
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Geometry Types for Graphics Programming

ANONYMOUS AUTHOR(S)

In domains that deal with physical space and geometry, programmers need to track the coordinate systems

that underpin a computation. We identify a class of geometry bugs that arise from confusing which coordinate

system a vector belongs to. These bugs are not ruled out by current languages for vector-oriented computing,

are difficult to check for at run time, and can generate subtly incorrect output that can be hard to test for.

We introduce a type system and language that prevents geometry bugs by reflecting the coordinate

system for each geometric object. A value’s geometry type encodes its reference frame, the kind of geometric

object (such as a point or a direction), and the computational representation (such as Cartesian or spherical

coordinates). We show how these types can rule out geometrically incorrect operations, and we show how to

use them to automatically generate correct-by-construction code to transform vectors between coordinate

systems. We implement a language for graphics programming, Gator, that checks geometry types and compiles

to OpenGL’s shading language, GLSL. Using case studies, we demonstrate that Gator can raise the level of

abstraction for shader programming and prevent common errors without inducing significant annotation

overhead or performance cost.

1 INTRODUCTION
Applications across a broad swath of domains use linear algebra to represent geometry, coordinates,

and simulations of the physical world. Scientific computing workloads, robotics control software,

and real-time graphics renderers all use matrices and vectors pervasively to manipulate points

according to linear-algebraic laws. The programming languages that express these computations,

however, rarely capture the underlying geometric properties of these operations. In domains where

performance is critical, most languages provide only thin abstractions over the low-level vector

and matrix data types that the underlying hardware (i.e., GPU) implements. A typical language

might have a basic vec2 data type for vectors consisting of two floating-point numbers, for example,

but not distinguish between 2D vectors in rectangular or polar coordinates—or between points in

differently scaled rectangular coordinate systems.

This paper focuses on real-time 3D rendering on GPUs, where correctness hazards in linear

algebra code are particularly pervasive. The central problem is that graphics code frequently

entangles application logic with abstract geometric reasoning. Programs must juggle vectors from

a multitude of distinct coordinate systems while simultaneously optimizing for performance. This

conflation of abstraction and implementation concerns makes it easy to confuse different coordinate

system representations and to introduce subtle bugs. Figure 1 shows an example: a coordinate

system handling bug yields incorrect visual output that would be difficult to catch with testing.

1.1 The Problem
Coordinate systems proliferate in graphics programming because 3D scenes consist of many

individual objects. Figure 2 depicts a standard setup for rendering two objects in a single scene.

Each object comes specified as amesh, which consists of coordinate vectors for each vertex position.

The mesh provides these vectors in a local, object-specific coordinate system called model space.
The application positions multiple objects relative to one another in world space, and the simulated

camera’s position and angle define a view space.

Renderer code needs to combine vectors from different coordinate systems, such as in this

distance calculation:

2020. 2475-1421/2020/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

(a) Correct implementation. (b) With geometry bug.

Fig. 1. Objects rendered with an implementation
of the diffuse component of Phong lighting [Phong
1975], without (a) and with (b) a coordinate system
transformation bug. The root cause is an incorrect
spatial translation of the light source. The problem
is only visible from one side of the model.

OModel B

OWorld bWorld

bWorld

World

bModel A
 Model A

bModel A

OModel A

bModel B

Object BbModel B

View bView

bView

OView

Model B

Object A

Fig. 2. Coordinate systems in graphics code. Model
A, Model B, World, and View are coordinate sys-
tems. A coordinate system is defined by its basis
vectors b and origin O . The View represents the per-
spective of a simulated camera.

float dist = length(teapotVertex - bunnyVertex);

This code may be incorrect, however, depending on the representation of the teapotVertex and

bunnyVertex vectors. If the values come from the mesh data, they are each represented in their

respective model spaces—and subtracting them yields a geometrically meaningless result. A cor-

rect computation needs to convert the operands into a common coordinate system using affine
transformation matrices:

float dist = length(teapotToWorld * teapotVertex - bunnyToWorld * bunnyVertex);

Here, the teapotToWorld and bunnyToWorld matrices define the transformations from each model

space into world space.

Geometry bugs are hard to catch. Mainstream rendering languages like OpenGL’s GLSL [Segal

and Akeley 2017] cannot statically rule out coordinate system mismatches. In GLSL, the variables

teapotVertex and bunnyVertex would both have the type vec3, i.e., a tuple of three floating-point

numbers. These bugs are also hard to detect dynamically. They do not crash programs—they only

manifest in visual blemishes. While the buggy output in Figure 1b clearly differs from the correct

output in Figure 1a, it can be unclear what has gone wrong—or, when examining the buggy output

alone, that anything has gone wrong at all. Accordingly, writing assertions or unit tests to catch this

kind of bug can be challenging: specifying the behavior of a graphics program requires formalizing

how the resulting scene should be perceived. Viewers can perceive many possible outputs as

visually indistinguishable, so even an informal specification of what makes a renderer “correct,” for

documentation or testing, can be difficult to write.

Geometry bugs in the wild. Even among established graphics libraries, geometry bugs can remain

latent until a seemingly correct API change reveals the bug. For example, in LÖVR, a framework

for rapidly building VR experiences, the developers discovered a bug where a variable that was in

one space was being used as if it was in another.
1
This bug lay dormant while, to quote one of the

1
https://github.com/bjornbytes/lovr/issues/55

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://github.com/bjornbytes/lovr/issues/55

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Geometry Types for Graphics Programming 1:3

maintainers, “there was a change in the rendering method that amplified the problems caused by

this.” The maintainer then noted that they needed to “go backfill this fix to all the docs/examples

that have the broken version.” Because their effects are hard to detect, geometry bugs can persist

and cause subtle inaccuracies that grow as code evolves.

We found similar issues that arise when APIs fail to specify information about vector spaces. In

the Processing graphical IDE, for example, confusion surrounding a camera API led to a 20-comment

thread before a developer concluded that “better documentation could alleviate this to some extent:

it needs to be clear that modelspace is relative to the camera at the time of construction.”
2
And

in the visualization library GLVisualize.jl, users disagree about the space that the library uses

for a light position.
3
The root cause in both cases is that the programming language affords no

opportunity to convey vector space information.

This paper advocates for making geometric spaces manifest in programs themselves via a type

system. Language support for geometric spaces can remove ambiguity and provide self-documenting

interfaces between parts of a program. Static type checking can automatically enforce preconditions

on geometric operations that would otherwise be left unchecked.

1.2 Geometry Types
We introduce a type system that can eliminate this class of bugs, and we describe a mechanism for

automatic transformation that can rule out some of them by construction. Geometry types describe
the coordinate system representing each value and the transformations that manipulate them. A

geometry type encodes three components: the reference frame, such as model, world, or view space;

the geometric object, such as a point or a direction; and the coordinate scheme, such as Cartesian or

spherical coordinates. Together, these components define which geometric operations are legal and

how to implement them.

The core contribution of this paper is that all three components of geometry types are necessary.

The three aspects interact in subtle ways, and real-world graphics rendering code varies in each

component. Simpler systems that only use a single label [Ou and Pellacini 2010] cannot express the

full flexibility of realistic rendering code and cannot cleanly support automatic transformations.

We show how encoding geometry types in a real system can help avoid and eliminate realistic

geometry bugs. We will explore further how these components are defined and interact to provide

operation information in Section 3.

