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ABSTRACT

Presence of duplicate documents in the World Wide Web ad-
versely affects crawling, indexing and relevance, which are
the core building blocks of web search. In this paper, we
present a set of techniques to mine rules from URLs and
utilize these rules for de-duplication using just URL strings
without fetching the content explicitly. Our technique is
composed of mining the crawl logs and utilizing clusters
of similar pages to extract transformation rules, which are
used to normalize URLs belonging to each cluster. Preserv-
ing each mined rule for de-duplication is not efficient due
to the large number of such rules. We present a machine
learning technique to generalize the set of rules, which re-
duces the resource footprint to be usable at web-scale. The
rule extraction techniques are robust against web-site spe-
cific URL conventions. We compare the precision and scal-
ability of our approach with recent efforts in using URLs
for de-duplication. Experimental results demonstrate that
our approach achieves 2 times more reduction in duplicates
with only half the rules compared to the most recent previ-
ous approach. Scalability of the framework is demonstrated
by performing a large scale evaluation on a set of 3 Billion
URLSs, implemented using the MapReduce framework.
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1. INTRODUCTION

Our focus in this paper is on efficient and large-scale de-
duplication of documents on the WWW. Web pages which
have the same content but are referenced by different URLs,
are known to cause a host of problems. Crawler resources are
wasted in fetching duplicate pages, indexing requires larger
storage and relevance of results are diluted for a query.

Duplicate URLs are present due to many reasons such as:

e Making URLSs search engine friendly, e.g., http://en.
wikipedia.org/wiki/Casino_Royale and http://en.
wikipedia.org/?title=Casino_Royale.

e Session-id or cookie information present in
URLs, e.g., sid in http://cs.stanford.edu/
degrees/mscs/faq/index.php?sid=67873&cat=8 and
http://cs.stanford.edu/degrees/mscs/faq/index.
php?sid=78813&cat=8.

e Irrelevant or superfluous components in URLs, e.g.,
http://www.amazon.com/Lord-Rings/dp/B000634DCW
and http://www.amazon.com/dp/B000634DCW.

e Removing/adding index files such as index.html and
default.html by web servers.

e Webmasters at times, construct URL representations
with custom delimiters, e.g., http://catalog.ebay.
com/The-Grudge _UPC_043396062603_W0QQ_fclsZ1QQ_
pcatidZ1QQ_pidZ43973351QQ_tabZ2 and http://
catalog.ebay. com/The—Grudge_UPC_043396062603_
WO?7_fcls=1&_pcatid=1&_pid=43973351&_tab=2

An estimate by [11] shows that approximately 29 percent
of pages in the WWW are duplicates and the magnitude
is increasing. Clearly, this prompts for an efficient solution
that can perform de-duplication without fetching the con-
tent of the page. As duplicate URLs have specific patterns
which can be utilized for de-duplication, in this paper we
focus on the problem of de-duplication of web-pages using
just URLs without fetching the content.

1.1 Related Work

Conventional methods to identify duplicate documents in-
volved fingerprinting each document’s content and group
documents by defining a similarity on the fingerprints. Many
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Figure 1: Duplicate cluster distribution

elegant and effective techniques using fingerprint based sim-
ilarity for de-duplication have been devised [7, 8, 13, 17].
[13, 17] also emphasized the need for scale and presented
results of experiments on large data sets. However, with the
effectiveness comes the cost of fingerprinting and clustering
of documents. Recently, more cost-effective approach of us-
ing just the URLs information for de-duplication has been
proposed, first by Bar-Yossef et.al. [4] and extended by Das-
gupta et.al. [9]. Since our technique is an extension of the
work in [9], which, in turn extended the work in [4], we
describe these two techniques in a little more detail.
Bar-Yossef et al. [4] call the problem, “DUST: Different
URLSs with Similar Text” and propose a technique to uncover
URLs pointing to similar pages. The DUST algorithm fo-
cuses on discovering substring substitution rules, which are
used to transform URLs of similar content to one canonical
URL. DUST rules are learnt from URLs obtained from pre-
vious crawl logs or web server logs and each generated rule
is annotated with a confidence measure. Heuristics are used
to find likely string substitution rules from a given URL
list. An example valid DUST rule generated from http:
//www.wsdm-conference.org/2010/index.html and http:
//www.wsdm-conference.org/2010/ is “/index.html$” —
“$”. String substitution rules thus obtained can potentially
overlap, so they propose ways to eliminate redundancies and
preserve either specific or generic rules. Example of over-
lapping rules are “.com/story?id =7 — “.com/story_” and
“story?id =" — “story_”, where every instance of the for-
mer is an instance of the latter. Validation is performed
on the final set of rules by fetching a small sample of web
pages and comparing the page fingerprints. The final, vali-
dated rule set R is used to canonicalize a given URL u by
repeatedly applying all the rules in R to w until u remains
unchanged or a threshold on the number of rules is reached.
Dasgupta et. al. [9] extended this formulation by consid-
ering a broader set of rule types which subsume the DUST
rules. Different rule types which they consider are: DUST
rules, session-id rules, irrelevant path components and com-
plicate rewrites. Their algorithm learns rules from a clus-
ter of URLs with similar page content (such a cluster is
referred to as a duplicate cluster or a dup cluster). They
generate rules for every URL pair in a duplicate cluster for
all dup clusters. A Rule is generated from a source, tar-
get URL pair and is composed of context and transforma-

tion. “Context” represents the source URL and “transfor-
mation” is the steps required to transform the source URL
to the target URL. Consider the following source and tar-
get URLs: http://www.xyz.com/show.php?sid=71829 and
http://www.xyz.com/show.php?sid=17628. Here, the Rule
context ¢ is c(k1) = http, c(ke) = www.zyz.com, c(ks) =
show.php and c(ksiq) = 71829. The Rule transformation a
is a(k;) = k; for i € 1,2,3 and a(ksq) = 17628. The Rules
obtained from all URL pairs are “generalized” to a smaller
set using heuristics. These generalized Rules are applied to
the URLSs to canonicalize them.

