
Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Amortizing Secure Computation with Penalties

Iddo Bentov Ranjit Kumaresan
Cornell University MIT

CCS 2016

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Message

Takeaway message

A new variant of off-chain channels:

Off-chain channels are useful not only for (micro) payments.

Instantaneous fair exchange (of verifiable data), with penalties
Instantaneous fair secure computation, with penalties.

How expressive should the scripting language be?

New use-case for an opcode that verifies arbitrary signatures.

Different use-cases for this opcode:

lottery-based micropayments [Pass, shelat: CCS15]
anonymous transactions [Heilman, Baldimtsi, Goldberg: FC16]

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Message

Takeaway message

A new variant of off-chain channels:

Off-chain channels are useful not only for (micro) payments.

Instantaneous fair exchange (of verifiable data), with penalties
Instantaneous fair secure computation, with penalties.

How expressive should the scripting language be?

New use-case for an opcode that verifies arbitrary signatures.

Different use-cases for this opcode:

lottery-based micropayments [Pass, shelat: CCS15]
anonymous transactions [Heilman, Baldimtsi, Goldberg: FC16]

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Secure multiparty computation (MPC) / secure function evaluation (SFE)

Parties P1, P2, . . . , Pn with inputs x1, x2, . . . , xn send messages to
each other, and wish to securely compute f(x1, x2, . . . , xn).

P1

P2 P3

Example of SFE:

xi = (ski, c)

sk = sk1 ⊕ sk2 ⊕ · · · ⊕ skn
f(x1, x2, . . . , xn) = decrypt(sk, c)

Reactive MPC: think of poker cards

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Impossibility of fair MPC in the standard communication model

Fairness: if any party receives the output, then all honest parties
must receive the output.

“Security with abort” is possible

Secure MPC is possible [Yao86, GMW87, ...]

Security: correctness, privacy, independence of inputs, fairness

Even with dishonest majority, in the computational setting.

Full security is impossible

Fair MPC is impossible [Cle86]

r-round 2-party coin toss protocol is susceptible to Ω(1/r) bias.

⇒ no fair protocol for XOR, barring gradual release [...]

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Overview

This presentation

1 Impose fairness for any SFE, without an honest majority.

2 For 2 parties, ` sequential executions of (different) fair SFE
with only two F?CR invocations, instead of Ω(`) invocations.

3 For n parties and r-rounds reactive MPC, O(n2r) invocations.

Not in this presentation

Secure cash distribution (e.g., poker).

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Formal model that incorporates coins

Functionality F2 versus functionality F?2 with coins

If party Pi has some secret s0 and sends it to party Pj , then
both Pi and Pj will have the string s0.

If party Pi has coins(x) and sends y < x coins to party Pj ,
then Pi will have coins(x− y) and Pj will have extra coins(y).

With Bitcoin: the parties only send strings, but miners do
PoW so that the coin transfers become irreversible.

Ideally, all the parties deem coins to be valuable assets.

Sending coins(x) may require a broadcast that reveals at least
the amount x and pseudonyms (not in ZK/anon cryptocurrency).

We provide simulation based proofs (not in this talk).

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Formal model that incorporates coins

Functionality F2 versus functionality F?2 with coins

If party Pi has some secret s0 and sends it to party Pj , then
both Pi and Pj will have the string s0.

If party Pi has coins(x) and sends y < x coins to party Pj ,
then Pi will have coins(x− y) and Pj will have extra coins(y).

With Bitcoin: the parties only send strings, but miners do
PoW so that the coin transfers become irreversible.

Ideally, all the parties deem coins to be valuable assets.

Sending coins(x) may require a broadcast that reveals at least
the amount x and pseudonyms (not in ZK/anon cryptocurrency).

We provide simulation based proofs (not in this talk).