We design a language, Gator, that builds on geometry types to rule out coordinate system

bugs and to automatically generate correct transformation code. In Gator, programmers can write

teapotVertex in world to obtain a representation of the teapotVertex vector in the world reference

frame. The end result is a higher-level programming model that lets programmers focus on the

geometric semantics of their programs without sacrificing efficiency.

We implement Gator as an overlay on GLSL [The Khronos Group Inc. [n. d.]], a popular language

for implementing shaders in real-time graphics pipelines. Most GLSL programs are also valid in

Gator, so programmers can easily port existing code and incrementally add typing annotations to

improve its safety.We formalize a geometry type system and show that erasing these types preserves

soundness. In our evaluation, we port rendering programs from GLSL to qualitatively explore

Gator’s expressiveness and its ability to rule out geometry bugs. We also quantitatively compare

the applications to standard GLSL implementations and find that Gator’s automatic generation

of transformation code does not yield meaningfully slower rendering time than hand-tuned (and

unsafe) GLSL code.

2
https://github.com/processing/processing/issues/187

3
https://github.com/JuliaGL/GLVisualize.jl/pull/188

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://github.com/processing/processing/issues/187
https://github.com/JuliaGL/GLVisualize.jl/pull/188

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

This paper’s contributions are:

• We identify a class of geometry bugs that exist in geometry-heavy, linear-algebra-centric

code such as physical simulations and graphics renderers.

• We design a type system to describe latent coordinate systems present in linear algebra

computations and prevents geometry bugs.

• We introduce a language construct that builds on the type system to automatically generate

transformation code that is type correct by construction.

• We implement the type system and automatic transformation feature in Gator, an overlay on

the GLSL language that powers all OpenGL-based 3D rendering.

• We experiment with case studies in the form of real graphics rendering code to show how

Gator can express common patterns and prevent bugs with minimal performance overhead.

We begin with some background via a running example before describing Gator in detail.

2 RUNNING EXAMPLE: DIFFUSE SHADING
This section introduces the concept of geometry bugs via an example: we implement diffuse lighting,
a component of the classic Phong lighting model [Phong 1975].

4
We assume some basic linear

algebra concepts but no background in graphics or rendering.

2.1 Gentle Introduction to Shader Programming
Shader programs are code, typically written in C-like languages such as GLSL or HLSL, that runs

on the GPU to render a graphics scene. The GPU executes a pipeline of shader programs, where

each shader is specialized to transform a certain property of a graphical object. The shader pipeline

consists of several stages. The most notable of these stages are the vertex shader, which outputs

the position of each vertex as a pixel and the fragment shader, which outputs the color of each

fragment corresponding to an on-screen pixel.

In graphics, the scene is a collection of objects. The shape of an object is determined by mesh

data consisting of position vectors for each vertex, denoting the spatial structure of the object, and

normal vectors, denoting the surface orientation at each vertex.

The kind of transformation each graphics shader applies to a graphical object depends on the

pipeline stage. We focus on the vertex and fragment shader, the most common user-programmable

stages of the graphics pipeline.

2.2 Diffuse Lighting
Diffuse lighting is a basic lighting model that simulates the local illumination on the surface of

an object. Given a point on an object, the intensity of its diffuse component is proportional to the

angle between the position of the light ray and the local surface normal. The diffuse model first

computes the direction of the light by subtracting the mesh (surface) position, fragPos, from the

light position:

lightDir = normalize(lightPos − fragPos)

We normalize the vector, which preserves the angle but sets the magnitude to 1. We calculate the

resulting diffuse intensity at this fragment as the angle between the incoming light ray and the

fragment normal using the vector dot product (which is algebraically the sum of the product of

vector components):

diffuse = max(lightDir · fragNorm, 0.)

4
Appendix A gives a complete GLSL implementation of the Phong model.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Geometry Types for Graphics Programming 1:5

The max function used here prevents light from passing through the object by rejecting reflection

angles greater than perpendicular.

2.3 Where Things Go Wrong: GLSL Implementation
To implement the diffuse lighting model, we must write a GLSL shader program that operates

on a per-fragment basis. This section shows how this seemingly simple program translates to

surprisingly complex code. We identify pitfalls in this implementation process that our type system

will address.

GLSL has vector and matrix types, with names like vec3 and mat4, along with built-in vector

functions that make an initial implementation of the diffuse component seem straightforward:

float naiveDiffuse(vec3 lightPos, vec3 fragPos, vec3 fragNorm) {
vec3 lightDir = normalize(lightPos - fragPos);
return max(dot(lightDir, normalize(fragNorm)), 0.);

}

Although lightPos and fragPos have the same type, they are not geometrically compatible: real

renderers need to represent them with different reference frames and coordinate schemes. While

this incorrect code directly reflects the mathematical description above, the output is nonetheless

incorrect: it produces the buggy output in Figure 1b.

Coordinate Systems. The underlying problem is that software needs to represent different vectors

in different coordinate systems. Information needed to render the shape of a single graphical object,

the positions and normal vectors, lies in the object’s model space, as can be seen in Figure 2. A

model space represents the coordinates local to a single object in the scene. The origin of this space

is centered in the model, with basis vectors matching the model orientation and scale. Both may

change dynamically as time passes in the scene; however, each is fixed during a single iteration of

the shader. World space gives the absolute coordinates for the entire scene, so the basis vectors and

origin of world space are typically fixed.

Mesh data is scene independent, so we represent mesh parameters such as fragPos and fragNorm

initially in model space, independent of the object’s current relative position within the scene. In

contrast, we represent the position of a light source relative to the entire scene—so lightPos is

in world space. As a result, the subtraction expression lightPos - fragPos attempts to compare

vectors represented in different spaces, yielding a geometrically meaningless result. This bug

produces the incorrect output seen in Figure 1b.

Transformation Matrices. To fix this program, the shader needs to transform the two vectors to a

common coordinate system before subtracting them. Mathematically, coordinate systems define

an affine space, and thus geometric transformations on coordinate systems can be linear or affine.

Affine transformations can change the origin and basis vectors, which can represent translation,

while linear transformations affect only the basis vectors, which can represent rotation and scale.

These geometric transformations are represented in code as transformation matrices. To apply a

transformation to a vector, shader code uses matrix-vector multiplication. For example, the shader

application may provide a matrix uModel that defines the transformation from model to world space

using matrix multiplication:

vec3 lightDir = normalize(lightPos - uModel * fragPos));

Homogeneous Coordinates. Unfortunately, this matrix multiplication implementation introduces

another bug. Transforming fragPos from model to world space requires both a linear scaling and

rotation transformation and a translation to account for change of origins. This linear transfor-

mations with translation is represented by an affine transformation matrix. This is a problem: an

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

affine transformation matrix for 3D vectors must be represented as a 4 × 4 matrix. To multiply this

matrix by fragPos (which is a 3-dimensional vector), we need a sensible representation of fragPos

as a 4-dimensional vector. It is thus not immediately clear by what vector we need to multiply:

vec3 lightDir = normalize(lightPos - vec3(uModel *?));

Because a 3×3 Cartesian transformation matrix on 3-dimensional vectors can only express linear

transformations, graphics software typically uses a second kind of coordinate system called ho-
mogeneous coordinates. An n-dimensional vector in homogeneous coordinates uses n + 1 values:
the underlying Cartesian coordinates and a scaling factor, w . A 4×4 transformation matrix in

homogeneous coordinates can express affine transformations on the underlying 3-dimensional

space, including translation.

