Amortizing Secure Computation with Penalties

Iddo Bentov Ranjit Kumaresan
Cornell University MIT

CCS 2016

Takeaway message

@ A new variant of off-chain channels:
@ Off-chain channels are useful not only for (micro) payments.

o Instantaneous fair exchange (of verifiable data), with penalties
e Instantaneous fair secure computation, with penalties.

Takeaway message

@ A new variant of off-chain channels:
@ Off-chain channels are useful not only for (micro) payments.

o Instantaneous fair exchange (of verifiable data), with penalties
e Instantaneous fair secure computation, with penalties.

How expressive should the scripting language be?

@ New use-case for an opcode that verifies arbitrary signatures.
o Different use-cases for this opcode:

o lottery-based micropayments [Pass, shelat: CCS15]
e anonymous transactions [Heilman, Baldimtsi, Goldberg: FC16]

Fairness with penalties
©000000000

Secure multiparty computation (MPC) / secure function evaluation (SFE)

Parties P;, P, ..., P, with inputs x1,x2, ..., x, send messages to
each other, and wish to securely compute f(z1,x2,...,2y).

Example of SFE:

x; = (sk;,c)
sk = sk @& sk @ --- D sk,
f(z1,29,...,2,) = decrypt(sk,c)

‘ Reactive MPC: think of poker cards‘

Fairness with penalties
0@00000000

Impossibility of fair MPC in the standard communication model

Fairness: if any party receives the output, then all honest parties
must receive the output.

“Security with abort” is possible

@ Secure MPC is possible [Yao86, GMW&7, ..]
o Security: correctness, privacy, independence of inputs, fairress

o Even with dishonest majority, in the computational setting.

Full security is impossible

e Fair MPC is impossible [Cle86]
e r-round 2-party coin toss protocol is susceptible to Q(1/r) bias.
e = no fair protocol for XOR, barring gradual release [...]

Fairness with penalties
00®0000000

Overview

This presentation
@ Impose fairness for any SFE, without an honest majority.

@® For 2 parties, ¢ sequential executions of (different) fair SFE
with only two F&p invocations, instead of §2(¢) invocations.

©® For n parties and r-rounds reactive MPC, O(n2r) invocations.
p

Not in this presentation

@ Secure cash distribution (e.g., poker).

Fairness with penalties
[ee]eY Tolelelelele)

Formal model that incorporates coins

Functionality F versus functionality /7 with coins

o If party P; has some secret sp and sends it to party P;, then
both P; and P; will have the string sq.

o If party P; has coins(x) and sends y < x coins to party P;,
then P; will have coins(x — y) and P; will have extra coins(y).

e With Bitcoin: the parties only send strings, but miners do
PoW so that the coin transfers become irreversible.

Fairness with penalties
[ee]eY Tolelelelele)

Formal model that incorporates coins

Functionality F versus functionality /7 with coins

o If party P; has some secret sp and sends it to party P;, then
both P; and P; will have the string sq.

If party P; has coins(x) and sends y < x coins to party P,
then P; will have coins(x — y) and P; will have extra coins(y).

e With Bitcoin: the parties only send strings, but miners do
PoW so that the coin transfers become irreversible.

Ideally, all the parties deem coins to be valuable assets.

Sending coins(z) may require a broadcast that reveals at least
the amount x and pseudonyms (not in ZK/anon cryptocurrency).

We provide simulation based proofs (not in this talk).

Fairness with penalties
0000®00000

Claim-or-Refund for two parties P;,P, (implicit in [Max11],[BBSU12])

The F¢y Claim-or-Refund ideal functionality

@ The sender P, deposits (locks) her coins(g) while specifying a
time bound 7 and a circuit ¢(+).

@® The receiver P, can claim (gain possession) of the coins(q) by
publicly revealing a witness w that satisfies ¢(w) = 1.

® If P, didn't claim within time 7, coins(q) are refunded to Ps.

How to realize éR via Bitcoin

@ Old version: using “timelock” transactions.

@ New version: OP_CHECKLOCKTIMEVERIFY (abbrv. CLTV)
enables F¢p, directly, avoiding transaction malleability attacks.

Fairness with penalties
00000®0000

F&g via Bitcoin with CLTV (operational since ~ December 2015)

Pseudocode: pkg, pkg, ho, T are hardcoded

if (block# > 7) then
Ps can spend the coins(q) by signing with sks
else
P, can spend the coins(q) by
signing with sk,
AND

supplying w such that Hash(w) = hg

Bitcoin script

IF <timeout> CHECKLOCKTIMEVERIFY OP DROP <pkgs>
CHECKSIGVERIFY ELSE HASH256 <hg> EQUALVERIFY <pk,>
CHECKSIGVERIFY ENDIF

Fairness with penalties
000000e000

Fairness with penalties (non-reactive)

Definition of fair secure multiparty computation with penalties

@ An honest party never has to pay any penalty

o If a party aborts after learning the output and doesn’t deliver
output to honest parties = every honest party is compensated

Fairness with penalties
000000e000

Fairness with penalties (non-reactive)

Definition of fair secure multiparty computation with penalties

@ An honest party never has to pay any penalty

o If a party aborts after learning the output and doesn’t deliver
output to honest parties = every honest party is compensated

Outline of]—"J’? — fairness with penalties for any function f

e P,..., P, with z1,...,x, run secure unfair SFE for f that
@ Computes random y1 Dya®- - Dy, =1y for y = f(z1,...,2,)

® Computes Tags = (com(y1),-..,com(yy,)) ‘:(hash(yl) ,,,,, hash(yn)
© Delivers (y;, Tags) to every P,

e P,..., P, deposit coins and run fair exchange with penalties
to swap the y;'s among themselves.

