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Modeling Deformation of
Linear Elastostatic Objects

Quasistatic deformation models have been well-known in hap-
tic force-feedback rendering for at least a decade since their
introduction by Cotin and others. They provide computation-
ally efficient models of small-deformation response that reach
equilibrium at time-scales faster than graphics rates or user in-
teractions. In this chapter, we revisit [James and Pai 01] and
show how global deformation of linear elastostatic objects can
be solved efficiently using precomputed Green’s functions, and
fast low-rank updates based on Capacitance Matriz Algorithms.
Capacitance matrices provide exact contact response models,
allowing contact forces to be computed for haptics much faster
than global deformation behavior. Vertex pressure masks are
introduced to support the convenient abstraction of localized
scale-specific point-like contact with an elastic and/or rigid sur-
face approximated by a polyhedral mesh. Examples are pre-
sented for the CyberGlove™ and PHANToM™ haptic inter-
faces. Updated timings are provided, exhibiting approximately
an order-of-magnitude improvement over [James and Pai 01].

1.1 Introduction

Discrete linear elastostatic models (LEMs) are important physically based
elastic primitives for computer haptics because they admit a very high-
degree of precomputation, or “numerical compression” [Astley and Hayward 98].
They provide cheap force response models suitable for haptic rendering of
stiff elastic objects during continuous contact. The degree of useful pre-
computation is quite limited for most types of nonlinear and/or dynamical
elastic models (although see [Barbi¢ and James 05]), but LEMs are a well-
known exception, mainly due to the precomputability of time-independent
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Green’s functions (GFs) and the applicability of linear superposition princi-
ples, and linear system solvers. Intuitively, GF's form a basis for describing
all possible deformations of a LEM. Thus, while LEMs form a relatively
simple class of elastic models in which geometric and material linearities
are an ultimate limitation, the fact that the model is linear is also a crucial
enabling factor. We conjecture that LEMs will remain one of the best run-
time approximations of stiff elastic models for simulations requiring stable
high-fidelity force feedback.

A central idea for LEMs in computer haptics is the formulation of
the boundary value problem (BVP) solution in terms of suitable precom-
puted GFs using Capacitance Matriz Algorithms (CMAs). Derived from
the Sherman-Morrison-Woodbury formula for low-rank updating of matrix
inverses (and factorizations), CMAs have a long history in linear alge-
bra [Press et al. 87, Hager 89], where they have been commonly used for
static reanalysis [Kassim and Topping 87], to efficiently solve LEM contact
mechanics problems [Ezawa and Okamoto 89, Man et al. 93] and more re-
cently for interactive simulations and haptic rendering [Bro-Nielsen and Cotin 96,
Cotin et al. 99, James and Pai 99, James and Pai 03].

For computer haptics, a fundamental reason for choosing to compute
the LEM elasticity solution using a CMA formulation, is that the capaci-
tance matriz' is the main quantity of interest: it is the compliance matriz
which relates the force feedback response to the imposed contact displace-
ments. Also, the precomputation of GF's effectively decouples the global
deformation and force response calculations, so that the capacitance matrix
can be extracted from the the GFs at no extra cost; this is the fundamental
mechanism by which a haptic interface can efficiently interact with a LEM
of very large complexity, such with wavelet GF models [James and Pai 03]).
The user can feel no difference between the force response of the complete
system and the capacitance matrix, because none exists. Lastly, CMAs are
direct matrix solvers whose deterministic operation count is appealing for
real-time applications.

The final part of this chapter addresses the special case of point-like
haptic contact. It has long been recognized that point contact is a con-
venient abstraction for haptic interactions, and the PHANToM™ haptic
interface is a testament to that fact. While it is possible to consider the
contact area to be truly a point for rigid models, infinite contact pressures
are problematic for elastic models, and tractions need to be distributed
over finite surface areas. We propose to do this efficiently by introducing
nodal traction distribution masks which address at least two core issues.
First, having a point contact with force distributed over a finite area is
somewhat contradictory, and the traction distribution is effectively an un-

IThe term “capacitance” is due to historical convention [Hager 89)].
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derdetermined quantity without any inherent spatial scale. This is resolved
by treating the contact as a single displacement constraint whose traction
distribution enters as a user (or manipulandum) specified parameter. The
distribution of force on the surface of the model can then be consistently
specified in a fashion which is independent of the scale of the mesh. Second,
given the model is discrete, special care must be taken to ensure a suffi-
ciently regular force response on the surface, since irregularities are very
noticeable during sliding contact motions. By suitably interpolating nodal
traction distributions, displacement constraints can be imposed which are
consistent with regular contact forces for numerous discretizations.

Related work on haptic rendering of elastostatics

There are several instances in the literature of real-time simulation of linear
elastostatic models based on precomputed GFs methods and related tech-
niques. These models were used because of their low runtime costs, and de-
sirable force-feedback properties. For example, researchers at INRIA have
made extensive use of a real-time elastostatic FEM variants for liver related
surgical simulations [Bro-Nielsen and Cotin 96, Bro-Nielsen 96, Cotin et al. 98].
During a precomputation phase they have used condensation [Zienkiewicz 77,
Bro-Nielsen and Cotin 96] as well as iterative methods [Cotin et al. 99] to
compute displacement responses due to unit forces applied to vertices on
the “free” boundary. At run time, a small system of equations is solved to
determine the correct superposition of responses to satisfy the applied sur-
face constraints, which may be identified as a case of the capacitance matrix
approach (c.f. Lagrange multipliers [Cotin et al. 99]). Since the preprocess
only exploits linearity, anisotropic (and inhomogeneous) material properties
can be supported [Picinbono et al. 00]. Other groups have also used the
precomputed elastostatic FEM approach of [Bro-Nielsen and Cotin 96] for
surgical simulation, including the KISMET surgical simulator which incor-
porates precomputed models to provide high-fidelity haptic force feedback
[Kithnapfel et al. 99].

