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Introduction

• A lot of Computer Science students chose their 
major because of their interest on Video Games.

• Highly capable commodity GPUs available today.
• Development moves towards custom shaders able 

to render special effects.



Building a 3D Graphics project

• Choices for building a serious project:
– Existing 3D Engine (OGRE, Irrlicht).

• Extremely complex.
– Write their own engine.

• Difficult, very time consuming.
• Would not incorporate advanced features.

• How to add AI support for the characters?
– Must be implemented on top of the provided API.



Purposed Work

• A 3D engine simple featuring:
– GLSL shaders.
– Shadows.
– Particles and collisions.

• It also integrates previous work which allows the 
creation of virtual characters and crowds using 
images and XML files.
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Multi platform and Open Source libraries

• Computer Sciencie students use several OS.
• Built upon multi platform, open source libraries

– Xerces – XML parsing
– GLEW – OpenGL Extensions
– FreeGLUT – windows management
– Fmod – Sound support

• Source code compiles both in Visual Studio .NET 
2003 and GCC 3.x



GLM++ library

• Based on glm library by Nate Robins.
• Provides useful yet laborious to implement features:

– OBJ file loading.
• Performs tangent space matrix calculation, 

required for per-pixel lighting.
• Collision detection initialization.

– Texture loading from PNG, BMP and PGM files.
– GLSL Shaders abstraction.

• Focus on shader logic, not setup details.



Collision Detection



Key Rendering Features

• Integrated Frustum Culling for all objects.
• Shadow maps.
• Per-pixel lighting using Blinn-Phong equations.
• Normal mapping and bump mapping.
• Wireframe and bounding volume drawing.
• Rendering mode may be changed at runtime.

– GLSL or fixed pipeline rendering, shadows.
• Skybox support.



Normal and Bump mapping



Lighting Equations
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More Normal and Bump mapping examples



GLSL Shadows



GLSL vs. Fixed Pipeline Shadows

Fixed Pipeline GLSL



XML Crowds

• Based on previous work at ITESM-CEM.
• Creates crowds of virtual characters through XML.
• These interactive agents can interact with an 

arbitrary environment using image based collision 
and height maps.

• The crowd’s members can be shaded using custom 
GLSL programs, and they also cast and receive 
shadows.



Agent’s XML Code example

<procedure name="wander">
<state name="init" initial="true">

<probset cumulative="true">
<option prob="25%">

<behavior type="turn" style="run" angle="50" time="0.5" />
</option>
<option prob="25%">

<behavior type="turn" style="run" angle="-50" time="0.5" />
</option>
<default>

<behavior type="go" style="run" dist="5" time="0.5" />
</default>

</probset>
<return />

</state>
</procedure>



Height and Collision Maps

Height map

Collision Map



Results

Maya: 11 sec. Engine: 0.05 sec.



Conclusions

• We have presented a 3D engine for students in 
computer graphics and artificial intelligence.

• Resulting visual quality encourages further 
exploration of shading programs and autonomous 
crowds programming.

• The portability of this platform allows the use of a 
variety of hardware platforms.



Future Work

• XML multiple level-of-detail mesh specification.
• Use of OpenGL Framebuffers for direct rendering.
• Add communication capabilities between characters.
• Communication between different environments 

using networks.
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