On a data set size of 7.8 million URLs, they achieved 21%
reduction ratio with precision greater than 95%. While con-
sidering all generated Rules on the same data set, DUST
Rules achieved reduction of 22% and all the Rule types
achieved reduction of 60%. This indicates that their Rule
types are able to capture most of the learning. Although the
Rules are effective, the overall complexity of Rule generation
is O(12,, > C?) where lyqz is the maximum number of key
value pairs in a URL and C; is the size of the dup cluster
i. As the distribution of dup cluster size over number of
clusters is a power law distribution [11], it is not practically
feasible to run this algorithm at Web scale. Dup clusters
in our data set also follow a power-law distribution, as seen
in Figure 1, where the total number of URL pairs runs into
trillions.

In our previous work [3], we presented techniques to scale
pair-wise Rule generation and introduced a decision tree
based Rule generalization algorithm. In this paper, we build
on that work by extending the URL and Rule representa-
tions and introduce algorithm for finding host specific delim-
iters. Together these set of techniques form a robust method
for de-dulication of web pages using URL strings. While the
URL and Rule representation in [9] is complete and covers
most patterns, we consider two additional patterns due to
their significance on the Web: Deep Token components in a
URL and URL component alignment. These are described
in later sections of the paper.

1.2 Contributions

Our contributions in this paper are four fold:

1. We extend the representation of URL and Rule pre-
sented in [9]. The extensions result in better utilization
of the information encoded in the URLs to generate
precise Rules with higher coverage.

2. We propose a technique for extracting host specific de-
limiters and tokens from URLs. We extend the pair-
wise Rule generation to perform source and target
URL selection. We also introduce a machine learn-
ing based generalization technique for better precision
of Rules. Collectively, these techniques form a robust
solution to the de-duplication problem.

3. Since scale is a necessary dimension on the Web, we
present MapReduce [10] adaptation of the proposed
techniques.

4. We demonstrate via experimental comparison that the
proposed techniques produce 2 times more reduction
in duplicates with half the number of Rules compared
to [9]. Finally, via large scale experimental evaluation
on a 3-billion URL corpus, we show that the techniques
are robust and scalable.



The rest of the paper is organized as follows. In Section 2
we formalize the problem and describe the representations
of a URL and a Rule. Section 3 presents the algorithm with
details of each technique. MapReduce adaptation of the
techniques is presented in Section 4. We present detailed
experimental evaluation in Section 5 and conclude in Section
6.

2. PROBLEM DEFINITION

In this section, we present the problem definition and the
extensions to the URL and the Rule representations from
[9].

Given a set of duplicate clusters and their correspond-
ing URLs, can we learn Rules from URL strings which can
identify duplicates? Can we utilize these learnt Rules for
normalizing unseen duplicate URLs into a unique normal-
ized URL? Our goal in this paper is to learn pair-wise Rules
from pairs of URLs in a dup cluster. These pair-wise Rules
are later generalized not only to reduce the number of Rules
but also efficiently normalize unseen URLs. Pair-wise Rule
generation and Rule Generalization techniques are described
in Section 3.2. Applications such as crawlers can apply these
generalized Rules on a given URL to generate a normalized
URL. As these online applications have resource constraints,
techniques which achieve larger reduction in duplicates with
less false positives and smaller set of Rules are obviously
better.

A URL is tokenized using standard delimiters and the pri-
mary components of the URL, namely protocol, hostname,
path components and query-args [6] are extracted. A URL
u can be represented as a function from K — V where K
is composed of keys and V' is composed of values from both
static path components and query-args. While query-arg
keys inherit the key name from the query name, the path
component keys k; are indexed with an integer i, where %
is the position index from the start of the URL with proto-
col corresponding to i equals 1. For example, http://en.
wikipedia. org/wiki'?tit1e=Generalized_linear_model is
represented as {ki = http, k2 = en.wikipedia.org, ks =
wiki and ke = Generalized_linear_model}.

While the above URL representation captures most of
the information encoded in a URL, we uncover some of the
reasons for extending this representation. One such rea-
son is the presence of host-specific delimiters in a URL,
e.g., delimiters “” and “]” in http://www.simtel.net/
accelerate.php[id]1100019[SiteID] softwareoasis. Sub-
strings extracted from URL tokens through host-specific
delimiters are defined as DeepTokens. Detection of host-
specific delimiters is described in Section 3.1.2. We mod-
ify the key representation k; in URL to handle deep to-
kens by providing an additional index j to the keys, where
j signifies the relative position of the deep token within the
key k;; this is represented as k; ;. The above simtel.net
URL with deep tokens is represented as {k1 = http, ko =
www.simtel.net, ks.1 = accelerate.php, ks.2 = [, k3.3 = id,
k’3,4 :], k3.5 = 100019, k’3,6 = [, k3_7 = SiteID, k3,8 :L
ks.o = softwareoasis}. Here k3.g refers to the eighth deep
token of the third static path component.

Irrelevant path components are easy to identify given
a pair of URLs v and v from a dup cluster. However,
it is not easy to generalize these irrelevant path compo-
nent Rules across dup clusters. For example, consider
the following two dup clusters: Cluster:i: {ui: http://

ag.arizona.edu/srnr/about/art/index.html, us: http:
//ag.arizona.edu/srnr/about/art} and Clusters: { us:
http://ag.arizona.edu/art/index.html, us: http://ag.
arizona.edu/art}. Best generalized Rule for these dup
clusters has context c¢(k1) = hittp, c(k2) = ag.arizona.edu,
c(kfinal) = index.html and transformation a(kfina) =L
where | denotes deletion of a key. Here due to misalign-
ment of index.html across the two dup clusters, all the four
specific Rules are retained by the rewrite approach [9]. As
each dup cluster has different number of irrelevant path com-
ponents, it is difficult to obtain the best generalization. To
overcome this problem, we introduce a modified represen-
tation of URL which includes both the position index from
the start and end of the URL.

Most of the web servers do not differentiate between differ-
ent value conversions such as uppercase and lowercase. Sim-
ilar to irrelevant path components, retaining specific value
conversions in the Rules does not yield in good generaliza-
tion. We extend our Rule representation to handle this sce-
nario by allowing value conversion functions to be part of
transformation. Complete definitions of URL and Rule are
supplied in Definition 1 and 2 respectively.

DEFINITION 1. (URL) A URL u is defined as function
w: K — V U{Ll} where K represents the set of all keys
from the URL set and V represents the set of all values. K
is represented as {k(,.;,.;) } Where x, y represent the position
index from the start and end of the URL respectively and i,
j represent the deep token index. A key not present in the
URL is denoted by L.