One limitation of the GF precomputation strategy is that incremental
runtime modifications of the model require extra runtime computations.
While it may be too costly for interactive applications, this can also be
efficiently performed using low-rank updating techniques such as for static
reanalysis in the engineering community [Kassim and Topping 87]. For
surgical simulation, a practical approach has been to use a hybrid domain
decomposition approach in which a more easily modified dynamic model is
used in a smaller region to be cut [Cotin et al. 98, Hansen and Larsen 98].

The authors presented a interactive animation technique in [James and Pai 99]
which combined precomputed GF's of boundary element models with matrix-
updating techniques for fast boundary value problem (BVP) solution. The
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Green’s function description provides a data-driven description that sub-
sumes discretization issues of both [James and Pai 99] and the FEM ap-
proaches of [Bro-Nielsen and Cotin 96, Cotin et al. 99]. Precomputed stiff-
ness matrix factorizations have also been used for interactive deformation
[Berkley et al. 99], and avoid the explicit superposition of Green’s func-
tion quantities, but can complicate random access for multi-point haptic
contact resolution.

Astley and Hayward [Astley and Hayward 98] introduced an approxi-
mation for linear viscoelastic FEM models that also exploits linearity, in
this case by precomputing multilevel Norton equivalents for the system’s
stiffness matrix. By doing so, haptic interaction is possible by employing
an explicit multirate integration scheme wherein a model associated with
the contact region is integrated at a higher rate than the remaining coarser
model.

Finally, local buffer models were presented by Balaniuk in [Balaniuk 00]
for rendering forces computed by e.g., deformable object, simulators which
can not deliver forces at fast rendering rates. An application of the tech-
nique was presented for a virtual echographic exam training simulator
in [d’Aulignac et al. 00]. While we do not use the same approach here,
the local buffer model concept is related to our capacitance matrix method
for force computation.

1.2 Linear Elastostatic Boundary Model Preliminaries

Linear elastostatic objects are essentially three-dimensional linear springs,
and as such they are useful modeling primitives for physically based sim-
ulations. The unfamiliar reader might consult a suitable background ref-
erence before continuing [Hartmann 85, Zienkiewicz 77, Brebbia et al. 84,
James and Pai 99]. In this section, background material for a generic dis-
crete GF description for a variety of precomputed linear elastostatic models
is provided. Conceptually, GFs form a basis for describing all possible de-
formations of a LEM subject to a certain class of constraints. This is useful
because it (1) provides a common language to describe all discrete LEMs,
(2) subsumes extraneous discretization details by relating only physical
quantities, and (3) clarifies the generality of the force feedback algorithms
described later.

Another benefit of using GFs is that they provide an efficient means
for exclusively simulating only boundary data (displacements and forces) if
desired. While it is possible to simulate various internal volumetric quanti-
ties (see §1.2.5), simulating only boundary data involves less computation.
This is sufficient since we are primarily concerned with interactive simu-
lations that impose surface constraints and provide feedback via surface
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deformation and contact forces.

1.2.1 Geometry and Material Properties

Given that the fast solution method is based on linear systems principles,
essentially any linear elastostatic model with physical geometric and mate-
rial properties is admissible. We shall consider models in three dimensions,
although many arguments also apply to lower dimensions. Suitable models
would of course include bounded volumetric objects with various inter-
nal material properties, as well as special subclasses such as thin plates
and shells. Since only a boundary or interface description is utilized for
specifying user interactions, other exotic geometries may also be easily
considered such as semi-infinite domains, exterior elastic domains, or sim-
ply any set of parametrized surface patches with a linear response. Simi-
larly, numerous representations of the surface and associated displacement
shape functions are possible, e.g., polyhedral, NURBS or subdivision sur-
faces [Schroder et al. 99].

1.2.2  Nodal Displacements and Tractions

Let the undeformed boundary be denoted by I'. The change in shape of the
surface is described by the surface displacement field u(x), x € I', and the
surface force distribution (force per unit area) is called the traction field
p(x), x € I'. We will assume that each surface field is parametrized by
n nodal variables (see Figure 1.1), so that the discrete displacement and
traction vectors are

u o= [ug,...,un)” (1.1)
p = [p17~~'7pn]T7 (12)

respectively, where each nodal value is a vector in R®. This description
admits a very large class of surface displacement and traction distributions.

In order to relate traction distributions to forces, define a scalar function
space, L, on the model’s boundary:

L =span{¢;(x), j=1...n, xeTl}, (1.3)

where ¢;(x) is a scalar basis function associated with the j** node. The
continuous traction field is then a 3-vector function with components in L,

p(x) = > 6;(p;. (1.4

The force on any surface area is equal to the integral of p(x) on that area.
It then follows that the nodal force associated with any nodal traction is
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Figure 1.1. lllustration of discrete nodal displacements u defined at vertices on the
undeformed boundary I" (solid blue line), that result in a deformation of the surface
(to dashed red line). Although harder to illustrate, a similar definition exists for the
traction vector, p.

given by
fj =a;p, where a; = / ¢j(x)dl'x (1.5)
r

defines the area associated with the j node.

For example, in our implementation we use linear boundary element
models for which the nodes are vertices of a closed triangle mesh. The mesh
is modeled as a Loop subdivision surface [Loop 87] to conveniently obtain
multiresolution models for rendering as well as uniformly parameterized
surfaces suitable for BEM discretization and deformation depiction. The
displacement and traction fields have convenient vertex-based descriptions

uj =u(x;),  p; =Px)),

where x; € I' is the gt vertex. The traction field is a piecewise linear
function, and ¢;(x) represents a “hat function” located at the j vertex
with ¢;(x;) =1. Given our implementation, we shall often refer to node
and vertex interchangeably.