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Claim-or-Refund for two parties Ps,Pr (implicit in [Max11],[BBSU12])

The F?CR Claim-or-Refund ideal functionality

1 The sender Ps deposits (locks) her coins(q) while specifying a
time bound τ and a circuit φ(·).

2 The receiver Pr can claim (gain possession) of the coins(q) by
publicly revealing a witness w that satisfies φ(w) = 1.

3 If Pr didn’t claim within time τ , coins(q) are refunded to Ps.

How to realize F?CR via Bitcoin

Old version: using “timelock” transactions.

New version: OP CHECKLOCKTIMEVERIFY (abbrv. CLTV)
enables F?CR directly, avoiding transaction malleability attacks.

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

F?
CR via Bitcoin with CLTV (operational since ≈ December 2015)

Pseudocode: pkS , pkR, h0, τ are hardcoded

if (block# > τ) then

Ps can spend the coins(q) by signing with sks
else

Pr can spend the coins(q) by

signing with skr
AND

supplying w such that Hash(w) = h0 ← this is φ(·)

Bitcoin script

IF <timeout> CHECKLOCKTIMEVERIFY OP DROP <pks>
CHECKSIGVERIFY ELSE HASH256 <h0> EQUALVERIFY <pkr>
CHECKSIGVERIFY ENDIF

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Fairness with penalties (non-reactive)

Definition of fair secure multiparty computation with penalties

An honest party never has to pay any penalty

If a party aborts after learning the output and doesn’t deliver
output to honest parties ⇒ every honest party is compensated

Outline of F?f – fairness with penalties for any function f

P1, . . . , Pn with x1, . . . , xn run secure unfair SFE for f that

1 Computes random y1⊕y2⊕· · ·⊕yn = y for y = f(x1, . . . , xn)
2 Computes Tags = (com(y1), . . . , com(yn)) =(hash(y1), . . . , hash(yn))

3 Delivers (yi,Tags) to every Pi

P1, . . . , Pn deposit coins and run fair exchange with penalties
to swap the yi’s among themselves.

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Fairness with penalties (non-reactive)

Definition of fair secure multiparty computation with penalties

An honest party never has to pay any penalty

If a party aborts after learning the output and doesn’t deliver
output to honest parties ⇒ every honest party is compensated

Outline of F?f – fairness with penalties for any function f

P1, . . . , Pn with x1, . . . , xn run secure unfair SFE for f that

1 Computes random y1⊕y2⊕· · ·⊕yn = y for y = f(x1, . . . , xn)
2 Computes Tags = (com(y1), . . . , com(yn)) =(hash(y1), . . . , hash(yn))

3 Delivers (yi,Tags) to every Pi

P1, . . . , Pn deposit coins and run fair exchange with penalties
to swap the yi’s among themselves.

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Fair exchange in the F?
CR-hybrid model - the ladder construction

“Abort” attack:
P2 claims without deposting

Fair exchange:
P1 claims by revealing w1

⇒ P2 can claim by revealing w2

Malicious coalition:
Coalition P1, P2 obtain w3 from P3

P2 doesn’t claim the top transaction

P3 isn’t compensated

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Fair exchange in the F?
CR-hybrid model - the ladder construction (contd.)

Fair exchange:
Bottom two levels:

P1, P2 get compensated by P3

Top two levels:

P3 gets her refunds by revealing w3

Full ladder:
Roof DEPOSITS.

P1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

P2
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

...
Pn−2

T1∧···∧Tn−−−−−−−−−−−−−−−−−−→
q,τn

Pn

Pn−1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

Ladder DEPOSITS.

Pn
T1∧···∧Tn−1−−−−−−−−−−−−−−−−−−−−→
(n−1)q,τn−1

Pn−1

Pn−1
T1∧···∧Tn−2−−−−−−−−−−−−−−−−−−−−→
(n−2)q,τn−2

Pn−2

...
P3

T1∧T2−−−−−−−−−−−−−−−−→
2q,τ2

P2

P2
T1−−−−−−−−−−−−−→
q,τ1

P1

Figure 6: Roof and Ladder deposit phases for fair reconstruction.

18

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Comparison with other ways to achieve fairness

Gradual release

Release the output bit by bit...

Even with only 2 parties, the number of rounds depends on a
security parameter.