To convert from Cartesian to homogeneous coordinates, a vector [x,y, z] becomes [x,y, z, 1.];
in the opposite direction, the homogeneous vector [x,y, z,w] becomes [x/w,y/w, z/w]. To fix

our example to use the 4-dimensional affine transformation uModel, we can extend fragPos into a

homogeneous vec4 value:

vec3 lightDir = normalize(lightPos - vec3(uModel * vec4(fragPos, 1.)));

The GLSL functions vec4 and vec3 extend a 3-dimensional vector with the given component and

truncate a 4-dimensional vector, respectively. We now have a lightDir in a consistent coordinate

system, namely in the world space.

The final calculation of the diffuse intensity uses this expression:

max(dot(lightDir, normalize(fragNorm)), 0.)

Here, fragNorm resides in model space and should be transformed into world space. One tricky

detail, however, is that fragNorm denotes a direction, as opposed to a position as in fragPos. These

require different geometric representations, because a direction should not be affected by translation.

Fortunately, there is a trick to avoid this issue while still permitting the use of our nice homogeneous

coordinate representation. By extending fragNorm withw = 0, affine translation is not applied.

return max(dot(lightDir, normalize(vec3(uModel * vec4(fragNorm, 0.)));

This subtle difference is a common source of errors, particularly for novice programmers. Finally,

we have a correct GLSL implementation of diffuse. This version results in the correct output in

Figure 1a.

3 GEOMETRY TYPES
The problems in the previous section arise from the gap between the abstract math and the

concrete implementation in code. We classify this kind of bug, when code performs geometrically

meaningless operations, as a geometry error. Gator provides a framework for declaring a type

system that can define and catch geometry errors in programs.

The core concept in Gator is the introduction of geometry types. These types refine simple

GLSL-like vector data types, such as vec3 and mat4, with information about the geometric object

they represent. A geometry type consists of three components:

• The reference frame defines the position and orientation of the coordinate system. A reference

frame is determined by its basis vectors and origin. Examples of reference frames are model,

world, and projective space.

• The coordinate scheme describes a coordinate system by providing operation and object

definitions, such as homogeneous and Cartesian coordinates. Coordinate schemes expresses

how to represent an abstract value computationally, which identifies what the underlying

GLSL-like type is.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Geometry Types for Graphics Programming 1:7

• The geometric object describes which geometric construct the data represents, such as a point,

vector, or transformation.

In Gator, the syntax for a geometry type is scheme<frame>.object This notation invokes both

module members and parametric polymorphism. Coordinate schemes are parameterized by a

reference frame, while geometric objects are member types of a parameterized scheme. For example,

cart3<world>.point is the type of a point lying in world space represented in a 3D Cartesian

coordinate scheme.

The three geometry type components suffice to rule out the errors described in Section 2. The

rest of the section details each component.

3.1 Reference Frames
We can enhance the mathematical diffuse light computation above using geometry types:

float diffuseNaive(
cart3<world>.point lightPos,
cart3<model>.point fragPos,
cart3<model>.direction fragNorm) {

cart3<world>.direction lightDir = normalize(lightPos - fragPos);
return max(dot(lightDir, normalize(fragNorm)), 0.0);

}

With these stronger types, the expression lightPos - fragPos in this function is an error, since

lightPos and fragPos are in different frames. It is geometrically legal to subtract two positions to

produce a vector; the only issue with this code is the difference of reference frames. We will further

discuss how Gator determines subtraction is legal in Section 3.2.

Definition. Reference frames in Gator are labels with an integer dimension. The dimension of

a frame specifies the number of linearly independent basis vectors which make up the frame.

Gator does not require explicit basis vectors for constructing frames; keeping basis vectors implicit

helps minimize programmer requirements and helps avoid cluttering definitions with informa-

tion we don’t really need. We will discuss what keeps these basis vectors are implicit through

transformations between reference frames in Section 4.

The Gator syntax to declare the three-dimensional model and world frames is:

frame model has dimension 3;
frame world has dimension 3;

3.2 Coordinate Schemes
To transform fragPos and fragNormal to the world reference frame, we need to provide an affine

transformation matrix uModel.

float diffuse(
cart3<world>.point lightPos,
cart3<model>.point fragPos,
cart3<model>.direction fragNorm,
hom3<model>.transformation<world> uModel) {

cart3<world>.direction lightDir =
normalize(lightPos - (uModel * fragPos));

return max(dot(lightDir, normalize(uModel * fragNorm)), 0.0);

For this example, we define matrix–vector multiplicationm * v to update types akin to function

application: it ensures thatm is a transformation in the same frame as the vector and parameterized

on the destination frame f , then produces an output direction in the frame f . With this definition,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

multiplying uModel by an object in the model reference frame will result in an object in the world

frame.

Unfortunately, multiplying uModel * fragPos produces a Gator type error since uModel and

fragPos are in different coordinate schemes. We will resolve this issue in the next subsection by

converting between schemes.

Definition. Coordinate schemes provide definitions of geometric objects and operations. Con-

cretely, they consist of operation type declarations and concrete definitions for member objects and

operations. Geometric operations defined in coordinate schemes are expected to provide geometri-

cally correct code, and are generally intended (though not required) to operate between objects

within the coordinate scheme. Recall that, instead of “baking in” a particular notion of geometry,

Gator lets coordinate schemes provide types that define correctness for a given set of geometric

operations.

with frame(3) r:
coordinate cart3 : geometry {
object vector is float[3];
...

}

For example, we can define 3D vector addition in Cartesian coordinates, which consists of adding

the components of two vectors together.

vector +(vector v1, vector v2) {
return [v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2]];

}

All coordinate schemes are required to be parameterized with reference frames, so cart3<model>

and cart3<world> are different instantiations of the same scheme. Gator’s with syntax provides para-

metric polymorphism in the usual sense; in this example, the 3-dimensional Cartesian coordinate

scheme is polymorphic over all 3-dimensional reference frames.

3.3 Geometric Objects
To apply the uModel affine transformation to our position and normal, we first need to convert each

to homogeneous coordinates. Recall from Section 2.3, however, that this coordinate system trans-

formation differs for points and directions. To capture this distinction, we introduce the overloaded

function homify:5

hom<model>.point homify(cart3<model>.point p) {
return [p[0], p[1], p[2], 1.];

}
hom<model>.direction homify(cart3<model>.direction p) {
return [p[0], p[1], p[2], 0.];

}

Unlike Cartesian coordinates, homogeneous coordinates have different representations for points

and directions: the latter must have zero for its last coordinate,w .

To send fragPos and fragNorm to homogeneous coordinates, it suffices to call homify and let the

Gator compiler select the correct overloaded variant:

homify(fragPos); // Extends fragPos with w=1.
homify(fragNorm); // Extends fragNorm with w=0.

We repeat this process to define the function reduce, which maps homogeneous to Cartesian

coordinates. Finally, we apply these functions to our model:

5
For simplicity, this example homify is written only for objects in the model frame. Gator supports function parameteriza-

tion on reference frames, so we would normally write homify to work on any frame.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Geometry Types for Graphics Programming 1:9

float diffuse(
cart3<world>.point lightPos,
cart3<model>.point fragPos,
cart3<model>.direction fragNorm,
hom3<model>}.transformation<world> uModel) {

cart3<world>.direction lightDir = normalize(lightPos - reduce(uModel * homify(fragPos)));
return max(dot(lightDir, normalize(reduce(uModel * homify(fragNorm))), 0.0));

}

Now, by using all three components of the geometry type, our code will compile and produce the

correct Phong diffuse color shown in Figure 1a.