Fairness with penalties
0000000800

Fair exchange in the Fz-hybrid model - the ladder construction

' ~
_ P *a P
“Abort” attack: 1 @ 2
P, claims without deposting P W; P,
\ < y,
s ~
Fair exchange:
P claims by revealing w1 P, Wy AWo Py
. . q,7T2
= P, can claim by revealing ws
Py - Py
q,71
. vy
' ~\
Malicious coalition: P Wi AW AW P
q,7:
Coalition P1, P> obtain w3 from Ps ;vj\w
, i i P2 1 3 133
P> doesn’t claim the top transaction q,72
Ps isn't compensated Py Wi P
q,7T1

p vy

Fairness with penalties
0000000080

Fair exchange in the 7{-hybrid model - the ladder construction (contd.)

' ~\
o
alr excnange:
" Wy AW AW-
Pl 1 2 3 1:)3
Bottom two levels: 973
W) AWo AW
Py, P, get compensated by Ps P> e Py
q,73
. Wy AW-
Top two levels: P 21/:_ 2 P
H 2 T2
Ps gets her refunds by revealing ws ?
P Wi P
p] 1
q,7T1
A >y
Roof DEPOSITS.
Full ladder: homen
P —»"‘"m”' P,
T
. .
Ladder DEPOSITS.
B nn N
(n=1)g,mn—1
Py T P
P —>’;‘(i"‘ Py
P IT—'» P

Fairness with penalties
000000000e

Comparison with other ways to achieve fairness

Gradual release

@ Release the output bit by bit...
@ Even with only 2 parties, the number of rounds depends on a
security parameter.

@ Complexity blowup because the protocol must ensure that the
parties don't release junk bits.

@ Assumptions on the computational power of the parties,
sequential puzzles to avoid parallelization.

Fairness with penalties

@ With Bitcoin, the PoW miners do all the heavy lifting.

@ Still, we don’t want to wait for on-chain PoW confirmations...

Amortized reactive MPC
[Jelelelele)

Amortized protocol — what we achieve

@ Unbounded number of sequential MPC executions, with
off-chain fair exchange (with penalties) of the outputs, as
long as all parties are honest.

@ Resembles optimistic fair exchange, but with no trusted party.

Main idea

Since the (commitments to the) output values are not known in
advance, the F¢, on-chain transactions require the parties to
reveal signatures of indexed messages.

Amortized reactive MPC
0®0000

The general case: amortized reactive secure-MPC

@ Multistage protocol: after each stage of the computation
some intermediate outputs are revealed to the parties.
e Example: the top card of the deck is revealed to all parties.

@ One-shot protocol is not the natural formulation:
e A circuit that takes into account all the possible variables is
highly inefficient.
o Those variables may depend on external events (say, you
receive a phone call regarding an unrelated financial loss).

@ = must be dropout-tolerant:
o After a stage that reveals information, corrupt parties must be
penalized if they abort.
e In fact, the corrupt parties must be penalized unless they
continue the next stage of the computation.

Amortized reactive MPC
©00®000

Ingredient #1: see-saw construction (2-party m-rounds illustration)

ROOF DEPOSIT.

TTm,2

Py P (Txm,2)

q9,Tm,2

SEE-SAW DEPOSITS. For r =m — 1 to 1:

TTr41,1

Py P (TXr41,1)
2q,Tr+1,1
TTr2

P1 ! P2 (Txng)
QQ7T’F,2

FLOOR DEPOSIT.

PQ Bt P1 (TX171)

q,7T1,1

Amortized reactive MPC
000®00

Ingredient #2: circuits that verify signed data

@ On-chain F&y circuits that verify a signed transcript of an
execution.

o For a feasibility result, consider signatures that are created
inside the secure computation.

#9K (11, id, o3 mok) = tv{'Y), (11) \\ SigVerify(muk, (4, 1,id), 0)

¢i(TT,id; mvk) = tind) (TT)

BUK (1T, id, oy muk) = tv{ ¥ (TT) /\ SigVerify(muk, (j, i, id), o)

where T1 = (T o) | |(119) 604Dy and (@ (v1) = 1 iff
e idy =---=id; >id.
o forall j <i: TJ-(id-j) is a message of the form (j,id;,) and
a§idj) is a valid signature on T;idﬂ under msk.