Complexity blowup because the protocol must ensure that the
parties don’t release junk bits.

Assumptions on the computational power of the parties,
sequential puzzles to avoid parallelization.

Fairness with penalties

With Bitcoin, the PoW miners do all the heavy lifting.

Still, we don’t want to wait for on-chain PoW confirmations...

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Amortized protocol – what we achieve

Unbounded number of sequential MPC executions, with
off-chain fair exchange (with penalties) of the outputs, as
long as all parties are honest.

Resembles optimistic fair exchange, but with no trusted party.

Main idea

Since the (commitments to the) output values are not known in
advance, the F?CR on-chain transactions require the parties to
reveal signatures of indexed messages.

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

The general case: amortized reactive secure-MPC

Multistage protocol: after each stage of the computation
some intermediate outputs are revealed to the parties.

Example: the top card of the deck is revealed to all parties.

One-shot protocol is not the natural formulation:

A circuit that takes into account all the possible variables is
highly inefficient.
Those variables may depend on external events (say, you
receive a phone call regarding an unrelated financial loss).

⇒ must be dropout-tolerant:

After a stage that reveals information, corrupt parties must be
penalized if they abort.
In fact, the corrupt parties must be penalized unless they
continue the next stage of the computation.

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Ingredient #1: see-saw construction (2-party m-rounds illustration)

Roof deposit.

P1
ttm,2−−−−−−−−−−−→
q,τm,2

P2 (Txm,2)

See-saw deposits. For r = m− 1 to 1:

P2
ttr+1,1−−−−−−−−−−−−→
2q,τr+1,1

P1 (Txr+1,1)

P1
ttr,2−−−−−−−−−−→
2q,τr,2

P2 (Txr,2)

Floor deposit.

P2
tt1,1−−−−−−−−−−→
q,τ1,1

P1 (Tx1,1)

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Ingredient #2: circuits that verify signed data

On-chain F?CR circuits that verify a signed transcript of an
execution.

For a feasibility result, consider signatures that are created
inside the secure computation.

φlock
j,i (tt, id, σ;mvk) = tv

(id)
i−1(tt)

∧
SigVerify(mvk, (j, i, id), σ)

φi(tt, id;mvk) = tv
(id)
i (tt)

φunlock
j,i (tt, id, σ;mvk) = tv

(id)
i (tt)

∧
SigVerify(mvk, (j, i, id), σ)

where tt = (T
(id1)
1 , σ

(id1)
1)‖ · · · ‖(T (idi)

i , σ
(idi)
i) and tv

(id)
i (tt) = 1 iff

id1 = · · · = idi ≥ id.

for all j ≤ i: T (idj)
j is a message of the form (j, idj , ∗) and

σ
(idj)
j is a valid signature on T

(idj)
j under msk.

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Ingredient #3: multiparty “locked” ladder

Ladder deposits. For i = n− 1 down to 1:

• Rung unlock: For j = n down to i+ 1:

Pj
φunlock
j,i−−−−−−−−−−−−−−−−−→

q,τunlock
j,i

Pi

• Rung climb:

Pi+1
φi−−−−−−−−−−−−−−−−−−−−−→
i·q,τi

Pi

• Rung lock: For each j = n down to i+ 1:

Pi
φlock
j,i−−−−−−−−−−−−−−−−→

q,τ lock
j,i

Pj

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Amortized reactive secure MPC - summary

Work Case
F?CR Max Script Round

Assump.
calls deposit comp.† comp.∗

Crypto14 One-shot O(n`) O(nq) O(n2z`) O(n`) owf,FOT

CCS16 One-shot O(n`) O(nq) O(nλ`) O(n`) RO,FOT

Ours One-shot O(n2) O(nq) O(n3z) O(n) owf,FOT

CCS15 Reactive O(n2r) O(nq) O(n2T`) O(nr) etdp
CCS16 Reactive O(nr`) O(nr2q) O(nT`) O(nr`) etdp
Ours Reactive O(n2r) O(nrq) O(n2T) O(nr) etdp