Definition. The object component of a geometry type describes the type’s underlying datatype

and provides information on permitted operations. Object type definitions can be parameterized

on reference frames, such as writing affine transformations to a specific frame. For example, we

can define some objects in homogeneous coordinates:

coordinate hom3 : geometry {
object point is float[4];
object direction is float[4];
with frame(3) r:
object transformation is float[4][4];
...

}

Object and type declarations in Gator extend existing types; for example, here point is defined as

a subtype of float[4]. When an operation is applied to one or more objects, Gator requires that

they have matching coordinate schemes and that the function being applied has a definition in

this matching scheme. For example, by omitting a definition for addition between points and their

supertypes, we ensure that Gator will reject fragPos + fragPos.

4 AUTOMATIC TRANSFORMATIONS
Gator’s type system statically rules out bad coordinate system transformation code. In this sec-

tion, we show how it can also help automatically generate transformation code that is correct by

construction. The idea is to raise the level of abstraction for coordinate system transformations

so programmers do not write concrete matrix–vector multiplication computations—instead, they

declaratively express source and destination spaces and let the compiler find the right transforma-

tions. A declarative approach can obviate complex transformation code that obscures the underlying

computation and can quickly become out of date, such as this shift from model to world space:

cartesian<world>.direction worldNorm =
normalize(lightPos - reduce(uModel * homify(fragNorm)));

We extend Gator with an in expression that generates equivalent code automatically:

cartesian<world>.direction worldNorm = normalize(lightPos - fragNorm in world);

The new expression converts a vector into a given representation by generating the appropriate func-

tion calls and matrix–vector multiplication. Specifically, the expression e in scheme<frame> takes a

typed vector expression e from its current geometry type T.object to the type scheme<frame>.object

by finding a series of transformations that can be applied to e . With this notation, either the scheme

or frame can be omitted without ambiguity, so writing x in world where x is in scheme cart3

is the same as writing x in cart3<world>. Gator in expressions can only be used to change the

coordinate scheme or parameterizing reference frame; that is, the geometric object of the target

type must be the same as the original value type.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

world

view

rotated

world

scaled

world

c1 c3

c2 c4

Fig. 3. A transformation graph with provided trans-
formations. The highlighted edge represents a newly
added transformation function, which must be
unique and agree with the existing paths on the
graph.

c ∈ constants

x ∈ variables

f ∈ function names

p ∈ primitives

t ∈ types

τ ::= unit | ⊤p | ⊥p | t

e ::= v | c | f (e1, e2) | x as! τ | x in τ

C ::= τ x = e | e

P = C; P | ϵ

Fig. 4. Core Gator syntax.

Implementation. The Gator compiler implements in expressions by searching for transformations

to complete the chain from one type to another. It uses a transformation graphwhere the vertices are
types and the edges are transformation matrices or functions. Figure 3 gives a visual representation

of a transformation graph.

4.1 Canonical Functions
The transformations that gator reasons about for automatic application are special: they must

uniquely define a map from their domain to their range. Gator requires these functions to be labeled

with the word canon. Gator defines three requirements on these transformations: (1) there can be

only one canonical function between each pair of types in a given scope, (2) all canonical functions

between reference frames must map between frames of the same dimension, and (3) a canonical

function can only have one non-canonical argument.

To expand on condition (3); canonical functions may take in canonical arguments, which are

variables labelled with the canon keyword. The most familiar example of this use is defining matrix—

vector multiplication to be canonical; the matrix itself must be included and must be a canonical

matrix:

with frame(3) target:
canon point *(canon transformation<target> t, point x) {

...
}
...
// Now declare the matrix as canonical for use with multiplication
canon hom<model>.transformation<world> uModel;
homPos in world; // --> uModel * homPos

It is legal to manually fill canonical arguments to functions with non-canonical variables; however,

in expressions will never do so.

The intuition of canonical functions comes from affine transformations between frames and

coordinate schemes. Since each frame has underlying basis vectors, transformations between frames

of the same dimension which preserve these frames are necessarily unique; further, applying these

bijective transformations does not cause data to “lose information.” Similarly, coordinate schemes

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Geometry Types for Graphics Programming 1:11

simply provide different ways to view the same information; there are often unique transformations

between schemes that can be applied as needed to unify data representation.

This construction of canonical functions and automatic transformations is similar to constructions

provided by C# and C++’s type coercion. The slightly different approach needed for in expressions

will be discussed briefly in Section 8.

4.2 Correctness of Generated Transformations
With in expressions, Gator programmers sacrifice control for convenience: the compiler picks

which transformation functions and matrices to use to get from one coordinate system to another.

If all the individual transformations marked with canon are correct, then the composed “chain”

generated for an in expression must also be correct. Functional verification of transformations,

however, is not feasible in Gator’s purely static setting: it would require not only the value of

every transformation matrix, which typically varies dynamically over time, but also an intrinsic

description of each coordinate system, such as the basis vectors for every reference frame, which is

never available in real graphics code. We view heavyweight dynamic debugging aids for checking

transformation correctness as important future work.

We can, however, state a simple consistency condition that is necessary but not sufficient for

a system of canonical transformations to be correct. The transformation system should be path
independent: for any two types τ1 and τ2, the behavior of any chain of transformations from τ1 to
τ2 should be equivalent. In other words, every edge in the transformation graph corresponds to

a function—so every path corresponds to a function composition, and every such path between

the same two vertices should yield the same composed function. (This definition is equivalent to

commutativity for diagrams [Murota 1987].) Otherwise, the semantics of an expression e in τ

would depend on the graph search algorithm that Gator uses to find routes in the transformation

graph, which is clearly undesirable.

Because it is a purely static system, Gator does not enforce path independence. However, path

independence motivates Gator’s requirement that canonical transformations preserve dimensional-

ity (see Section 4.1). Without this condition, we have found it is easy to accidentally violate path

independence with non-invertible functions and result in an ambiguous transformation graph for

in expressions.

5 FORMAL SEMANTICS
Gator provides a framework for defining geometry types as an “overlay” on top of computation-

oriented programs in a base language without geometry types. In this section, we formalize a core of

Gator to show that its constructs are sound with respect to such an underlying language. The goal is

a theorem stating that well-typed Gator programs, when translated, result in well-typed programs

in the target language. We focus on the generic, extensible Gator language rather than formalizing

the rules for any specific geometric system—affine transformations on Cartesian coordinates, for

example. Proving soundness with respect to a linear algebra domain would be interesting future

work but is out of scope for this paper.

We define two languages: a high-level core semantics for Gator that includes its user-defined

types, and a low-level abstract target language, Hatchling. Hatchling represents a sound imperative

language with some set of primitive types and operators on those types. For example, an instance

with fixed-size vector and matrix types can reflect a simple core of GLSL.