DEFINITION 2. (RULE) A Rule r is defined as
a function r C — T where C represents the con-
text and T represents the transformation of the URL.
Context C is a function C : K — V U {*} and trans-

formation T is a function T' : K — V U {J_,K/} where

K' = K U ValueConversions and ValueConversions =
{Lowercase(K), Uppercase(K), Encode(K), Decode(K), ...}

2.1 Supporting Examples

In this section, we present some example dup clusters
along with the pair-wise Rules generated from the URLs
of these clusters. We also present the generalized Rules ob-
tained by performing generalization on the pair-wise Rules.

Alignment and Irrelevant Path Components

Consider the previous example of ag.arizona.edu with two
dup clusters, URLs from Cluster; can be represented as
ur = {kq,6) = http, k2,5) = ag.arizona.edu, k(3 4y = srnr,
k@3 = about, ko) = art, ki) = index.html} and
uz = {kq,5) = http, k2,4) = ag.arizona.edu, k(3 3y = sror,
k(s,2) = about, k(5,1) = art}. Rule generated from URLs of
Cluster; with u; as source URL and wus as target URL,

has context c(kq,6) = http, c(kes) = ag.arizona.edu,
c(ka)) = srar, clkagz) = about, c(ki2) = art,
c(k@,1)) = inder.html and transformation t(ke,1)) =L.

Rule generated from URLs of Clusters with us as source
URL and w4 as target URL, has context c(k(1,4)) = http,
c(k(2,3)) = ag.arizona.edu, c(k@2) = art, c(ku)) =
index.html and transformation t(k4, 1)) =L.

For the above dup clusters, the generalized Rule has
context c(kn,—)) = http, c(kpe,—)) = ag.arizona.edu,
c(k=,1)) = index.html and transformation ¢(k_ 1)) =L.
However, previous approaches will retain the two pair-wise
Rules as this kind of generalization is not possible.



Deep Token Components

Consider the following two URLs from the same dup clus-
ter: {wi: http://360.yahoo.com/friends-1ttU7d6kIuGq,
ug: http://360.yahoo.com/friends-nMfcaJRPUSMQ}. The
deep tokenized URLs are as following: w1 = {k(1,3) = http,
k(2,29 = 360.yahoo.com, k1,13 = friends, k@.21.2) =
-, k<3,371_1) = lttU7d6k1qu} and us = {k(l,g) = http,
k(2,2) = 360.yahoo.com, k(3.1,1.3) = friends, kz.2,1.2) = —,
k(g'g’li) = TLMfCGJRPUSMQ}

Pair-wise Rule generated with u; as source URL and ug
as target URL, has context c(k1,3)) = hitp, c(ke,2) =
360.yahoo.com, C(k(3‘1,1.3)) = friends, C(k(3.2,1‘2)) =
—, c(kis1.1)) = nMfecaJRPUSMQ and transformation
t(k.3,1.1)) = ttUTd6kIuGq. Generalization performed on
similar pair-wise Rules results in context c(k(1,3)) = http,
c(k(2,2)) = 360.yahoo.com, c(k,1)) = friends — * and
transformation t(k(z,1)) = friends — *. If the URLs are
not deep tokenized, the generalized Rule will have context
c(kq,3y) = http, c(k,2)) = 360.yahoo.com, c(k@1)) = *
which can match URLs of different pattern resulting in high
false positive rate.

Value Conversions

Consider the following URLs from the same dup cluster:
{u1:  http://allrecipes.com/Recipe/Smores/default.
aspx,  u2: http://allrecipes.com/RECIPE/Smores/
default.aspx}. Rule generated from these URLs with
u1 as source URL and wug as target URL, has context
c(ka,s) = http, c(k@a) = allrecipes.com, c(ks,3)) =
Recipe, c(k,z2) = Smores, c(ks1)) = default.aspr
and transformation t(ks3)) = RECIPE. Due to value
conversion functions, the Rule transformation will be
t(k(s,3)) = Uppercase(ks,s)).

3. ALGORITHM

In Section 3.1, we discuss two techniques for extracting to-
kens from URLs: basic tokenization and host specific (deep)
tokenization. Section 3.2 covers two Rule generation algo-
rithms: pair-wise Rule generation, which generates Rules
specific to a URL pair and Rule generalization, which gen-
eralizes both the context and the transformation of pair-wise
Rules.

3.1 URL Preprocessing

Tokenization is performed on URLs to generate a set of
< key,value > pairs as represented in Definition 1. In this
section we present generic tokenization which is valid for all
URLs across the Web and host-level tokenization which is
valid for URLSs of a particular host.

3.1.1 Basic Tokenization

Basic tokenization involves parsing the URL according to
RFC 1738 [6] and extracting the tokens. We extract the
protocol, hostname, path components and query-args from
the URL using the standard delimiters specified in the RFC.

3.1.2 Deep Tokenization

Deep Tokenization involves learning host-specific delim-
iters given the set of URLs from a host. In contrast with
efforts in literature for extracting semantic features from
URLs [16, 5], we discuss a technique which extracts syntactic
features from URLs. We employ an unsupervised technique
to learn custom URL encodings used by webmasters. Our
approach is influenced by the sequence based techniques in

ctattractions-1 787600 2-Austria_ienna_attractions. html
ctattractions-17826402-Austria_Salzburg_attractions. htmil
ctattractions-17622302-Austria_Graz_attractions himnl
profile-F 2587 305-Austria_Vienna_Belvedere.himl
profile-T 257 6005-Austria__Salzburg__Dommuseurn. hitmil
profile-T 284871 605-Austria_Salzburg_Eisrnesenwwelt. html

*

*Austria_* htmil

ctattractions-*-Austria_* himl
ctattractions-"-Austria_*_attractions . himl

profile-*-Austria_*.himl
profile-*-Austria_Salzburg_* hirml
profile-*-Austria_vienna_* html

Figure 2: Deep Tokenization Example

computational biology [12]. Definitions 3, 4 and 5 describe
the core elements of the algorithm.

