(\text{id}_1)}, \sigma_1^{(\text{id}_1)}) \| \cdots \| (T_i^{(\text{id}_i)}, \sigma_i^{(\text{id}_i)}) \text{ and } \mathsf{tv}_i^{(\text{id})}(\text{TT}) = 1 \text{ iff}$$

- $id_1 = \cdots = id_i > id$.
- for all $j \leq i$: $T_i^{(\mathrm{id}_j)}$ is a message of the form $(j,\mathrm{id}_j,*)$ and $\sigma_i^{(\mathrm{id}_j)}$ is a valid signature on $T_i^{(\mathrm{id}_j)}$ under msk.

Ingredient #3: multiparty "locked" ladder

Ladder deposits. For i = n - 1 down to 1:

• Rung unlock: For j = n down to i + 1:

$$P_j \xrightarrow{\begin{array}{c} \phi_{j,i}^{\mathrm{unlock}} \\ q, \tau_{j,i}^{\mathrm{unlock}} \end{array}} P_i$$

Rung climb:

Fairness with penalties

$$P_{i+1} \xrightarrow{\phi_i} P$$

• Rung lock: For each j = n down to i + 1:

$$P_{i} \xrightarrow{\phi_{j,i}^{\mathsf{lock}}} P_{i}$$

Amortized reactive secure MPC - summary

Fairness with penalties

Work	Case	$\mathcal{F}_{\mathrm{CR}}^{\star}$	Max	Script	Round	Assump.
VVOIK	Case	calls	deposit	comp.†	comp.*	Assump.
Crypto14	One-shot	$O(n\ell)$	O(nq)	$O(n^2z\ell)$	$O(n\ell)$	owf, $\mathcal{F}_{\mathrm{OT}}$
CCS16	One-shot	$O(n\ell)$	O(nq)	$O(n\lambda\ell)$	$O(n\ell)$	RO, $\mathcal{F}_{\mathrm{OT}}$
Ours	One-shot	$O(n^2)$	O(nq)	$O(n^3z)$	O(n)	owf, $\mathcal{F}_{\mathrm{OT}}$
CCS15	Reactive	$O(n^2r)$	O(nq)	$O(n^2T\ell)$	O(nr)	etdp
CCS16	Reactive	$O(nr\ell)$	$O(nr^2q)$	$O(nT\ell)$	$O(nr\ell)$	etdp
Ours	Reactive	$O(n^2r)$	O(nrq)	$O(n^2T)$	O(nr)	etdp

Table: n: number of parties; q: penalty amount; z: length of output of f (we assume $z \gg \lambda$); λ : computational security parameter; T (resp. r): size of transcript (resp. number of rounds) of an n-party secure computation protocol that implements f in the plain model; owf: one-way functions; \mathcal{F}_{OT} : ideal oblivious transfer; RO: random oracle; etdp: enhanced trapdoor permutations; Note that ℓ is a parameter, thus our costs per execution tend to zero as ℓ grows. The '*' in the round complexity column means that the values in the column refer to the "on-chain round complexity." The "off-chain round complexity" of our protocol is $O(n\ell)$ in the one-shot case and $O(nr\ell)$ in the reactive case.

Amortized protocol for 2 parties

Note: this is a portion from a followup work.

Preparation:

- ① P_1 make an $\mathcal{F}_{\mathrm{CR}}^{\star}$ transaction to P_2 with q coins, timeout au_1 , and circuit $\phi_1(m_1,m_2,H_1,H_2,S_1,S_2)$ that
 - Parses $H_1 = (i, h_1), H_2 = (j, h_2)$
 - Verifies $i=j, \ m_1 \neq m_2, \ \mathsf{Hash}(m_1) = h_1, \ \mathsf{Hash}(m_2) = h_2$
 - \bullet Verifies signatures: SigVerify $_{pk_1}(H_1,S_1), \; {\sf SigVerify}_{pk_1}(H_2,S_2)$
- 2 P_2 make an \mathcal{F}_{CR}^{\star} transaction to P_1 with q coins, timeout $\tau_2 < \tau_1$, and circuit $\phi_2(m,H,S_1,S_2)$ that
 - Parses $H = (\Box, h)$ and verifies that $\mathsf{Hash}(m) = h$
 - ullet Verifies signatures: SigVerify $_{pk_1}(H,S_1), \ {\sf SigVerify}_{pk_2}(H,S_2)$

Amortized non-reactive 2PC

Amortized protocol for 2 parties (contd.)

Executions:

- 3 Until time τ_2 , P_1 and P_2 execute any number of SFE invocations with functions $f_i(x_1, x_2), i = 1, 2, ...$, such that
 - $y_i = f_i(x_{i,1}, x_{i,2})$, and $m_{i,1} \oplus m_{i,2} = y_i$ are additive shares of y_i .
 - Commitments: $h_{i,1} = \mathsf{Hash}(m_{i,1}), \ h_{i,2} = \mathsf{Hash}(m_{i,2})$
 - P_1 's output is $(m_{i,1}, h_{i,1}, h_{i,2})$, P_2 's output is $(m_{i,2}, h_{i,1}, h_{i,2})$.
- **4** Then, for each execution i,
 - Denote $H_{i,1} = (i, h_{i,1}), H_{i,2} = (i, h_{i,2}).$
 - P_1 sends $S_{i,1,2} = \operatorname{Sign}_{sk_1}(H_{i,2})$ to P_2 .
 - P_2 runs SigVerify $_{pk_1}(H_{i,2},S_{i,1,2})$, and sends $S_{i,2,1}=\mathrm{Sign}_{sk_2}(H_{i,1})$ to P_1 .
 - P_1 sends $m_{i,1}$ to P_2 , and waits for a short timeout to receive $m_{i,2}$ from P_2 .
 - If $m_{i,2}$ was not received, P_1 redeems q coins by revealing $S_{i,1,1} = \mathsf{Sign}_{sk_1}(H_{i,1})$ to satisfy ϕ_2 .
 - P_2 can now use $(S_{i,1,1}, S_{i,1,2})$ with $m_{i,2}$ to redeem q coins too.

Amortized protocol for 2 parties - order of events

 $P_1 \text{ needs } \boxed{m, S_1(\mathsf{Hash}(m)), S_2(\mathsf{Hash}(m))} \text{ to collect the money.}$ $P_2 \text{ needs } \boxed{m_1, m_2, S_1(i, \mathsf{Hash}(m_1)), S_1(i, \mathsf{Hash}(m_2))} \text{ to collect.}$

What if P_2 aborts instead of sending m_2 ?

 $\begin{array}{c|c} P_1 \text{ reveals } \boxed{m_1, S_1(\mathsf{Hash}(m_1))} \text{ with } S_2(i, \mathsf{Hash}(m_1)) \text{ to collect.} \\ P_2 \text{ reveals } \boxed{m_2} \text{ with } m_1, S_1(\mathsf{Hash}(m_1)), S_1(i, \mathsf{Hash}(m_2)) \text{ to recoup.} \end{array}$

Amortized protocol for 2 parties - properties

- P_1 reveals a signed message with a corresponding preimage in every execution i, but P_2 cannot recycle an old signed message to avoid revealing the current output, because the indices won't match.
- P_2 needs to keep a backlog of the signed messages from all the previous executions, but has the advantage of being able to pay q coins to learn the output $(q' = q + \varepsilon \text{ in } \phi_1 \text{ is also possible}).$
- The scripts ϕ_1, ϕ_2 need an opcode for arbitrary signature verification - same complexity as the standard CHECKSIGVERIFY.

Thank you.