
Integrating Advanced GLSL Shading and
XML Agents into a

Learning-Oriented 3D Engine

Edgar Velázquez-Armendáriz, Erik Millán
ITESM-CEM

February 28th 2006.

Introduction

• A lot of Computer Science students chose their
major because of their interest on Video Games.

• Highly capable commodity GPUs available today.
• Development moves towards custom shaders able

to render special effects.

Building a 3D Graphics project

• Choices for building a serious project:
– Existing 3D Engine (OGRE, Irrlicht).

• Extremely complex.
– Write their own engine.

• Difficult, very time consuming.
• Would not incorporate advanced features.

• How to add AI support for the characters?
– Must be implemented on top of the provided API.

Purposed Work

• A 3D engine simple featuring:
– GLSL shaders.
– Shadows.
– Particles and collisions.

• It also integrates previous work which allows the
creation of virtual characters and crowds using
images and XML files.

System’s architecture

FCullerBase

Camera

FPCamera ModelingCamera

ObjLOD

Object3D

ParticleSet SkyBox

GLM++

«uses»

«uses»

«uses»

Multi platform and Open Source libraries

• Computer Sciencie students use several OS.
• Built upon multi platform, open source libraries

– Xerces – XML parsing
– GLEW – OpenGL Extensions
– FreeGLUT – windows management
– Fmod – Sound support

• Source code compiles both in Visual Studio .NET
2003 and GCC 3.x

GLM++ library

• Based on glm library by Nate Robins.
• Provides useful yet laborious to implement features:

– OBJ file loading.
• Performs tangent space matrix calculation,

required for per-pixel lighting.
• Collision detection initialization.

– Texture loading from PNG, BMP and PGM files.
– GLSL Shaders abstraction.

• Focus on shader logic, not setup details.

Collision Detection

Key Rendering Features

• Integrated Frustum Culling for all objects.
• Shadow maps.
• Per-pixel lighting using Blinn-Phong equations.
• Normal mapping and bump mapping.
• Wireframe and bounding volume drawing.
• Rendering mode may be changed at runtime.

– GLSL or fixed pipeline rendering, shadows.
• Skybox support.

Normal and Bump mapping

Lighting Equations

[]()()vMNBTv 1' −= o
rrr

() ()nslightdlightout HNkILNkII
rrrr

⋅+⋅= ,0max,0max

VL
VLH rr

rr
r

+

+
=

() outambfrag IsII ++= 1
2
1

More Normal and Bump mapping examples

GLSL Shadows

GLSL vs. Fixed Pipeline Shadows

Fixed Pipeline GLSL

XML Crowds

• Based on previous work at ITESM-CEM.
• Creates crowds of virtual characters through XML.
• These interactive agents can interact with an

arbitrary environment using image based collision
and height maps.

• The crowd’s members can be shaded using custom
GLSL programs, and they also cast and receive
shadows.

Agent’s XML Code example

<procedure name="wander">
<state name="init" initial="true">

<probset cumulative="true">
<option prob="25%">

<behavior type="turn" style="run" angle="50" time="0.5" />
</option>
<option prob="25%">

<behavior type="turn" style="run" angle="-50" time="0.5" />
</option>
<default>

<behavior type="go" style="run" dist="5" time="0.5" />
</default>

</probset>
<return />

</state>
</procedure>

Height and Collision Maps

Height map

Collision Map

Results

Maya: 11 sec. Engine: 0.05 sec.

Conclusions

• We have presented a 3D engine for students in
computer graphics and artificial intelligence.

• Resulting visual quality encourages further
exploration of shading programs and autonomous
crowds programming.

• The portability of this platform allows the use of a
variety of hardware platforms.

Future Work

• XML multiple level-of-detail mesh specification.
• Use of OpenGL Framebuffers for direct rendering.
• Add communication capabilities between characters.
• Communication between different environments

using networks.

Integrating Advanced GLSL Shading and
XML Agents into a

Learning-Oriented 3D Engine

Edgar Velázquez-Armendáriz, Erik Millán
ITESM-CEM

February 28th 2006.

	Integrating Advanced GLSL Shading and XML Agents into aLearning-Oriented 3D Engine
	Introduction
	Building a 3D Graphics project
	Purposed Work
	System’s architecture
	Multi platform and Open Source libraries
	GLM++ library
	Collision Detection
	Key Rendering Features
	Normal and Bump mapping
	Lighting Equations
	More Normal and Bump mapping examples
	GLSL Shadows
	GLSL vs. Fixed Pipeline Shadows
	XML Crowds
	Agent’s XML Code example
	Height and Collision Maps
	Results
	Conclusions
	Future Work
	Integrating Advanced GLSL Shading and XML Agents into aLearning-Oriented 3D Engine