Starting with the generic pattern *, the algorithm recur-
sively detects more specific patterns matching the given set
of tokens. This results in generation of a pattern tree as
depicted in figure 2. For example, pattern *-Austria_*.html
matches all tokens in figure 2. The algorithm refines
this pattern into two specific patterns: ctattractions-*-
Austria_*.html and profile-*-Austria_*.html each of which
matches a subset of tokens. Patterns are refined recursively
until more possible delimiters are detected. Once a leaf pat-
tern occurs in the tree, it is used to extract deep tokens from
corresponding tokens. In figure 2, the pattern ctattractions-
*_Austria_*_attractions.html tokenizes the token
ctattractions-17876002-Austria_Vienna_attractions.html
into the following deep tokens: ctattractions, —, 17876002,
—, Austria, _, Vienna, _, attractions, ., html. Thus deep
tokenization of a token results in a sequence of deep tokens.

DEFINITION 8. (CANDIDATE ANCHOR) Candidate
anchor is a token substring bounded by a delimiter where de-
limiter is any non-alphanumeric character or a unit change.
Unit change indicates transition between lowercase alpha-
bets, uppercase alphabets and numbers. Candidate anchor
can be represented as a regex ([a—z]*|[A—Z)’|[0—9]*) where
i, j and k are integers greater than 0.

DEFINITION 4. (PATTERN) Pattern is defined as a
regex (ac|d|*)™ representing a set of tokens, where a. is a
candidate anchor, d is a delimiter, * matches any string and
n is an integer greater than 0.

DEFINITION 5. (DEEP TOKEN) Deep token is the to-
ken substring which matches a regex group of a pattern.

The DeepTokenize algorithm takes a pattern and a set
of tokens as input and generates the set of deep token se-
quences. It is a recursive algorithm with the input pattern
set to * in the first invocation. FindCandidateAnchors
in line 1 generates a sequence of candidate anchors for
each input token. Line 2 calls Select Anchors which selects
and returns a set of anchors from the set of candidate an-
chors, as illustrated in algorithm 2. If no anchors are re-
turned, the current pattern cannot be further refined and
hence forms the leaf pattern in the current path of the tree.
FindDeepTokens in line 4 uses the current pattern to gen-
erate sequence of deep tokens from the corresponding input



Algorithm 1 DeepTokenize

Input: Pattern and a set of tokens: p, {tok}
Output: Set of deep token sequences:{{tokq)}
1: {{ac)} < FindCandidateAnchors( {tok}, p )

2: {a} < SelectAnchors( {(ac)} )

3: if {a} is empty then

4:  {(toks)} < FindDeepTokens( p, {tok} )

5: else

6:  {(pchia, {tok})} < GenerateChildPatterns( p, {a},
{tok} )

7. for all (pchia, {tok}) do

8: DeepTokenize( penitd, {tok} )

9: end for

10: end if

Algorithm 2 SelectAnchors

Input: Set of candidate anchor sequences: {(ac)}
Output: Set of anchors: {a}

1: {(cluster, {ac})} < ClusterCandidateAnchors( {a.} )
2: for all (cluster, {a.}) do

3:  ComputeFeatures( cluster, {a.} )

4: end for

5: {clusterse;} < SelectClusters( {cluster} )

6: if {clusterse} is not empty then

7:  for all a. € cluster where cluster € clusterse; do
8: {a} = {a}Uac

9:  end for

10: end if

tokens. If some anchors are returned by SelectAnchors,
GenerateChildPatterns in line 6 uses the selected anchors
to create child patterns from the current pattern. It returns
a set of refined patterns, each with the set of tokens matching
the refined pattern. Lines 7-9 recursively call DeepTokenize
for each child pattern and their corresponding tokens.
Algorithm 2 illustrates how anchors are selected from
candidate anchors. The goal here is to select anchors that
are homogeneous, span most of the tokens and create
least number of child patterns. SelectAnchor takes a set
of candidate anchor sequences as input and generates a
set of anchors. Line 1 clusters the candidate anchors.
We use the following information for clustering candidate
anchors: (1) Start Delimiter - delimiter at the start of
candidate anchor; (2) End Delimiter - delimiter at the end
of candidate anchor; (3) Candidate Anchor Type - numeric
or alphabetic. Lines 2-4 compute the following features
for each cluster: (1) Token Coverage - number of tokens
the cluster covers; (2) Unique Candidate Anchor Count
- number of unique candidate anchors in the cluster and
(3) Candidate Anchor Frequency Variance - variance in
the frequency of candidate anchors in the cluster. Line
5 selects clusters with high token coverage, low unique
candidate anchor count and low candidate anchor frequency
variance. For the example in figure 2, the set of clusters
formed in the first iteration are: {Austria}, {html},
{ctattractions, profile}, {Vienna, Salzburg, Graz},
{attractions, Belvedere, Dommuseum, Eisriesenwelt},
and {17876002, 17826402, 17682302, 78587305, - }. The
clusters {Austria} and {html} are selected and the
candidate anchors Austria, html are returned as the
selected anchors.  These are then used to refine the

pattern * into *-Austria_*.html. All tokens in the ex-
ample satisfy this pattern. In the next iteration, the
cluster {ctattractions,profile} is selected, and the
pattern *-Austria_*.html is refined into two patterns:
ctattractions-*-Austria_*.html and profile-*-Austria_*.html,
each applicable to a subset of tokens. These patterns are
further refined using the corresponding token subsets as
shown in the figure.

LEMMA 1. Algorithm DeepTokenize can be implemented
to run in time O(3, ni * dmax) for all hosts, where n; is the
number of URLs in host i and dmaz s the maximum depth
of a pattern tree.