1.2.3 Discrete Boundary Value Problem (BVP)

At each step of the simulation, a discrete BVP must be solved which re-
lates specified and unspecified nodal values, e.g., to determine deformation
and feedback forces. Without loss of generality, it shall be assumed that
either position or traction constraints are specified at each boundary node,
although this can be extended to allow mixed conditions, e.g., normal dis-
placement and tangential tractions. Let nodes with prescribed displace-
ment or traction constraints be specified by the mutually exclusive index
sets A,, and Ay, respectively, so that A, A, = 0 and A, UA, = {1,2,...,n}.
In order to guarantee an equilibrium constraint configuration we will re-
quire that there is at least one displacement constraint, i.e., A, # 0. We
shall refer to the (A,, A,) pair as the BVP type.
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Boundary conditions arising in a force-feedback loop might consist of
some displacement constraints in the area of contact, with “free” boundary
conditions (zero traction) and other (often zero displacement) support con-
straints outside the contact zone. The solution to (1.7) yields the rendered
contact forces and surface deformation.

Denote the unspecified and complementary specified nodal variables by

_fpjiieA, - _Jurje,
Vj_{uj:jGAp and v]—{r)j:jeAp7 (1.6)

respectively. By linearity of the discrete elastic model, there formally exists
a linear relationship between all nodal boundary variables

’0=Av—|—/j\\7:Av—z‘ (1.7)

where the BVP system matrix A and its complementary matrix A are,
in general, dense block n-by-n matrices [Hartmann 85]. Body force terms
associated with other phenomena, e.g., gravity, have been omitted for sim-
plicity, but can be included since they only add an extra contribution to
the z term.

A key relationship between BVP system matrices (A,A) of different
BVP types (Ay, Ap) is that they are related by exchanges of corresponding
block columns, e.g., (A;,A;), and therefore small changes to the BVP type
result in low-rank changes to the BVP system matrices (see §1.3.2).

While the boundary-only system matrices in (1.7) could be constructed
explicitly, e.g., via condensation for FEM models [Zienkiewicz 77| or using
a boundary integral formulation (see next section), it need not be in prac-
tice. The discrete integral equation in Equation 1.7 is primarily a common
starting point for later definition of GFs and derivation of the CMA, while
GFs may be generated with any convenient numerical method, or even
robotically scanned and estimated from real objects [Pai et al. 01].

1.2.4 Example: Boundary Element Models

A simple closed-form definition of (A, A) is possible for models discretized

with the boundary element method (BEM) [Brebbia et al. 84, James and Pai 99];
BEM discretizations are possible for models with homogeneous and isotropic
material properties. The surface-based nodal quantities are related by the
dense linear block matrix system

OZHU_Gp:Zhijuj_Zgszj (18)
j=1 j=1

where G and H are n-by-n block matrices, with each matrix element, g;; or
hij, a 3-by-3 influence matrix with known expressions [Brebbia et al. 84].
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In this case, the j* block columns of A and A may be identified as column
exchanged variants of G and H:

o —G;j jJ€ A,
A; = { He . Gen (1.9)
T _ H;j : J € A,
A, = { & e (1.10)

While we use BEM models for our implementation, we reiterate that the
CMA is independent of the method used to generate the GFs.

1.2.5 Fast BVP Solution with Green's Functions

GF's of a single BVP type provide an economical means for solving (1.7)
for that BVP, and when combined with the CMA (§1.3) will also be useful
for solving other BVP types. From (1.7), the general solution of a BVP
type (Ay, A,) may be expressed in terms of discrete GF's as

V=) &= ) &t ) &b (1.11)
J=1

JEAL JEA,

(1]

VvV =

where the discrete GF's of the BVP system are the block column vectors

¢ =—(A""A) (1.12)

g

and

E=-ATA= 666 (1.13)

Equation (1.11) may be taken as the definition of the discrete GFs (and
even (1.7)), since it is clear that the j** GF simply describes the linear
response of the system to the j** node’s specified boundary value, V;j. An
illustration is given in Figure 1.2. Once the GFs have been computed for
one BVP type, that class of BVPs may be solved easily using (1.11). An
attractive feature for interactive applications is that the entire solution can
be obtained in 18ns flops if only s boundary values (BV) are nonzero (or
have changed since the last time step). Temporal coherence may also be
exploited by considering the effect of individual changes in components of
v on the solution v.

1.2.6 Precomputation of Green's Functions

Since the GF's for a single BVP type only depend on geometric and ma-
terial properties of the deformable object, they may be precomputed for
use in a simulation. This provides a dramatic speed-up for simulation by
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v=20

Figure 1.2. [llustration of the j'" Green's function block column, &; = =.;, repre-
senting the model’s response due to the three XYZ components of the ;" specified
boundary value, V;. Here the vertex belongs to the (“free”) traction boundary,
j € Ap, and so &; is literally the three responses due to unit tractions applied in
the (RGB color-coded) XYZ directions. White edges emanating from the (displaced)
4" vertex help indicate the resulting deformation. Note that the vertex does not
necessarily move in the direction of the XYZ tractions. Using linear superposition,
the CMA can determine the combinations of these and other tractions required to
move vertices to specified positions.

determining the deformation basis (the GFs) ahead of time. While this is
not necessary a huge amount of work (see Table 1.2), the principal benefits
for interactive simulations are the availability of the GF elements via cheap
look-up table operations, as well as the elimination of redundant runtime
computation when computing solutions, e.g., using a haptic device to grab
a vertex of the model and move it around simply renders a single GF.

Once a set of GF's for a LEM are precomputed, the overall stiffness can
be varied at runtime by scaling BVP forces accordingly, however changes
in compressibility and internal material distributions do require recompu-
tation. In practice it is only necessary to compute the GF corresponding
to nodes which may have changing or nonzero boundary values during the
simulation.