5.1 Syntax
Figure 4 lists the syntax of the formal core of Gator that we formalize in this section. The types in

this core language consist of unit and a lattice over each primitive type p. The choice of primitives

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

τ1 ≤ τ2 Γ ⊢ e : τ1

Γ ⊢ e : τ2

X(c) = p

Γ ⊢ c : ⊥p

Γ(v) = τ

Γ ⊢ x : τ

Γ ⊢ e : τ Γ(v) = τ

Γ ⊢ τ x = e : unit

Γ ⊢ C : τ1 Γ ⊢ P : τ2

Γ ⊢ C; P : unit Γ ⊢ ϵ : unit

Γ ⊢ e : ⊤p τ ≤ ⊤p

Γ ⊢ e as! τ : τ

Γ ⊢ e : τ1 P(τ1, τ2) = f

Γ ⊢ e in τ2 : τ2

Γ ⊢ e1 : τ1 Γ, ⊢ e2 : τ2 Φ(f , τ1, τ2) = τ3

Γ ⊢ f (e1, e2) : τ3

Fig. 5. Typing Judgment

is kept abstract in this formalism to highlight that the Gator extend over arbitrary underlying

datatypes. For example, in a GLSL core language, we might have a primitive float or vec3 –

something like vector would be a custom type t and not a primitive.

A program in Gator is a series of commands; we simplify these to variable declaration, assignment,

and expressions. Gator expressions are constructed around function applications, with as and in

expressions to help manage types.. We assume functions always take two arguments for simplicity;

extending this assumption for other argument counts is straightforward.

5.2 Typing Rules
We define a typing judgment for Gator programs, Γ ⊢ P : τ , that, for any program P and typing

context Γ, produces a type τ . The complete semantics for this judgment can be seen in Figure 5.

Note that Γ is kept constant throughout; declaring a variable requires looking up into the constant

Γ to determine if the declared type matches the expected type. Keeping Γ constant will later help

with translation; the type of any expression can be determined exactly from the constant global

contexts Γ,X, and Φ along with the judgment P.

Gator requires a lattice for each primitive type; custom types on each lattice introduces new

subtyping relations. We define a type ordering among types ≤ where t1 ≤ t2 means that t1 is a
subtype of t2. ≤ is expected to be reflexive and transitive. In a well formed program, ≤ must contain

a rule for every user defined type, every type (except unit) must be a subtype of a primitive top type,

and every bottom type ⊥p must be a subtype of each subtype of the associated ⊤p . In other words,

≤ must conform to a lattice structure for each primitive p. The complete summary of subtyping

rules can be found in the attached supplementary materials.

The typing information for functions is stored in a function typing context, Φ, which maps the

tuple of function name and input types to the output type. The semantics of Φ are built to support

overloaded functions.

Gator, as defined in these semantics, is parameterized over primitive types stored in primitive

type context X , which maps a literal to its primitive type.

The map from in expressions to paths is managed by the judgment P. More precisely, P maps a

given start and end type τ1 and τ2 to a function name that, when applied to an expression of type τ1,
produces an expression of type τ2. We simplify the judgment of P here to only allow one step for

notation clarity; in the real Gator implementation, the transformation may be a chain of functions.

The details of this judgment P are omitted for simplicity, but amount to a simple lookup through

the available functions for a function of the correct type.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Geometry Types for Graphics Programming 1:13

⟦c⟧Γ , c ⟦x⟧Γ , x

⟦τ x := e⟧Γ , ⟦τ⟧ x := ⟦e⟧Γ ⟦e as! τ⟧Γ , ⟦e⟧Γ
⟦e in τ2⟧Γ , ⟦f (e)⟧Γ where Γ ⊢ e : τ1 and f = P(e, τ1, τ2)

⟦f (e1, e2)⟧Γ , f ′(e1, e2) where Γ ⊢ e : τ1, Γ ⊢ e : τ2, and f ′ = Ψ(f , e1, e2, τ1, τ2)

⟦ϵ⟧Γ , ϵ ⟦C; P⟧Γ , ⟦C⟧Γ ; ⟦P⟧Γ
⟦t⟧ , ⊤p where t ≤ ⊤p

⟦⊤p⟧ , ⊤p ⟦⊥p⟧ , ⊤p

⟦unit⟧ , unit

Fig. 6. Translational semantics for expressions and types

5.3 Translation Soundness
To prove the translation soundness of Gator, we need to first define Hatchling and our translation

from Gator to Hatchling. We will show that a well-typed Gator program must translate to a

well-typed Hatchling program.

Primitives in Gator can be translated to a type in the target language. For notation convenience

we name primitives such that ⊤p in Gator translates to ⊤p in Hatchling.

We define the syntax of Hatchling to be identical to Gator syntax except for τ , which is instead

written as τ ::= unit | ⊤p , and without as! or in expressions. In other words, Hatchling is simply

Gator with custom type labels and associated operations erased. In the formalism of Hatchling,

abstraction over operation implementation is done using operation context Ξ that maps an operator

name to its output type.

When Hatchling is parameterized to be a simple core of GLSL, some top types we might see are

the float and vec3 types. Translation from Gator would consist of erasing custom geometry types,

such as cart3<model>.point, to their associated top type; in this case vec3.

To translate Gator’s externally-defined functions (which may be overloaded on types not part of

Hatchling), we invoke the context Ψ. Ψ maps the tuple of a function name, input expressions, and

input types to an expression in the target language. For example, we might map Gator’s definition

of subtraction between points to be a GLSL subtraction between two vec3s. The resulting function

names must each be unique and preserve the translation of Gator’s primitive types. A well formed

function translation context Ψ would necessarily map functions to expressions of the correct return

type, as constrained by Φ under translation.

We reuse the judgment P as a mechanism to resolve in expressions, applying the function result

of evaluating the judgment to e . This must produce a result of the correct translated type for a

well-formed judgment P.

The typing rule for operation expressions is:

Γ ⊢ e1 : τ1 Γ, ⊢ e2 : τ2 Ξ(o) = τ3
Γ ⊢ o(e1, e2) : τ3

We emphasize this rule as being similar to Gator’s rules for operations, but with a “translated”

context using only Hatchling (i.e. primitive) types. We also note that Ξ does not take in types as

arguments, thus Hatchling does not support overloaded functions.

We define translational semantics from type-annotated Gator to Hatchling in Figure 6. The

typing contexts Γ and Φ are translated by replacing every τ in their range with ⟦τ⟧.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

Using structural induction over expressions in Gator, we are now able to show that

Theorem 1 (translational soundness). For all Γ, e , and τ , if Γ ⊢ e : τ then ⟦Γ⟧ ⊢ ⟦e⟧Γ : ⟦τ⟧.
That is to say, if Gator code type checks, then Hatchling code type checks. Since Hatchling is

constrained to be sound, Gator must be sound. A sketch of this proof is included in the provided

supplementary materials.

6 IMPLEMENTATION
We implemented Gator in a compiler that statically checks user-defined geometric type systems as

described in Section 3 and automatically generates transformation code as described in Section 4.

The compiler consists of 2,800 lines of OCaml. It can emit either GLSL or TypeScript source code,

to target either GPU shaders or CPU-side setup code, respectively.

The rest of this section describes how the full Gator language implementation extends the core

language features to enable real-world graphics programming. We demonstrate these features in

detail in a series of case studies in Section 7.

6.1 Practical Features
Types. While Gator is designed around geometry types, writing realistic code requires a more

complete language design. Aside from the primitive types bool, int, float, and string, Gator

supports fixed-length array types, such as float[3], and type aliases.

New types may be declared as a subtype of an existing type. For instance, we can add support for

the GLSL-style vec3:

type vec3 is float[3];

Through creating a custom type alias, we can, for example, provide support for a subtype of

float[3], the GLSL vec3. While the built-in float[3] type does not support vector addition, we

will be able to write x + y for vec3s x,y as in GLSL.