PROOF. SelectAnchors requires O(32; >, >y, Cijk) itera-
tions where c¢;;, is the number of candidate anchors for value
k ofkey j of host 4. For any host 4, 3~ >°; cijk is bounded by
N * lmaz * Kmaz Where lmaee 1s the maximum number of can-
didate anchors in a token and k,,q. is the maximum number
of keys. lmaz is bounded by the maximum length of a token,
thus lymag * Emae is bounded by the length of the URL which
can be considered as constant. Thus the total complexity
of SelectAnchors is O(>_,ns). Similarly, number of itera-
tions required to create child patterns is O(3_, n;). Thus
total complexity of DeepTokenize is O(D_, ni* dmaz) Where
O(>_, nq) is the complexity at each level of pattern tree. [J

3.2 Rule Generation

3.2.1 Pair-wise Rule Generation

Given a set of dup clusters and corresponding URLs,
GenerateAll Rules algorithm selects pairs of duplicate URLs
and generates pair-wise Rule. GeneratePairwiseRule con-
sumes a URL pair u, v and generates a pair-wise Rule which
converts the source URL u to the target URL v. At web
scale, as the number of URLs and dup clusters are large in
number, generating Rules for all URL pairs in a dup clus-
ter for all dup clusters is not feasible. The number of URL
pairs to be considered for generating all pair-wise Rules is
> C? where C; is the size of dup cluster . This number
can run in trillions for large sized dup clusters, which are
not uncommon due to instances of session-ids and irrelevant
components in the URLs.

We propose optimizations to reduce the number of source
and target URLs considered for pair-wise Rule generation.
In the ideal scenario, we would have one canonicalized URL
representing every dup cluster. However, this will not hold
if we consider all target URLSs for pair-wise Rule generation.
Also, dup clusters exhibit the characteristic of having few
URLs which are close to the normalized URL and it is
prudent to use these URLs as the target URLs. Consider
the following dup cluster: wi: http://www.youtube.
com/watch?v=89_4KMVtgwO&feature=channel, wuz: http:
//www.youtube.com/watch?v=89_4KMVtgw0 and wus3:http:
//www.youtube.com/watch?v=59_4KMVtgwO&feature=
channel&ytsession=WDxRm1qSR801lo80oVN. For this cluster
ug represents the ideal target URL.

Target Selection: As target URLs are used for gener-
ating transformations, selecting better targets yield better
transformations and compact Rules. Typically, dup clusters
have a small set of URLs which are very close to the nor-
malized URL and we capture these URLs by ranking and
selecting top-k. This not only achieves significant reduction
in the number of Rules but also makes the Rules coherent



Algorithm 3 GeneratePairwiseRule

Input: Pair of URLs: u,v

Output: Rule: context ¢ and transformation ¢

1: Define context ¢ as Vk € K : c(k) = u(k)

: Define transformation ¢ as follows

:for allk € K do | ,

if 3k € K :u(k ) #L Av(k) = u(k ) then
t(k) = K (Key Reference)

else if 3k € K : u(k)

ValueConversion(u(k:/)) then
t(k) = ValueCon’Uersion(k') (Value Conversion)

else if u(k) # v(k) then
t(k) =wv(k) (Value Literal or Key Add/Delete)

10:  end if

11: end for

12: return r = (¢, t).

AN Sl >

#L  Av(k) =

Algorithm 4 GenerateAllRules

Input: Set of URLs U

Output: Set of Pair-wise Rules R

: Initialize R = 0

: for all Duplicate URLs D € U do

rankURLsForTargetSelection(D)

T = getTargetURLs(D)

S = getSourceURLs(D)

for all (u,v):u € S,veT do
r = GeneratePairwise Rule(u, v)
R=RU{r}

end for

10: end for

11: return R

for generalization to perform better. Some of the charac-
teristics of an ideal normalized URL include static type of
the URL, shorter length of URL, minimum hop distance
from the domain root and high number of in-links. As these
characteristics closely match those in host-level page rank
discussed in [15], we considered this approach for ranking
target URLs. Since we use previous crawl logs for Rule gen-
eration, all of the above features are available for ranking
already.

Source Selection: As source URLs are used for gener-
ating context, we retain URLs with high importance. Con-
sider the case of crawler which normalizes URLs on-the-fly.
As some URLs are seen more often than others due to the
power-law distribution [14], generating Rules for high traffic
URLs will result in high reduction in duplicates. URLs need
to be ranked for source selection; however we cant reuse the
rank computed for target selection as the characteristics for
source selection is different from target selection. Ranking
of source URLSs can be based on PageRank or the On-Line
Page Importance [18][2]. For our experiments, we used the
page importance metric [2], which is computed at crawl time
and is available in logs. We sampled ranked URLs from
each duplicate cluster using stratified sampling. URLs are
divided into equal sized buckets based on the page impor-
tance. URLs are sampled from each bucket proportional to
the contribution of the bucket to the total importance of the
dup cluster. In the absence of ranking information, sampling
can be done based on other information from URLSs such as

number of distinct tokens in the URL. This criterion ensures
that Rules are learnt for various patterns of URLs of a dup
cluster.

Algorithm 4 presents GenerateAllRules which takes a
set of URLs as input and generates a set of Rules as out-
put. For each dup cluster, Line 3 of GenerateAllRules
ranks URLs for target selection. From ranked URLs, line
4 selects top-k URLs as the target set 7. Line 5 sam-
ples the remaining URLs U-T to select source URL set S.
Lines 6-9 generate pair-wise Rules from the URLs of S and
T using the GeneratePairwise Rule algorithm. Line 1 of
GeneratePairwise Rule algorithm sets the context of the
Rule as the source URL. Lines 3-11 construct the trans-
formation, which captures the difference in the source and
target URLs for all keys in K. Lines 4-5 check if a value of
key k in source URL occurs with a different key k' in the
target, the target key reference is added to the transforma-
tion. Lines 6-7 check if the value is present in the target
URL after applying the value conversion function on source
key. If it is, the value conversion function of the target key
is added to the transformation. If the above two conditions
fail, lines 8-9 assign the value of target key k to the transfor-
mation. This handles key additions, key deletions and value
replacements.

LEMMA 2. Algorithm GenerateAllRules can be implemented
to run in time O(>_, Ci x log(C;)), where C; is the size of
dup cluster i.

PRrooOF. Target selection and source selection requires sort-
ing within a duplicate cluster, which can be performed in
O3, Cixlog(Cy)). GeneratePairwiseRule is linear in terms
of the number of tokens in source and target URLs. Com-
plexity to generate Rules from s; source URLs and ¢ target
URLs is O(>, si * t). Here s; is bounded by C; and t is a
constant. Thus the total complexity of GenerateAllRules
is O(3", Cs * log(Ci)) where complexity of generating Rules
in a duplicate cluster is bounded by O3>, C;). O

3.2.2 Rule Generalization

Although the number of pair-wise Rules generated through
pair-wise Rule generation is linear in the number of URLs,
these Rules can be further reduced by generalization. Gener-
alization is required for the following reasons: (1) Pair-wise
Rules if kept intact will not be applicable on unseen URLs
unless the Rules are generalized to accommodate new values
and (2) Applications such as crawlers which use Rules in an
online mode require small footprint for storing the Rules.