1.3 Fast Global Deformation using Capacitance Matrix
Algorithms (CMAs)

This section presents an algorithm for using the precomputed GFs of a
relevant Reference BVP (RBVP) type to efficiently solve other BVP types.
With an improved notation and emphasis on computer haptics, this section
unifies and extends the approaches presented in [James and Pai 99] exclu-
sively for BEM models, and for FEM models in, e.g., [Bro-Nielsen and Cotin 96],
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in a way that is applicable to all LEMs regardless of discretization, or origin
of GFs [Pai et al. 01]. Haptic applications are considered in §1.4.

1.3.1 Reference Boundary Value Problem (RBVP) Choice

A key step in the GF precomputation process is the initial identification
of a RBVP type, denoted by (A%, Ag)7 that is representative of the BVP
types arising during simulations. For interactions with an exposed free
boundary, a common choice is to have the uncontacted model attached to
a rigid support as shown in Figure 1.3. The n-by-n block system matrices
associated with the RBVP are identified with a subscript as Ag and Ao,
and the corresponding GFs are hereafter always denoted by =.

Note that the user’s choice of RBVP type determines which type of
nodal constraints (displacement of traction) are commonly specified (in
order to define Z), but is independent of the actual numerical boundary
values v used in practice. For example, there are no requirements that
certain boundary values are zero, although this results in fewer summations
(see (1.11)).

Free Boundary; /\8

Fixed Boundary; AQ

Figure 1.3. Reference Boundary Value Problem (RBVP) example: The RBVP asso-
ciated with a model attached to a flat rigid support is shown with boundary regions
having fixed (A{) or free (A}) nodal constraints indicated. A typical simulation would
impose contacts on the free boundary via displacement constraints with the CMA.

1.3.2 Capacitance Matrix Algorithm (CMA) for BVP Solution

Precomputed GFs speed-up the solution to the RBVP, but they can also
dramatically reduce the amount of work required to solve related BVP
when used in conjunction with CMAs. This section describes the CMA
and presents the derivation of related formulae.

Relevant Formulae Suppose the constraint-type changes, e.g., displacement«traction,
with respect to the RBVP at s nodes specified by the list of nodal indices
S ={S1,S2,...,Ss}. As mentioned earlier, it follows from (1.6) and (1.7)
that the new BVP system matrices (A, A) are related to those of the RBVP
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(Ao, Ag) by s block column swaps. This may be written as

A = Ao+ (Ag—Ag)EET (1.14)

A = Ao+ (Ag—Ap)EET (1.15)

where E is an n-by-s block matrix

E= s s, 1s, |-

containing columns of the n-by-n identity block matrix, |, specified by the

list of updated nodal indices S. Postmultiplication by E extracts columns

specified by S. Throughout, E is used to write sparse matrix operations

using dense data, e.g., =, and like the identity matrix, it should be noted

that there is no cost involved in multiplication by E or its transpose.
Since the BVP solution is

v=A"lz=—-A"'A7, (1.16)

substituting (1.15) for A and the Sherman-Morrison-Woodbury formula [Golub and Loan 96]
for A= (using the GF definition E=—A;'Ay),

ATt =At + (1 + E)E(—ETEE) 'ETA; Y, (1.17)

into (1.16), leads directly to an expression for the solution in terms of the
precomputed GFs?. The resulting capacitance matriz formulae are

— v = -1 g7, (0
v=yv" +(E+(EE)) C E'v (1.18)
nxl1 nxs SxXssxl1

where C is the s-by-s capacitance matriz, a negated submatrix of =,

o

and v(?) is the response of the RBVP system to z=—Av,

v =AJ'z=[2(1 - EET) —EET] V. (1.20)

Algorithm for BVP Solution With E precomputed, formulae (1.18)-(1.20)
immediately suggest an algorithm given that only simple manipulations
of = and inversion of the smaller capacitance submatrix are required. An
algorithm for computing all components of v is as follows:

2Similarly from [James and Pai 99] with dAg = (Ag—Ao)E.
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e For each new BVP type (with a different C matrix) encountered,
construct and temporarily store C™! (or LU factors) for subsequent

use.

e Construct v(©).

e Extract ETv(?) and apply the capacitance matrix inverse to it, C™* (ETV(O)).

e Add the s column vectors (E + (ZE)) weighted by C™*(ETv(®) to v(©)
for the final solution v.

Complexity Issues Given s nonzero boundary values, each new capacitance
matrix LU factorization involves at most %s?’ flops, after which each subse-
quent solve involves approximately 18ns flops (s<n). This is particularly
attractive when s<n is small, such as often occurs in practice with local-
ized surface contacts.

An important feature of the CMA for interactive methods is that it is
a direct matrix solver with a deterministic operation count. It is therefore
possible to predict the runtime cost associated with each matrix solve and
associated force feedback subcomputations (see §1.4), thus making CMAs
predictable for real-time computations.

1.3.3 Selective Deformation Computation

A major benefit of the CMA direct BVP solver is that it is possible to just
evaluate selected components of the solution vector at runtime, with the
total computing cost proportional to the number of components desired,
i.e., output-sensitive evaluation. This is a key enabling feature for force
feedback where, e.g., contact forces are desired at different rates than the
geometric deformations. Selective evaluation would also be useful for op-
timizing (self) collision detection queries, avoiding simulation of occluded
or undesired portions of the model, as well as rendering adaptive level of
detail representations.