To allow literal values to interact intuitively with custom types, literals in Gator have special

types. For example, the number 42 is of type %int. Gator introduces a typing rule where each literal

type %p is a subtype of every subtype of p. In other words, the literal type %p is the bottom type

for the type hierarchy with top type p. We summarize these ideas in this example:

type vec3 is float[3];
vec3 s1 = [4.2, 4.2, 4.2]; // Legal
float[3] x = s1; // Legal
vec3 s2 = x; // ERROR: float[3] is not a vec3

This behavior of literal values allows us to capture the Gator-style intuition that a given vector can

either be a geometric point or just a raw GLSL vec3, but this information is not known until the

data is assigned to a variable.

Type Inference. Gator supports local type inference using the auto keyword:

cart3<model>.point fragPos = ...;
// worldPos will have type cart3<world>.point
auto worldPos = fragPos in world;

External Functions. Functions and variables defined externally in the Gator target can be written

using the declare keyword.

declare vec3 normalize(vec3 v);

All arithmetic operations in Gator are functions which can be declared and overloaded. Gator has

no built-in functions. Requiring this declaration allows us to include GLSL-style infix addition of

vectors without violating coordinate systems restrictions:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Geometry Types for Graphics Programming 1:15

declare vec3 +(vec3 v1, vec3 v2);

Addition is then valid for values of type vec3:

vec3 x = [0., 1., 2.];
vec3 result = x + x; // Legal

But emits an error when applied to two points, as desired, since they are not subtypes of vec3 and

so there is no valid function overload:

cartesian<model>.point fragPos = [0., 1., 2.];
auto result = fragPos + fragPos; // ERROR: No addition defined for points

Import System. To support using custom Gator libraries in a readable way, we built a simple

import system in Gator. Files can be imported with the keyword using followed by the name of the

file:

using "../glsl_defs.lgl";

Unsafe Casting. As an escape hatch from strict vector typing, Gator provides an unsound cast

expression written with as!:

vec3 position = fragPos as! vec3;

Casts must preserve the primitive representation; we could not, for instance, cast a variable with

type float[2] to float[3]. Unsafe casts syntactically resemble in expressions but are unsound and

carry no run-time cost. These casts both allow for unsafe transformations for defining a function

that is externally “known” to be safe, and for allowing the user to forgo Gator’s type system and

work directly with GLSL-like semantics, as seen in the example above.

6.2 Standard Library
Per Section 5, Gator does not include any built-in functions or operations. Our implementation does

provide array indexing as a built-in function to help simplify definitions, but otherwise matches

requires that operations such as + be explicitly declared.

We implement a standard library provides access to common GLSL operations. This library

consists of GLSL function declarations, scheme declarations for Cartesian and Homogeneous

coordinates, and basic transformation functions such as homify and reduce. Relevant GLSL functions

are declared to work on GLSL types, such as the addition operation operation in section 6:

declare vec3 +(vec3 x, vec3 y);

We build schemes in much the same way as introduced in Section 3.2, as with the sketch of the

cart3 scheme:

with frame(3) r:
coordinate cart3 : geometry {
object vector is float[3];
vector +(vector v1, vector v2) {

return [v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2]];
}

}

Finally, we include homify and reduce transform between homogeneous and cartesian coordinates

as discussed in Section 3.3:

hom<model>.point homify(cart3<model>.point p) {
return [p[0], p[1], p[2], 1.];

}
cart3<model>.point reduce(hom<model>.point p) {
return [p[0], p[1], p[2]];
}

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

(a) Texture. (b) Reflection.

(c) Shadow map. (d) Microfacet.

Fig. 7. Example outputs from four renderers used in our case studies.

We use this same library when implementing each shader for the case study.

7 GATOR IN PRACTICE
This section explores how Gator can help programmers avoid geometry bugs using a series of

case studies. We use the Gator compiler to implement OpenGL-based renderers that demonstrate

a variety of common visual effects, and we compare against implementations in plain GLSL. We

report qualitatively on how Gator’s type system influences the expression of the rendering code

(Section 7.1 and quantitatively on the performance impact of Gator’s in expressions (Section 7.2).

7.1 Case Studies
To qualitatively study Gator’s safety and expressiveness, we used it to implement 8 renderers based

on the OpenGL API in its browser-based incarnation, WebGL [Jackson and Gilbert 2015]. To the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Geometry Types for Graphics Programming 1:17

best of our knowledge, there is no standard benchmark suite for evaluating the expressiveness and

performance of graphics shader programs. Instead, we assemble implementations of a range of

common rendering effects:

• Phong: The lighting model introduced in Section 2.

• Reflection: Use two-pass rendering to render an object that reflects its surroundings.

• Shadow map: Simulate shadows for moving objects by computing a projection.

• Microfacet: Texture model for simulating roughness on a surface.

• Texture: Use OpenGL’s texture mapping facility to draw an image on the surface of an object.

• Spotlight: Phong lighting restricted to a spotlight circle.

• Fog: Lighting model with integration to simulate distortion from fog.

• Bump map: Texture model for simulating bumps on surfaces.

Each renderer consists of both CPU-side “host” code and several GPU-side shader programs. Figure 7

depicts the output of a selection of these renderers.

The rest of this section reports on salient findings from the case studies and compares them to

standard implementations in GLSL and TypeScript. For the sake of space, we highlight the most

distinct cases where Gator helped clarify geometric properties and prevent geometry bugs that

would not be caught by plain GLSL. The complete code of both the Gator and reference GLSL

implementations can be found online.
6

Reflection. Our reflection case study, shown in Figure 7b, renders an object that reflects the

dynamic scene around it, creating a “mirrored” appearance. The surrounding scene includes a static

background texture, known as a skybox, and several non-reflective floating objects to demonstrate

how the reflected scene changes dynamically.

Rendering a reflection effect requires several passes through the graphics pipeline. The idea is

to first render the scene that the mirror-like object will reflect, and then render the scene again

with that resulting image “painted” onto the surface of the object. There are three main phases: (1)

Render the non-reflective objects from the perspective of the reflective object. This requires six

passes, one for each direction in 3-space. (2) Render the reflection using the generated cube as a

texture reference. (3) Finally, render all other objects from the perspective of the camera.

Reflection: Inverse Transformation. For the second step, we refer to a cubemap—a special GLSL

texture with six sides—to refer to the six directions of the scene. To calculate the angle of reflection,

we need to reason about the interactions of the light rays in view space as they map onto our model
space. Specifically, calculating the reflection amounts to the following operations, where V is the

current vertex’s position and N is the current normal vector, which must both be in the view frame:

uniform samplerCube<alphaColor> uSkybox;
...
void main() {

...
cart3<view>.vector R = -reflect(V, N);
auto gl_FragColor = textureCube(uSkybox, R in model);

}

The key feature to note here is the transformation R in model, which accomplishes our goal of

returning the light calculation to the object’s perspective (the model frame). This transformation

requires that we map backwards through the world frame, a transformation which requires the

inverse of the model→world matrix and the world→view matrix multiplied together. This interac-

tion produces a unique feature in Gator’s type system, where we need to both have a forward

6
URL omitted for anonymous review

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

transformation and its inverse. The shader declares the matrices as follows, with the inversion

being done preemptively on the CPU:

canon uniform hom<world>.transformation<view> uView;
canon uniform hom<model>.transformation<world> uModel;
canon uniform cart3<view>.transformation<model> uInverseViewTransform;

The inverse view transform uses a Cartesian (cart3) matrix because we intend only to use it for

the vector R, which ignores the translation component of the affine transformation. The inverse

transformation is what permits us to write R in model, while the forward transformations must be

uniquely given to actually send our position and normal to the view frame (as noted before):

varying cart3<model>.point vPosition;
varying cart3<model>.normal vNormal;
void main()

auto N = normalize(vNormal in view);
auto V = -(vPosition in view);
...