Rule generalization captures generic patterns out of the
pair-wise Rules and generalizes both the contexts and trans-
formations. As target URLs are restricted by target selec-
tion, many sources map to the same target URLs making
it feasible for context generalization. Previous efforts used
heuristics to perform generalization, however these heuris-
tics do not guarantee precision of the Rules. We use a De-
cision Tree [19] for context generalization. Advantages of
Decision Tree over heuristics are the proven error bounds
and the robustness of the technique as it has been used in
multiple domains.

Context generalization involves constructing the decision
tree with transformations as Classes/Targets. The key set
K is considered as attributes and the value set V' U {x} is
considered as instances for the attributes. We construct a
bottom-up decision tree where an attribute (or key k) is



Algorithm 5 GeneralizePairwiseRules

Input: Pair-wise Rules: R = {< ¢,t >}
Output: Generalized Rules: Rgern = {< Cgen,tgen >}
1: Class < {t}; keySet < K; Nodes < Class
2: while keySet is not empty do
3:  Vkey € keySet InfoGain(key) < Entropy(R) —

c(key)=v
S e tethens ety Entropy(R | clkey) = v)

4. keyser < select key with max InfoGain

5:  mnew node set P = 0)

6: for all nodes n € Nodes do

7 V = {ci(keyser)}; where < c¢;,t; >€ {< c,t >} A
t; € {Class(n)}

8: if |V| > thresholdy| then

9: P =PU(< keyser, * >)

10: else

11: P =PU(< keyser,v >)

12: end if

13:  end for

14:  merge nodes in P with the same value v

15:  Nodes < P

16:  remove keyse from keySet

17: end while

18: {< ¢gen,t >} < all paths in the DTree

19: {< cgen,tgen >} < GeneralizeTransformations( {<
Coenst >} )

selected at every iteration. Nodes at the current iteration
are assigned a particular value v of the selected attribute k.
We assign * (wildcard) to a node if there is no single value v
which holds majority. After constructing the decision tree,
we traverse it top-down to generate the generalized context
and corresponding transformation.

Algorithm 5 Generalize Pairwise Rules takes a set of pair-
wise Rules and generates generalized Rules. Line 1 sets the
transformations as the classes for the decision tree. Condi-
tional entropy of each key is computed in lines 3-4 and the
key with minimum conditional entropy is selected. Lines
6-13 assign values to nodes which is decided by the num-
ber of values the key takes in the selected node. Line 14
merges the set of nodes with the same value. These new set
of nodes are added to the decision tree in line 15 and the
selected key is removed from the set of keys in line 16. This
process is repeated until all the keys are exhausted for tree
construction.

We can see an example of generalization using one type
of duplicates from www.imdb.com: Clusterl: { http://
www.imdb.com/title/tt0810900/photogallery, http://
www.imdb.com/title/tt0810900/mediaindex }, Cluster2:
{ http://www.imdb.com/title/tt0053198/photogallery,
http://www.imdb.com/title/tt0053198/mediaindex  }.
The pair-wise Rule from Clusterl Ry is c(k1,5)) = http,
c(k(2,4)) = www.imdb.com, c(ks,3)) = title, c(ku.1,2.2)) =

tt, c(k@.2,21)) = 0810900, c(k,1)) = photogallery,
t(k(s,1)) = mediaindex. The pair-wise Rule from Cluster2
Ry is c(kus) = http, clkey) = www.imdb.com,

c(ke,s)) = title, c(ku.a2.2)) = tt, c(ku.2,2.1)) = 0053198,
c(k(s,1)) = photogallery, t(k,1)) = mediaindex. The pair-
wise Rules generated from similar dup clusters have the
same transformation but different values of k(4.2,2.1) in the
context. During the tree construction, the transformation
t(k(s,1)) = mediaindex is taken as the Class, and at each

iteration of algorithm 5, the key with maximum InfoGain is
selected. In this example, k(4.2,2.1) Will be selected first due
to its higher InfoGain compared to other keys. Since no
single value of this key takes majority, the key is assigned
wildcard (x). The rest of the keys take only one value
for the above dup clusters. This gives rise to the gener-
alized Rule: c(k( 5)) = hittp, c(k2,4)) = www.imdb.com,
c(k@ay) = title, clkua22) = tt, clkuz21) = *,
c(k(s,1)) = photogallery, t(k,1y) = mediaindex.

While context generalization is done through decision tree,
we also perform transformation generalization by consider-
ing all transformations corresponding to the same context.
If a key is generalized to take wildcard (%) in the context
and the same key takes multiple values in the transforma-
tion, then the value is replaced by wildcard in the transfor-
mation. The motivation for doing this generalization is, if
the generalized key in the context can take any value (x),
the key is irrelevant for any matched URL, and hence the
transformation can also have a wildcard for that key.

LEMMA 3. Algorithm GeneralizePairwiseRules can be im-
plemented to run in time O(>_, ki *1;), where k; is the num-
ber of keys and r; is the number of Rules in host <.

PrOOF. Let v; be the max number of values of a key
in host 7. Entropy calculation at each iteration requires
O(k; *v;). Total time required for entropy calculation for all
iterations is O(Y, k7 * v;) as k; is the maximum number of
iterations possible. Value assignment to nodes for all itera-
tions is O(3_, ki * ;). Since v; is bounded by 74, total com-
plexity of GeneralizePairwiseRules is O3, ki xr;). [

4. SCALABILITY

So far, we have described the algorithms for Deep Tok-
enization, Pair-wise Rule generation and Rule generaliza-
tion, which form our set of proposed techniques for de-
duplication using URLs. In this section, we adapt these
algorithms to the MapReduce paradigm. We present Map
and Reduce functions for different stages of Rule generation
techniques.