In general, any subset of solution components may be determined at
a smaller cost than computing v entirely. Let the solution be desired at
nodes specified by the set of indices D, with the desired components of v
extracted by EJ. Using (1.18), the selected solution components may be
evaluated as

Efv =EZv® + EJ (E + (ZE)) C*ETVO

using only O(s? + s|D|) operations. The case where S = D is especially
important for force feedback and is discussed in the following section.
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1.3.4 Extensions

Several extensions exist to overcome various bottlenecks of the CMA algo-
rithm. First, due to the dense nature of the GF matrix, computation and
storage issues arise for large models. The O(sn) cost of GF summation for
surface deformation can be a bottleneck, although to some extent fast na-
tive BLAS or graphics hardware implementations (as in [Barbi¢ and James 05])
can help. A fast summation algorithm based on fast lifted wavelet trans-
forms was proposed in [James and Pai 03] to alleviate the summation bot-
tleneck, and it also provides practical memory requirements for large mod-
els.

Second, the O(s®) capacitance matrix inversion/factorization step can
become a bottleneck for large contact regions. By exploiting temporal
coherence common in contact problems, the O(s3) cost can be reduced to
O(s? As) where As is the number of changes (additions or deletions) to
the contact node set. Details on the updating/downdating procedures are
given in [James 01]. For temporally coherent cases where As < s, such
as in grasping scenarios (see Figure 1.4), the overhead of updating the
capacitance matrix inverse can often out-perform LU factorization of C.
Another way to reduce contact updating complexity is to coarsen (or adapt)
the contact resolution, and hierarchical (wavelet) GF's were introduced in
[James and Pai 03] for this purpose. Unfortunately, coarsened contacts
also limit the ability to resolve contact regions unless adaptivity is used.

1.4 Capacitance Matrices as Local Buffer Models

For force feedback enabled simulations in which user interactions are mod-
eled as displacement constraints applied to an otherwise free boundary,
the capacitance matrix has a very important role: it constitutes an exact
contact force response model by describing the compliance of the contact
zone. Borrowing terminology from [Balaniuk 00], we say that the capaci-
tance matrix can be used as a local buffer model. While the capacitance
matrix is used in §1.3.2 to determine the linear combination of GFs re-
quired to solve a particular BVP and reconstruct the global deformation,
it also has the desirable property that it effectively decouples the global
deformation calculation from that of the local force response. The most
relevant benefit for haptics is that the local contact force response may be
computed at a much faster rate than the global deformation.
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Figure 1.4. Grasping simulation: Using a CyberTouch data input device from Virtual
Technologies Inc. (Top), a virtual hand (Bottom) was used to deform an elastostatic
BEM model with approximately 900 surface degrees of freedom (dof) at graphical
frame rates (> 30 FPS) on a Pll 450MHz computer in Java JDK 1.3. The capacitance
matrix algorithm was used to impose displacement constraints on an otherwise free
boundary, often updating over 100 dof per frame. While force feedback was not
present, the capacitance matrices computed could also have been used to render
contact forces at a rate higher than that of the graphical simulation.

1.4.1 Capacitance Matrix Local Buffer Model

From (1.18), the S components of the solution v are

ETlv = ET [V(°>+(E+(EE))C*1ET\/<0>}

= EWO + (ETE) C'E™® + (ETZE) C'ETV@
N—— N—_——

1 [ —C (from (1.19))

— ETV(O) + C*l ETV(O) _ ETV(O)

= ! (ETV(O)). (1.21)
Consider the situation, which naturally arises in haptic interactions, in

which the only nonzero constraints are updated displacement constraints,
ie.,

V=EE"v = v(®=_7 (using (1.20)). (1.22)

In this case, the capacitance matrix completely characterizes the local con-
tact response, since (using (1.22) in (1.21))

ETv=—C'ETW. (1.23)
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This in turn parametrizes the global response since these components (not
in S) are

(I — EET)v (1— EET) [v“’) + (E+ (ZE)) C_lETv(O)}

= (I—EE")(ZE)(ETv) (1.24)

where we have used (1.23) and the identity (I — EET)E=0. Such properties
allow the capacitance matrix and = to be used to derive efficient local
models for surface contact.

For example, given the specified contact zone displacements

us = E'¥, (1.25)
the resulting tractions are
ps =ETv=—-C" (ETV) = —Clus, (1.26)
and the rendered contact force is
f=alps = (—alC™)us = Ksus, (1.27)

where Kgs is the effective stiffness of the contact zone used for force feedback
rendering,
as = (asl,asz,...,ass)T(X)Ig (1,28)

represents nodal areas (1.5), and I3 is the scalar 3-by-3 identity matrix.
A similar expression may be obtained for torque feedback. The visual
deformation corresponding to solution components outside the contact zone
is then given by (1.24) using ps=E"v.

1.4.2 Example: Single Displacement Constraint

A simple case, which will be discussed in much greater detail in §1.5, is that
of imposing a displacement constraint on single a node k which otherwise
had a traction constraint in the RBVP. This case occurs, for instance, when
the tip of a haptic device comes into contact with the free surface of an
object. The new BVP therefore has only a single constraint switch with
respect to the RBVP, and so s =1 and S ={k}. The capacitance matrix
here is just C=—Zy; so that the k' nodal values are related by

—1 _

g = (Brr) Ok or Uy = Zxkps-

pr=—C
The capacitance matrix can generate the force response, f =ayp;, required
for haptics in O(1) operations, and for graphical feedback the corresponding
global solution is v=_¢£gpy,.
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1.4.3 Force Feedback for Multiple Displacement Constraints

When multiple force feedback devices are interacting with the model by im-
posing displacement constraints, the force and stiffness felt by each device
are tightly coupled in equilibrium. For example, the stiffness felt by the
thumb in Figure 1.4 will depend on how the other fingers are supporting
the object. For multiple contacts like this, the capacitance matrix again
provides an efficient force response model for haptics. Without presenting
the equations in detail, we shall just mention that the force responses for
each of the contact patches can be derived from the capacitance matrix in
a manner similar to equations (1.25)-(1.28).