}

Reflection: Normal Transformation. Additionally, we need to reason about the correct transforma-

tion of the normal with translation (that is, when moving the object in space), which means that we

need the inverse transpose matrix, which provides a distinct path between the model and view

frames. The use of the inverse transpose of the model-view matrix is perhaps unexpected; it arises

specifically for a geometry normal from a convenient algebraic result.

In GLSL, it is easy to mistakenly transform the normal as if it were an ordinary direction:

varying vec3 vNormal;
void main()

auto N = normalize(vec3(uView * uModel * vec4(vNormal, 0.)));
}

This code is wrong because uModel * vec4(vNormal, 0.) does not apply the translation component

of the uModel transformation. To prevent this kind of bug, the Gator standard library defines the

normal type, which is a subtype of vector. A new normalTransformation type can only operate on

normals. Using these types, a simple in transformation suffices:

canon uniform cart3<model>.normalTransformation<view> uNormalMatrix;
varying cart3<model>.normal vNormal;
void main()

auto N = normalize(vNormal in view); // uNormalMatrix * vNormal
}

The compiler uses the normal version of the transformation, correctly applying the translation

component.

Shadow Map: Light Space. Shadow mapping is a technique to simulate the shadows cast by 3D

objects when illuminated by a point light source. Our case study, shown in Figure 7c, renders several

objects that cast shadows on each other and a single “floor” surface. The non-shadow coloring is

simulated through Phong lighting as previously discussed.

As with the reflection renderer, to calculate shadows in a scene, we require several passes through

the graphics pipeline. The first pass renders the scene from the perspective of the light and calculates
the whether a given pixel is obscured by another. The second pass uses this information to draw

shadows; a given pixel is lit only if it is not obscured from the light.

The first pass does all geometric operations in the vertex shader to render the scene from the

light’s perspective. This is easy to get wrong in GLSL by defaulting to the usual transformation

chain:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Geometry Types for Graphics Programming 1:19

void main() {
// The usual transformation chain here is wrong!
// We should instead be using uLightProjective and uLightView
vec4 gl_Position = uProjective * uView * uModel * vec4(aPosition, 1.);

}

This incorrect transformation chain will lead to shadows in strange places and hard-to-debug

effects.

In Gator, on the other hand, the work is done when typing the matrices themselves. From there,

the transformation to light space is both documented and correct by construction:

attribute cart3<model>.point aPosition;
canon uniform hom<model>.transformation<world> uModel;
canon uniform hom<world>.transformation<light> uLightView;
canon uniform hom<light>.transformation<lightProjective> uLightProjection;

void main() {
auto gl_Position = aPosition in hom<lightProjective>;
// ...

}

We use the depth information in the final pass in the form of uTexture. To look up where the

shadow should be placed, we must lookup the position of the current pixel in the light’s projective

space (which is where the position was represented in the previous rendering). In GLSL, we require

the following hard-to-read code:

float texelSize = 1. / 1024.;
float texelDepth = texture2D(uTexture,

vec2(uLightProjective * uLightView * uModel * vec4(vPosition, 1.))) + texelSize));

Using the correct transformations is difficult and hard to be sure if the correct transformation chain

was used once again. In Gator, on the other hand, this is straightforward:

float texelSize = 1. / 1024.;
float texelDepth = texture2D(uTexture, vec2(vPosition in lightProjective) + texelSize));

Microfacet: Custom Canonical Functions. Anisotropic microfacet shading creates an illusion of

roughness and bumpiness on a 3D modeled surface using information from the normal map of that

surface. Modeling this correctly, however, requires an unusual technique: building a local reference

frame from the perspective of the normal vector called the local normal frame.

Converting to the local normal frame of a given normal consists of a function call with the

appropriate normal vector.

vec3 proj_normalframe(vec3 m, vec3 n) { ... }
vec3 geom_normal;
vec3 result = proj_normalframe(viewDir, geom_normal);

However, as with other conversions between spaces, writing this kind of code in GLSL can involve

multiple nonobvious steps. If the normal and target direction are in different spaces, the GLSL code

must look like this:

vec3 result = proj_normalframe(vec3(uView * uModel * vec4(modelDir, 1.)), geom_normal);

In Gator, we instead declare proj_normalframe with the appropriate types and a canonical tag,

noting that the normal itself is a canonical part of the transformation:

frame normalframe has dimension 3;
canon cart3<normalframe>.direction proj_normalframe(

cart3<view>.direction m, canon cart3<view>.normal n) { ... }

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

We then declare the normal geom_normal with the appropriate type, and the transformation type

becomes straightforward:

canon cart3<view>.normal geom_normal;
auto result = modelDir in normalframe;

Textures: Parameterized Types. A texture is an image that a renderer maps onto the surface of

a 3D object, creating the illusion that the object has a “textured” surface. Our texture case study

renders a face mesh with a single texture (shown in Figure 7a). While this example does not provide

any geometry insight, we highlight the study to show the broad utility of the types introduced by

Gator for a graphics context. GLSL represents a texture using a sampler2D value, which acts as a

pointer to the requested image, which is typically an input to a shader:

uniform sampler2D uTexture;

Textures are mapped to the image using the object’s current texture coordinate:

varying vec2 vTexCoord;

Whereas textures themselves are typically constant (using the uniform keyword), a texture co-

ordinate like vTexCoord differs for each vertex in a mesh (as the varying keyword indicates). To

sample a color from a texture at a specific location, a fragment shader must use the GLSL texture2D

function:

vec4 gl_FragColor = texture2D(uTexture, vTexCoord);

The result type of texture2D in GLSL is vec4: while textures typically contain colors (consisting

of red, green, blue, and alpha channels), renderers can also use them to store other data such as

shadow maps or even points in a coordinate system.

In Gator and its GLSL standard library, sampler2D is a polymorphic type that indicates the values

it contains:

with float[4] T:
declare type sampler2D;
with float[4] T:
declare T texture(sampler2D<T> tex, vec2 uv);

For this renderer, the texture contains alphaColor values, which represent color values that can

be used as gl_FragColor. The fragment shader is nearly identical to GLSL but with more specific

types:

uniform sampler2D<alphaColor> uTexture;
varying vec2 vTexCoord;
void main() {

alphaColor gl_FragColor = texture2D(uTexture, vTexCoord);
}

With this code, we guarantee that the texture represented by uTexture will produce a color which

can be directly used by gl_FragColor. We therefore both provide documentation and prevent errors

with trying to use the resulting vector as, say, a point for later calculations.

7.2 Performance
While Gator is chiefly an “overhead-free” wrapper that expresses the same semantics as an under-

lying language, there is one exception where Gator code can differ from plain GLSL: its automatic

transformation insertion using in expressions (Section 4).