Deep Tokenization
Stage I. Generates deep tokenized key value pairs. < key;,
val;; > represents key value pair in a URL and < keyq,,
valq,; > represents deep tokenized key value pair. URL;q is
hash of URL string. Reduce step calls algorithm 1.
Map: Host,URL — Host, key;, < URL;q,val;; >
Red : Host, key;,{< URL;q,val;; >} —
{< Host,URLiq, keya,,vala,; >}
Stage II: Associates deep tokenized key, value pairs to the
original URL and constructs deep tokenized URLs (URLa;).
Map : Host,URL;a, keya,,vala;; —
Host,URL;q, < keya,,vala,; >
Red: Host,URL;4,{< keya,;,valq;; >} —
Host,URLg:

Pair-wise Rule Generation

Generates pair-wise Rules from URL pairs of a duplicate
cluster. dupC stands for dup cluster id and source,qnr and
target,qank stand for source and target selection rank. ¢ and



t stand for context and transformation of the pair-wise Rule.

Map : Host, dupC,URLgt, sourcerank, targetrank —
Host, dupC, < URLgy, Sourcerank,targetraonk >
Red : Host,dupC,{< URLas, Sourcerank, targetroni >}
— {< Host,dupC,c,t >}
Rule Generalization
Stage I: Generates frequency for each < ckey,, Cval;;>t >
where Ckey, > Cval;; Tepresents key value pair of a Rule con-
text.
Map : ¢t — Host,t,{< Chey;, Cval;; >}
Red:  Host,t,{< Ckey,; Cval;; >} —
{< Host,t, Ckey, , Cval;; » fTeq >}
Stage II: Generalizes contexts using algorithm 5. cgen
stands for generalized context.
Map : Host, t, < ckeyi,cvali_7.7freq >
Host, < t,Crey,;; Cvaly;, freq >
Red: Host,{< t,cey,, Cvaly; s fTeq >} —
{< Host,cgen,t >}
Stage III: Generalizes transformations corresponding to
Cgen- tgen stands for generalized transformation.
Map : Host, cgen,t — Host, cgen, <t >
Red: Host,cgen, {<t >} — {< Host, cgen, tgen >}

S. EXPERIMENTAL EVALUATION

In this section, we present the experimental setup and the
key metrics used for measuring the performance of our tech-
niques. We also use these metrics to compare our work with
one of the previous approaches. We demonstrate the practi-
cal feasibility of our techniques for web-scale by evaluating
them on a large data set.

Metrics: We define and use the following metrics for our
experiments:

1. Coverage of a Rule is the number of URLs the Rule
applies to, denoted by 7cow

2. Precision is a Rule level metric. If r.o, is the coverage
of Rule r and f is the number of URL pairs (u,v) 3
r(u) = v and uw and v are not in the same dup cluster,
precision of r is TCTO”ff * 100.

cov

3. ReductionRatio is a metric for set of Rules. It is
the percentage reduction in the number of URLs af-
ter transforming the URLs with a set of Rules. It is

Uorigl—|Unor . ..
defined as w where U,rig is the original
orig

URL set and U, orm 1s the normalized URL set.

4. AvgReductionPerRule is a metric for set of Rules.
This demonstrates the average reduction per Rule and

|[Uorig|*ReductionRatio

& where R is the set

is defined as
of Rules.

Data Sets We considered a small data set and a large
data set, both consisting of dup clusters having size of at
least 2. Small data set is the data set presented in [9].
Large data set consisting of billions of records is obtained
from crawl logs of a commercial search engine. Data set

Data set | # URLs | # Dup Clusters | # Hosts
Small 7.87TM 1.83M 356
Large 2.97B 604M 1M

Table 1: Data set characteristics

Data | Pair-wise Rule Min coverage
set Rule gen | generalization filtering

Small | 12.37M 93.23K 38.83K

Large | 728.26M 13.54M 8.29M

Table 2: Number of Rules after each Rule gen stage

characteristics such as number of URLS, hosts and dup clus-
ters are presented in Table 1.

While our false positive rate is computed on dup clusters
having size of at least 2, we observed that it is not straight-
forward to include single dup cluster URLs (not duplicates).
As our approach consider URLs from crawl logs, it is not
a practical assumption to consider existence of all possible
duplicates. This means that it is not feasible to calculate
false positive rate for single dup cluster URLs.

As shown in the table, small data set is composed of 7.87
Million URLs and large data set is composed of 2.97 Billion
URLs. For both the data sets, we performed 50-50 test-
train split by randomly assigning each dup cluster to either
training set or test set. Section 5.1 and section 5.2 show the
experimental results on small data set and large data set
respectively.
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Figure 3: Rule coverage distribution

5.1 Small data set

In this section we present the results of our approach on
small data set and compare these metrics with previous ap-
proach [9]. As our techniques extend the rewrite technique,
we compare our work with the rewrite technique.

During our evaluation, we observed that there are large
number of generalized Rules which have much less coverage.
Figure 3 shows number of Rules vs. cumulative coverage
for all generalized Rules and filtered set of generalized Rules
(filtered on coverage >= 10). As seen from the figure, the
cumulative coverage of Rules with coverage < 10 is not sig-
nificant. Cumulative coverage in the graph is more than



Precision threshold Rewrite approach Our approach
Num Rules | % of Rules | Reduction Ratio(%) | Num Rules | % of Rules | Reduction Ratio(%)
precision = 1 1149 3.67 3 649 1.67 6
>= .95 21894 69.81 16 1707 4.40 26
>=9 21938 69.95 17 2375 6.12 33
>= .80 22105 70.48 18 3547 9.13 42
All 31363 100 43 38830 100 69

Table 3: Metrics comparison with URL rewrite approach for small data set

the number of URLs as more than one Rule applies to a
URL. Table 2 gives the number of Rules after each step of
Rule generation. Rule generalization which includes both
context and transformation generalization reduces the num-
ber of Rules by 99.25% and filtering based on min coverage
further reduces these Rules by 58.35%.

In Table 3 we list the reduction ratio and the number
of Rules for different levels of precision. For comparison,
we have considered a fan-out threshold of 30 for the previ-
ous approach as this value of fan-out is effective in learn-
ing Rules that have higher AvgReductionPerRule [9]. It
can be seen that our approach achieves higher reduction ra-
tios with lesser number of Rules. At 100% precision, our
techniques generate 649 Rules which achieve a reduction of
6% while the previous approach generates 1149 Rules which
achieve a reduction of 3%: previous approach requires dou-
ble the number of Rules to achieve half the reduction as ours.
Higher reduction ratio with lesser number of Rules holds for
all precision levels above 80%.

duce by 5 fold with only 2% decrease in reduction ratio. For
precision levels higher than 0.9, by increasing min coverage
threshold from 10 to 1000, we achieve 3 to 5 fold reduction
in the number of Rules with marginal decrease in the reduc-
tion ratio: 2% to 6%. Based on precision requirements and
resource constraints, search engines can easily tune min cov-
erage threshold with out much loss in achievable reduction.