1.5 Surface Stiffness Models for Point-like Contact

The second part of this chapter presents a simple and practical method for
describing point-like contact interactions. Such interactions are commonly
in the haptics literature for rigid surface models [Massie and Salisbury 94,
Ho et al. 99]. Unlike their rigid counterparts, special care must be taken
with elastic models to define finite contact areas for point-like interactions
since point-like contacts defined only as single-vertex (§1.4.2) or nearest
neighbour [Cotin et al. 99] constraints lead to mesh-related artifacts, and
ambiguous interactions as the mesh is refined (see Figure 1.5). However,
the benefit of point-like contacts comes from the convenience of the point-
like parameterization of the contact and not because the contact is highly
concentrated or “pin-like”. We present an approach using vertex pressure
masks which maintains the single contact description yet distribute forces
on a specified scale. This allows point contact stiffnesses to be consistently
defined as the mesh scale is refined, and provides an efficient method for
force feedback rendering of forces with regular spatial variation on irregular
meshes.

1.5.1 Vertex Pressure Masks for Distributed Point-like Contacts

In this section, the distribution of force is described using compactly-
supported per-vertex pressure masks defined on the free boundary in the
neighbourhood of each vertex.

Vertex Pressure Mask Definition Scalar pressure masks provide a flexible
means for modeling vector pressure distributions associated with each node.
This allows a force applied at the i*” node to generate a traction distribution
which is a linear combination of {¢;(x)} and not just ¢;(x).
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Figure 1.5. Point contact must not be taken literally for elastic models:  This
figure illustrates the development of a displacement singularity associated with a
concentrated surface force as the continuum limit is approached. In the left image,
an upward unit force applied to a vertex of a discrete elastic model results in a finite
vertex displacement. As the model’s mesh is refined (middle and right image), the
same concentrated force load eventually tends to produce a singular displacement
at the contact location, and the stiffness of any single vertex approaches zero (see
Table 1.1). Such point-like constraints are mathematically ill-posed for linear models
based on a small-strain assumption, and care must be taken to meaningfully define
the interaction.

In the continuous setting, a scalar surface density p(x):I'— R will relate
the localized contact force f to the applied traction p via

which in turn implies the normalization condition

/p(x)df‘x =1 (1.29)

In the discrete setting, the piecewise linear surface density on I is
n
px) =D 6;(x)p; € L, (1.30)
j=1

and is parameterized by the discrete scalar vertex mask vector,
p=1lp1.p2.- - pul”-
Substituting (1.30) into (1.29), the discrete normalization condition satis-
fied becomes
a’ p=1, (1.31)

where a are the vertex areas from (1.5). Notice that the mask density p
has units of arlea.

In practice, the vertex pressure mask p may be specified in a variety
of ways. It could be specified at runtime, e.g., as the byproduct of a
physical contact mechanics solution, or be a user specified quantity. We

shall consider the case where there is a compactly supported scalar function
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p(x) specified at each vertex on the free boundary. The corresponding
discrete vertex mask p may then be defined using nodal collocation (see
Figure 1.6),
pi = p(Xj), jeA%a
J 0, JEA,.

followed by suitable normalization,

to ensure the satisfaction of (1.31).

p(x) f

Figure 1.6. Collocated scalar masks: A direct means for obtaining a relative
pressure amplitude distribution about each node, is to employ a user-specified scalar
functional of the desired spatial scale. The scalar pressure mask is then given by
nodal collocation (left), after which the vector traction distribution associated with
a nodal point load is then computed as the product of the applied force vector and
the (compactly supported) scalar mask (right).

In the following, denote the density mask for the i*" vertex by the n-
vector p’, with nonzero values being indicated by the set of masked nodal
indices M;. Since the intention is to distribute force on the free boundary,
masks will only be defined for i € Ag. Additionally, these masks will only
involve nodes on the free boundary, M; C Ag, as well as be nonempty,

‘M1| > 0.

Example: Spherical Mask Functionals Spherically symmetric radially de-
creasing mask functionals with a scale parameter were suitable candidates
for constructing vertex masks via collocation on smooth surfaces. One
functional we used (see Figure 1.7 and 1.8) had linear radial dependence,

pi(X'T): 1*@7 x —x;| <,
’ 0, otherwise. '

where r specifies the radial scale, and is representative of the haptic probe’s
tip. The effect of changing r is shown in Figure 1.7.
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Figure 1.7. lllustration of changing mask scale: An exaggerated pulling deformation
illustrates different spatial scales in two underlying traction distributions. In each case,
pressure masks were generated using the linear spherical mask functional (see §1.5.1)
for different values of the radius parameter, r.

(b) K&l (¢) masked [[K(x)|

Figure 1.8. Effect of pressure masks on surface stiffness: Even models with rea-
sonable mesh quality, such as this simple BEM kidney model, can exhibit perceptible
surface stiffness irregularities when single-vertex stiffnesses are used. A plot (a) of
the vertex area, a, clearly indicates regions of large (dark red) and small (light blue)
triangles. In (b) the norm of the single-vertex surface stiffness, |K(x)]|, reveals a
noticeable degree of mesh-related stiffness artifacts. On the other hand, the stiff-
ness plotted in (c) was generated using a pressure mask (collocated linear sphere
functional (see §1.5.1) of radius twice the mesh’'s mean edge length) and better ap-
proximates the regular force response expected of such a model. Masks essentially
provide anti-aliasing for stiffnesses defined with discrete traction distributions, and
help avoid “soft spots.”