Table: n: number of parties; q: penalty amount; z: length of output of
f (we assume z � λ); λ: computational security parameter; T (resp. r):
size of transcript (resp. number of rounds) of an n-party secure
computation protocol that implements f in the plain model; owf:
one-way functions; FOT: ideal oblivious transfer; RO: random oracle;
etdp: enhanced trapdoor permutations; Note that ` is a parameter, thus
our costs per execution tend to zero as ` grows. The ‘*’ in the round
complexity column means that the values in the column refer to the
“on-chain round complexity.” The “off-chain round complexity” of our
protocol is O(n`) in the one-shot case and O(nr`) in the reactive case.

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Amortized protocol for 2 parties

Note: this is a portion from a followup work.

Preparation:

1 P1 make an F?CR transaction to P2 with q coins, timeout τ1, and
circuit φ1(m1,m2, H1, H2, S1, S2) that

Parses H1 = (i, h1), H2 = (j, h2)
Verifies i = j, m1 6= m2, Hash(m1) = h1, Hash(m2) = h2
Verifies signatures: SigVerifypk1

(H1, S1), SigVerifypk1
(H2, S2)

2 P2 make an F?CR transaction to P1 with q coins, timeout τ2 < τ1,
and circuit φ2(m,H, S1, S2) that

Parses H = (, h) and verifies that Hash(m) = h
Verifies signatures: SigVerifypk1

(H,S1), SigVerifypk2
(H,S2)

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Amortized protocol for 2 parties (contd.)

Executions:

3 Until time τ2, P1 and P2 execute any number of SFE invocations
with functions fi(x1, x2), i = 1, 2, . . ., such that

yi = fi(xi,1, xi,2), and mi,1 ⊕mi,2 = yi are additive shares of yi.
Commitments: hi,1 = Hash(mi,1), hi,2 = Hash(mi,2)
P1’s output is (mi,1, hi,1, hi,2), P2’s output is (mi,2, hi,1, hi,2).

4 Then, for each execution i,

Denote Hi,1 = (i, hi,1), Hi,2 = (i, hi,2).
P1 sends Si,1,2 = Signsk1

(Hi,2) to P2.
P2 runs SigVerifypk1

(Hi,2, Si,1,2), and sends Si,2,1 = Signsk2
(Hi,1)

to P1.
P1 sends mi,1 to P2, and waits for a short timeout to receive mi,2

from P2.
If mi,2 was not received, P1 redeems q coins by revealing
Si,1,1 = Signsk1

(Hi,1) to satisfy φ2.
P2 can now use (Si,1,1, Si,1,2) with mi,2 to redeem q coins too.

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Amortized protocol for 2 parties - order of events

P1 needs m,S1(Hash(m)), S2(Hash(m)) to collect the money.

P2 needs m1,m2, S1(i,Hash(m1)), S1(i,Hash(m2)) to collect.

P1start: P2

P2 P1

S1(i,Hash(m2))

S2(i,Hash(m1))

m1

m2

What if P2 aborts instead of sending m2 ?

P1 reveals m1, S1(Hash(m1)) with S2(i,Hash(m1)) to collect.

P2 reveals m2 with m1, S1(Hash(m1)), S1(i,Hash(m2)) to recoup.

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Amortized protocol for 2 parties - properties

P1 reveals a signed message with a corresponding preimage in
every execution i, but P2 cannot recycle an old signed message
to avoid revealing the current output, because the indices won’t
match.

P2 needs to keep a backlog of the signed messages from all the
previous executions, but has the advantage of being able to pay q
coins to learn the output (q′ = q + ε in φ1 is also possible).

The scripts φ1, φ2 need an opcode for arbitrary signature
verification - same complexity as the standard CHECKSIGVERIFY.

Fairness with penalties Amortized reactive MPC Amortized non-reactive 2PC End

Thank you.

	Fairness with penalties
	Fairness with penalties

	Amortized reactive MPC
	Amortized reactive MPC

	Amortized non-reactive 2PC
	Amortized non-reactive 2PC

	End
	End