Amortized reactive MPC
0000e0

Ingredient #3: multiparty “locked” ladder

LADDER DEPOSITS. For i = n — 1 down to 1:

® Rung unlock: For j =n down to i + 1:

lock
ok
PJ lock Pl
a7
® Rung climb:
i
Pita , P;
i°q,T;

® Rung lock: For each j = n down to ¢ + 1:

lock
o
J,T
P, P;
lock
DTj

Amortized reactive MPC
oooooe

Amortized reactive secure MPC - summary

Work Case Fer Max. Script Rounf Assump.
calls deposit comp.T comp.

Cryptol4 | One-shot | O(nf) O(nq) O(n?z0) O(n?) owf,For
CCS16 One-shot | O(nf) O(nq) O(n\l) O(nk) RO, For
Ours One-shot | O(n?) O(nq) O(n3z) O(n) owf, For
CCS15 Reactive | O(n?r) O(nq) O(n?Te) O(nr) etdp
CCS16 Reactive | O(nrf) | O(nr2q) O(nT¥) O(nre) etdp
Ours Reactive | O(n?r) O(nrq) O(n?T) O(nr) etdp

Table: n: number of parties; ¢: penalty amount; z: length of output of
f (we assume z > A); A: computational security parameter; T (resp. r):
size of transcript (resp. number of rounds) of an n-party secure
computation protocol that implements f in the plain model; owf:
one-way functions; For: ideal oblivious transfer; RO: random oracle;
etdp: enhanced trapdoor permutations; Note that ¢ is a parameter, thus
our costs per execution tend to zero as £ grows. The '*' in the round
complexity column means that the values in the column refer to the
“on-chain round complexity.” The “off-chain round complexity” of our
protocol is O(nf) in the one-shot case and O(nrf) in the reactive case.

Amortized non-reactive 2PC
®000

Amortized protocol for 2 parties

Note: this is a portion from a followup work.
Preparation:

©® P make an Fy transaction to P, with ¢ coins, timeout 71, and
circuit ¢1(m1, ms, Hy, Hy, S1, Sg) that
o Parses Hy = (i,h1), Ha = (j, h2)
o Verifies i = j, mq 7é ma, Hash(ml) = hl, Hash(mg) = h2
o Verifies signatures: SigVerify,, (H1,S1), SigVerify,, (Hz,S2)

® P, make an F¢y transaction to P with g coins, timeout 75 < 7y,
and circuit ¢o(m, H, S1,S2) that
o Parses H = (, h) and verifies that Hash(m) = h
o Verifies signatures: SigVerify,, (H,S1), SigVerify,,, (H,S2)

Amortized non-reactive 2PC
0e00

Amortized protocol for 2 parties (contd.)

Executions:

® Until time 7o, P; and P» execute any number of SFE invocations
with functions f;(x1,x2),i =1,2,..., such that

o
o
o

yi = fi(®iq, x52), and m; 1 & m; 2 = y; are additive shares of y;.
Commitments: h; 1 = Hash(m; 1), h; 2 = Hash(m; 2)
Pl’S output iS (mm, hi,h h@g), PQ'S OUtpUt iS (TTLLQ, hi71, hiyg).

O Then, for each execution ¢,

o
o
°

Denote Hi71 = (i,hi71), Hi,g = (i,h@g).

Py sends S; 1,2 = Signg,,, (H;2) to Ps.

P, runs SigVerifypkl(Hw,SLLQ), and sends S; 2.1 = Signg, (H; 1)
to Pl.

Py sends m; 1 to P, and waits for a short timeout to receive m; >
from P.

If m; 2 was not received, P, redeems ¢ coins by revealing

Sij1 = Signgy, (H; 1) to satisfy ¢o.

P, can now use (S; 1.1,95,1,2) with m; 2 to redeem ¢ coins too.

Amortized non-reactive 2PC
ooeo

Amortized protocol for 2 parties - order of events

Py needs ’ m, S1(Hash(m)), Sa(Hash(m ‘ to collect the money.

P, needs ’ mi,me, S1(i, Hash(my)), S1 (i, Hash(mz)) ‘ to collect.

start: | P,
i,Hash(m;))

What if P, aborts instead of sending mo ?
Py reveals ‘ml, S1(Hash(m;q)) ‘ with So (i, Hash(m;)) to collect.
P, reveals with my, S1(Hash(m;)), Si(i, Hash(mz)) to recoup.

(7,Hash(ms))

Amortized non-reactive 2PC
oooe

Amortized protocol for 2 parties - properties

@ P reveals a signed message with a corresponding preimage in
every execution %, but P, cannot recycle an old signed message
to avoid revealing the current output, because the indices won't
match.

@ P, needs to keep a backlog of the signed messages from all the
previous executions, but has the advantage of being able to pay ¢
coins to learn the output (¢’ = g + ¢ in ¢; is also possible).

@ The scripts ¢1, ¢2 need an opcode for arbitrary signature
verification - same complexity as the standard CHECKSIGVERIFY.

Thank you.

	Fairness with penalties
	Fairness with penalties

	Amortized reactive MPC
	Amortized reactive MPC

	Amortized non-reactive 2PC
	Amortized non-reactive 2PC

	End
	End