1.5.2 Vertex Stiffnesses using Pressure Masks

Having consistently characterized point-like force loads using vertex pres-
sure masks, it is now possible to calculate the stiffness of each vertex. In
the following sections, these vertex stiffnesses will then be used to com-
pute the stiffness at any point on model’s surface for haptic rendering of
point-like contact.
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Elastic Vertex Stiffness, K For any single node on the free boundary, i € Ag,
a finite force stiffness, K; € R3*3, may be associated with its displacement,
ie.,

f=Ku;, €A

As a sign convention, it will be noted that for any single vertex displacement
ui~f:ui-(Kiui)207 ZEAS

so that positive work is done deforming the object.
Given a force f applied at vertex i € Ag, the corresponding distributed
traction constraints are

p; = P;f

Since the displacement of the i'" vertex is

ui= > piEif,

JjEM;

therefore the effective elastic stiffness of the masked vertex is

-1

Ki=Ki=| > piZi| , icAd (1.32)
JEM;

Some examples are provided in Table 1.1 and Figure 1.8.

Therefore, in the simple case of a single masked vertex displacement
constraint u;, the local force response model exactly determines the result-
ing force, f = K,u;, distributed in the masked region. The corresponding
globally consistent solution is

v=GE= | ) i | f

JEM,;

where (; is the convolution of the GFs with the mask p, and characterizes
the distributed force load. The limiting case of a single vertex constraint
corresponds to M; ={i} with p;=0d;;/a; so that the convolution simplifies

to i =&/ a;.

Rigid Vertex Stiffness, K}® For rigid surfaces a finite force response may be
defined using an isotropic stiffness matrix,

KR _ kRigidIg c ]R3><37 LRigid 5 ().



1.5. Surface Stiffness Models for Point-like Contact 21

Mesh Level | Vertices [| [[K[|r, Single | [[K|[r, Masked

1 34 7.3 13.3
2 130 2.8 11.8
3 514 1.1 11.2

Table 1.1. Vertex stiffness dependence on mesh resolution: This table shows vertex
stiffness (Frobenius) norms (in arbitrary units) at the top center vertex of the BEM
model in Figure 1.11(a), as geometrically modeled using Loop subdivision meshes
for three different levels of resolution. The stiffness corresponding to a single vertex
constraint exhibits a large dependence on mesh resolution, and has a magnitude
which rapidly decreases to zero as the mesh is refined. On the other hand, the
stiffness generated using a vertex pressure mask (collocated linear sphere functional
(see §1.5.1) with radius equal to the coarsest (level 1) mesh’s mean edge length) has
substantially less mesh dependence, and quickly approaches a nonzero value.

This is useful for defining responses at position-constrained vertices of a
deformable model,

Ki =Kk, ieA?, (1.33)
for at least two reasons. First, while it may seem physically ambiguous to
consider contacting a constrained node of a deformable object, it does allow
us to define a response for these vertices without introducing other simula-
tion dependencies, e.g., how the haptic interaction with the elastic object
support is modeled. Second, we shall see in §1.5.3 that defining stiffness
responses at these nodes is important for determining contact responses on
neighbouring triangles which are not rigid.

1.5.3 Surface Stiffness from Vertex Stiffnesses

Given the vertex stiffnesses, {K;}?_,, the stiffness of any location on the
surface is defined using nodal interpolation

K(x) = Z bi(x)K;, xeT, (1.34)

so that (K(x)),, € £. Note that there are no more than three nonzero terms
in the sum of (1.34), corresponding to the vertices of the face in contact.
In this way, the surface stiffness may be continuously defined using only
|Ag\ free boundary vertex stiffnesses and a single rigid stiffness parameter,
kfisd regardless of the extent of the masks. The global deformation is then
visually rendered using the corresponding distributed traction constraints.
For a point-like displacement constraint t applied at x €I on a triangle
having vertex indices {i1, 42,73}, the corresponding global solution is

v= > Geixf. (1.35)

i€{i1,i2,i3}JNAY
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This may be interpreted as the combined effect of barycentrically dis-
tributed forces, ¢;(x)f, applied at each of the triangle’s three masked vertex
nodes.

1.5.4 Rendering with Finite-Stiffness Haptic Devices

Similar to haptic rendering of rigid objects, elastic objects with stiffnesses
greater than some maximum renderable magnitude (due to hardware limi-
tations) have forces displayed as softer materials during continuous contact.
This can be achieved using a haptic vertex stiffness, KZH7 which is propor-
tional to the elastic vertex stiffness, KiE. While the stiffnesses could all be
uniformly scaled on the free boundary, this can result in very soft regions
if the model has a wide range of surface stiffness. Another approach is to

set

R B [
;i =miK;y where n; =min |1, ||KE|| )

so that the elastic haptic model is never more stiff than a rigid haptic model.
The surface’s haptic stiffness K™(x) is then determined using (1.34), so that
1K™ (o)l < [|K¥]l, vx € T

In accordance with force-reflecting contact, the deformed elastic state
corresponds to the haptic force applied at the contact location x¢. This
produces geometric contact configurations similar to that shown in Figure
1.9, where the haptic displacement ut can differ from the elastic displace-
ment uf. The geometric deformation is determined from the applied force
f and equation (1.35). Note that when the haptic and elastic stiffnesses are
equal, such as for soft materials, then so are the elastic and haptic displace-
ments. In all cases, the generalized “god object” [Zilles and Salisbury 94]
or “surface contact point” [Sensable Technologies, Inc. | is defined as the
parametric image of x¢ on the deformed surface.

1.6 Results

GFs were precomputed using the boundary element method (BEM) with
piecewise linear boundary elements. Table 1.2 provides timings for the
BEM precomputation stages as well as the submillisecond cost of simulating
point-like deformations using GFs. Further timings of CMA suboperations
are shown in Table 1.3, and reflect interactive performance for modest num-
bers of constraint type changes, s. All timings were performed using the
same unoptimized Java code as in the original paper [James and Pai 01],
however were re-run on a single core of a Intel Core Duo (T2700 2.33GHz),
with 2GB RAM, and Sun’s Java 1.6.0 server JVM (for Windows); these
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Figure 1.9. Geometry of point-like contact: The surface of the static/undeformed
geometry (curved dashed line) and that of the deformed elastic model (curved solid
line) are shown along with: applied force (f), static contact location (x°), deformed
elastic model contact location (xF), haptic probe-tip location (x"), haptic contact
displacement (u" =x"—x®), elastic contact displacement (uf =xF—x®), static contact
normal (n®) and elastic contact normal (nf). Once the contact is initiated by the
collision detector, the sliding frictional contact can be tracked in surface coordinates
at force feedback rates.

timings are roughly an order-of-magnitude faster than in the original paper.
Obviously model complex models and contact scenarios are now possible.
These times can be reduced further by using optimized matrix libraries.