5.2 Large data set

In this section, we present results of our approach on
large data set and demonstrate the following: (1) Our Rule
generation techniques are efficient at web-scale; (2) Metrics
achieved on large data set are similar to those of small data
set where we achieve high reduction ratios for all precision
levels and (3) Rules generated from our techniques are of
high impact and applications using these Rules will be scal-
able due to the small footprint of Rules. As it is not prac-
tically feasible to run [9] on billions of URLs, we don’t have
comparison numbers for large data set.

We ran Rule generation on a custom Hadoop [1] cluster
of 100 nodes. It took 5 hr 24 min to generate the Rules.
Increasing the number of nodes to 200 linearly decreased
the computation time to 2 hr 40 min.

Precision Num Rules | % of Rules | Reduction
threshold Ratio (%)
precision=1 439919 5.30 7.63
>= .95 810611 9.77 29.02
>=.9 1065641 12.85 33.59
>=.8 1421145 17.14 38.82
All 8293763 100.00 60.36

Precision Min | Num Avg | Reduction

threshold | Coverage | Rules | Reduction | Ratio (%)
per Rule

10 649 748.17 6.2

=1 100 296 1429.94 5.37

1000 126 2614.76 4.18

10 | 1707 1218.78 26.42

>=0.95 100 | 1105 1816.75 25.5

1000 523 3292.46 21.88

10 | 2375 1093.51 32.98

>=0.9 100 | 1527 1643.91 31.89

1000 662 3208.83 26.99

10 | 3547 922.08 41.53

>=0.8 100 | 2214 1431.22 40.26

1000 894 2938.29 33.38

Table 4: AvgReductionPerRule for different precision
levels and coverage thresholds for small data set

Table 4 gives the AvgReductionPer Rule for different min
coverage thresholds. As shown, the average reduction per
Rule increases as we increase the minimum coverage thresh-
old for all precision levels. Average reduction per Rule for
our techniques is much higher than the previous approach:
avg reduction per Rule for 100% and 95% precision levels are
748.17 and 1218.78 from our techniques compared to 205.6
and 57.5 from previous approach. For high precision levels,
as we increase the min coverage threshold, the number of
Rules reduce drastically with out much drop in the reduc-
tion ratio. For precision level of 1, by increasing the min
coverage threshold from 10 to 1000, the number of Rules re-

Table 5: Precision and ReductionRatio tradeoff for
large data set

Table 5 gives the precision reduction ratio tradeoff for dif-
ferent precision levels. For precision of 1, we achieve reduc-
tion ratio of 7.63 with only 5.3% of the total Rules. For
precision levels higher than 0.9, we achieve a reduction ratio
of 33.59 with only 12.85% of Rules which implies that we
generate not only high precision Rules but also high impact
Rules.

Table 6 gives the average reduction per Rule for dif-
ferent precision levels and minimum coverage thresholds.
Similar to results from small data set, we see an increase
in AvgReductionPerRule with increase in min coverage
threshold with significant reduction in the number of Rules.
For precision levels higher than 0.9, by increasing min cov-
erage threshold from 10 to 1000, we achieve 10 to 27 fold
reduction in the number of Rules with marginal decrease in
reduction ratio: 4% to 9%.



Precision Min Num Avg | Reduction

threshold | Coverage Rules | Reduction | Ratio (%)
per Rule

10 | 439919 515.11 7.63

=1 100 123417 1549.96 6.44

1000 16065 7621.71 4.12

10 810611 1062.91 29.02

>=0.95 100 | 381894 2133.12 27.42

1000 82406 7688.66 21.33

10 | 1065641 935.96 33.59

>=0.9 100 | 499926 1882.48 31.68

1000 104977 6858.4 24.24

10 | 1421145 810.88 38.82

>=0.8 100 | 669454 1621.74 36.55

1000 135210 6034.98 27.47

Table 6: AvgReductionPer Rule for different precision
levels and coverage thresholds for large data set

One interesting observation from tables 4, 6 is that we
achieve better performance at precision 0.95 not only in
terms of the reduction ratios but also in terms of increase
in average reduction per Rule. Reduction ratios increased
by 20.22 and 21.39 for 0.95 compared to precision level 1.
For various high precision levels, as the number of Rules we
generate is very less for billions of URLSs, our techniques are
practical for Web scale systems. Also our system is easily
tunable by precision and min coverage threshold depending
on resource constraints.

6. CONCLUSIONS

In this paper, we presented a set of scalable and robust
techniques for de-duplication of URLs. Our techniques scale
to web due to feasible computational complexity and easy
adaptability to the MapReduce paradigm. We presented
basic and deep tokenization of URLs to extract all possible
tokens from URLs which are mined by our Rule genera-
tion techniques for generating normalization Rules. We pre-
sented a novel Rule generation technique which uses efficient
ranking methodologies for reducing the number of pair-wise
Rules. Pair-wise Rules thus generated are consumed by the
decision tree algorithm to generate highly precise general-
ized Rules.

We evaluated the effectiveness of our techniques on two
data sets. We compared our results with previous approaches
and showed that our approach significantly outperforms them
on many key metrics. We also evaluated our techniques
on multi billion URL corpus and showed that we achieve
not only high reduction ratios but also high average reduc-
tion per Rule. Our system is very practical as it is config-
urable for different precision levels and coverage thresholds
to achieve high reduction ratios.

Source selection approach which we have presented pri-
oritizes head and torso traffic and we would like to explore
the feasibility of Rule generation for the rest of tail traf-
fic. Dup clusters which are the ground truth for generating
Rules includes false positives due to the approximate simi-
larity measures. We would like to explore ways of handling
these in a robust fashion. Generalization is performed sep-
arately for source and target and we would like to explore
the feasibility of generalizing both in an iterative fashion.
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