An application of the CMA for multiple distributed contacts with uni-
lateral contact constraints was the grasping task illustrated in Figure 1.4
using the LEM from Figure 1.11(a).

’ Model H # Vertices, n \ # Faces \ Precomp \ LUD % \ Simulate
Nodule 130v (89 free) 256f | 0.052 min | 16% 10 psec
Kidney 322v (217 free) 640f | 0.43 min 16% 25 psec
Spatula 620v (559 free) 1248f 2.7 min 12% 64 psec
Banana Seat || 546v (245 free) 1088f 1.4 min 23% 28 psec

Table 1.2. GF precomputation and simulation times for the BEM models depicted
in Figure 1.11. All GFs corresponding to moveable free vertices (in Aj) were com-
puted, and the precomputation time (Precomp) of the largest model is less than an
hour. As is typical of BEM computations for models of modest size (n < 1000), the
O(n?) construction of the matrices (H and G in equation 1.8) is a significant portion
of the computation, e.g., relative to the O(n?) cost of performing the LU decom-
position (LUD %) of the A matrix. The last column indicates that submillisecond
graphics-loop computations (Simulate) are required to determine the point-contact
deformation response of each model's free boundary—primarily a rank-9 summation.

A force-feedback implementation of the point-like contact approach dis-
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| # Updates, s || LU Factor | LU Solve | (EE)(ETV) for n=100

10 0.08 ms 3 psec 37 psec
20 0.43 ms 11 psec 77 psec
40 2.59 ms 42 psec 152 psec
100 40.0 ms | 230 usec 382 psec

Table 1.3. Timings of CMA suboperations such as LU decomposition (LU Factor)
and back-substitution (LU Solve) of the capacitance matrix, as well as the weighted
summation of s GFs (per 100 nodes) are shown for different sizes of updated nodal
constraints, s.

cussed in the previous section was built. Forces were rendered by a 3-DoF
PHANToM™ haptic interface (model 1.0 Premium), on a dual Pentium II
computer running Windows NT. The haptic simulation was implemented
in C++, partly using the GHOST® toolkit, and interfaced to our ART-
DEFO elastostatic object simulation written in Java™and rendered with
Java 3D™. The frictional point-contact problem was computed by the
haptic servo loop at 1 kHz, which then prescribes boundary conditions
for the slower graphical simulation running at 25-80 Hz. For a point-like
contact, it was only necessary to perform collision detection on the unde-
formed model, so this was done using the GHOST® API. A photograph of
the authors demonstrating the simulation is shown in Figure 1.10, and a
number of screen shots for various models are shown in Figure 1.11.

Figure 1.10. : Photograph of simulation in use: Users were able to push, slide and
pull on the surface of the model using a point-like manipulandum.

We observed that the vertex masks were successful in producing notice-
able improvements in the smoothness of the sliding contact force, especially
when passing over regions with irregular triangulations (see Figure 1.8). We
have not conducted a formal human study of the effectiveness of our sim-
ulation approach. However, the haptic simulation has been demonstrated
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to hundreds of users at two conferences: the 10*” Annual PRECARN-
IRIS (Institute for Robotics and Intelligent Systems) Conference (Montreal,
Quebec, Canada, May 2000) and in the ACM SIGGRAPH 2000 Exhibi-
tion (New Orleans, Louisiana, USA, July 2000). Users reported that the
simulation felt realistic. In general, the precomputed LEM approach was
found to be both stable and robust.

(a) A simple nodular shape with a fixed base region.

v e e

) A kidney-shaped model with position-constrained vertices on the occluded side.

///

) A plastic spatula with a position-constrained handle.

(d) A seemingly gel-filled banana bicycle seat with matching metal supports.

Figure 1.11. Screenshots from real-time haptic simulations: A wide range of ART-
DEFO models are shown subjected to various displacements using the masked point-
like contacts of §1.5. For each model, the middle of the three figures is uncontacted
by the user’s interaction point (a small green ball).
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1.7 Summary

We have summarized an approach for real-time solution of boundary value
problems for discrete linear elastostatic models (LEM), regardless of dis-
cretization, using precomputed GF's in conjunction with capacitance ma-
trix algorithms (CMAs). The data-driven CMA formulation highlights the
special role of the capacitance matrix in computer haptics as a contact
compliance useful for generating contact force and stiffness models, and
provides a framework for extending the capabilities of these models.
Additionally, the important special case of point-like contact was ad-
dressed with special attention given to the consistent definition of contact
forces for haptics. While this topic has been discussed before, we have in-
troduced vertex masks to specify the distribution of contact forces in a way
which leads to physically consistent force-feedback models which avoid the
numerical artifacts which lead to nonsmooth rendering of contact forces on
discrete models, as wells as ill-defined contacts in the continuum limit.

Epilogue: Green’s function models are particularly effective for linear
elastostatic models, however their use is limited for large-deformation mod-
els (although see [James and Pai 02] for articulated models). At the time
of this writing, we have been investigating alternative basis-superposition
methods for haptic rendering that are based on dimensional model reduc-
tion and precomputed large-deformation modal models. We refer the reader
to on-going work for 6-DoF haptic rendering of multi-point contact between
geometrically complex models [Barbi¢ and James 07].
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