The Gator implementation compiles in expressions to a chain of transformation operations that

may be slower than the equivalent in a hand-written GLSL shader. In particular, hand-written

GLSL code can store and reuse transformation results or composed matrices, while the Gator

compiler does not currently attempt to do so. The Gator compiler also generates function wrappers

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Geometry Types for Graphics Programming 1:21

Fig. 8. Themean frames per second (fps)
for each shader for both the baseline
(GLSL) and Gator code. Error bars show
the standard deviation.

Gator GLSL p-value

Shader Mean S.E. Mean S.E. Wilcoxon TOST

phong 97.84 0.22 97.67 0.21 0.187 0.003*

texture 95.82 0.27 93.75 0.31 <0.001* 0.996

reflect 117.8 0.72 117.7 0.65 0.638 0.188

shadow 287.0 1.91 285.1 1.85 0.365 0.636

bump 98.60 0.29 99.07 0.29 0.063 0.098

microfacet 96.71 0.27 96.91 0.28 0.640 0.020*

fog 95.74 0.26 95.41 0.25 0.119 0.033*

spotlight 97.83 0.21 98.07 0.20 0.299 0.005*

Table 1. Mean and standard error of the frame rate for the Gator
and GLSL (baseline) implementation of each benchmark. We also
give the p-value for a Wilcoxon sign rank test and two one-sided
t-test (TOST) equivalence test that checks whether the means are
within 1 fps, where * denotes statistical significance (p < 0.05).

to enable its overloading. While both patterns should be amenable to cleanup by standard compiler

optimizations, this section measures the performance impact by comparing Gator implementations

of renderers from our case study to hand-optimized GLSL implementations.

7.2.1 Experimental Setup. We perform experiments on Windows 10 version 1903 with an Intel

i7-8700K CPU, NVIDIA GeForce GTX 1070, 16 GB RAM, and Chrome 81.0.4044.138. We run 60

testing rounds, each of which executes the benchmarks in a randomly shuffled order. In each round

of testing, we execute each program for 20 seconds while recording the time to render each frame.

We report the mean and standard deviation of the frame rate across all rounds.

7.2.2 Performance Results. Figure 8 shows the average frames per second (fps) for the GLSL and

Gator versions of each renderer, and Table 1 shows mean and standard deviation of each frame

rate. The frame rates for the two versions are generally very similar—the means are all within

one standard deviation. Several benchmarks have frame rates around 100 fps because they render

the same number of objects and the bulk of the cost comes from scene setup. We used around

100 objects for all scenes except reflection and shadow to reduce natural variation and focus on

measuring the cost of the shaders.

Table 1 shows the results of Wilcoxon signed-rank statistical tests that detect differences in the

mean frame rates. At an α = 0.05 significance level, we find a statistically significant difference

only for texture. However, a difference of means test cannot confirm that a difference does not exist.
For that, we also use we use the two one-sided t-test (TOST) procedure [Schuirmann 2005], which

yields statistical significance (p < α) when the difference in means is within a threshold. We use a

threshold of 1 fps. The test rejects the null hypothesis—concluding, with high confidence, that the

means are similar—for the phong, microfacet, fog, and spotlight shaders.
The anomaly is texture, where our test concludes that a small (2 fps) performance difference

does exist, although the differences are still within one standard deviation. Our best guess as to the

reason is due to a result of the boilerplate functions inserted by Gator, some of which be optimized

away with more work.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

8 RELATEDWORK
SafeGI [Ou and Pellacini 2010] introduces a type system as a C/C++ library for geometric objects

parameterized on reference frame labels not unlike Gator’s geometry types. The types introduced

by SafeGI do not include information about the coordinate scheme, and so also requrie abstracting

the notion of transformations to a map type which must be applied through a layer of abstraction.

Additionally, SafeGI does not attempt to introduce automatic transformations like Gator’s in

expressions nor attempt to study the result of applying these types to real code.

The dominant mainstream graphics shader languages are OpenGL’s GLSL [The Khronos Group

Inc. [n. d.]] and Direct3D’s HLSL [Microsoft 2008]. Research on graphics-oriented languages for

manipulating vectors dates at least to Hanrahan and Lawson’s original shading language [Hanrahan
and Lawson 1990]. Recent research on improving these shading languages has focused onmodularity

and interactions between pipeline stages: Spark [Foley and Hanrahan 2011] encourages modular

composition of shaders; Spire [He et al. 2016] facilitates rapid experimentation with implementation

choices; and Braid [Sampson et al. 2017] uses multi-stage programming to manage interactions

between shaders. These languages do not address vector-space bugs. Gator’s type system and

transformation expressions are orthogonal and could apply to any of these underlying languages.

Scenic [Fremont et al. 2019] introduces semantics to reason about relative object positions and

λCAD [Nandi et al. 2018] introduces a small functional language for writing affine transformations,

although neither seem to have a type system for checking the coordinate systems they’ve defined.

Practitioners have noticed that vector-space bugs are tricky to solve and have proposed using a

naming convention to rule them out [Sylvan 2017]. A 2017 enumeration of programming problems

in graphics [Sampson 2017] identifies the problem with latent vector spaces and suggests that a

novel type system may be a solution. Gator can be seen as a realization of this proposal.

Gator’s type system works as an overlay for a simpler, underlying type system that only enforces

dimensional restrictions. This pattern resembles prior work on type qualifiers [Foster et al. 1999],

dimension types [Kennedy 1994], and type systems for tracking physical units [Kennedy 1997].

Canonical transformations in Gator are similar in feel to Haskell’s type class polymorphic functions,

where Gator’s space type can be defined as a type class and the in keyword behave similarly to

Haskell lookup calls. Additionally, Gator’s notion of automatic transformations is a specialized use

type coercion, similar to structures introduces in the C# and C++ languages. What is particular

about Gator’s automatic type coercion is the notion of path independence discussed in Section 4,

along with a definition of uniqueness and bijectivity of canonical transformations. Together, these

requirements allow automation of coordinate system transformations that would not be allowed in

other, similar systems.

9 CONCLUSION
Gator attacks a main impediment to graphics programming that makes it hard to learn and makes

rendering software hard to maintain. Geometry bugs are extremely hard to catch dynamically, so

Gator shows how to bake them into a type system and how a compiler can declaratively generate

“correct by construction” geometric code. We see Gator as a foundation for future work that

brings programming languages insights to graphics software, such as formalizing the semantics of

geometric systems and providing abstractions over multi-stage GPU pipelines.

Geometry bugs are not just about graphics, however. Similar bugs arise in fields fields ranging

from robotics to scientific computing. In Gator, users can write libraries to encode domain-specific

forms of geometry: affine, hyperbolic, or elliptic geometry, for example. We hope to expand Gator’s

standard library as we apply it to an expanding set of domains.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Geometry Types for Graphics Programming 1:23

REFERENCES
Tim Foley and Pat Hanrahan. 2011. Spark: Modular, Composable Shaders for Graphics Hardware. In SIGGRAPH.
Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. 1999. A Theory of Type Qualifiers. In ACM Conference on

Programming Language Design and Implementation (PLDI).
Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli, and Sanjit A.

Seshia. 2019. Functional Programming for Compiling and Decompiling Computer-Aided Design. In ACM Conference on
Programming Language Design and Implementation (PLDI).

Pat Hanrahan and Jim Lawson. 1990. A Language for Shading and Lighting Calculations. In SIGGRAPH.
Yong He, Tim Foley, and Kayvon Fatahalian. 2016. A System for Rapid Exploration of Shader Optimization Choices. In

SIGGRAPH.
Dean Jackson and Jeff Gilbert. 2015. WebGL Specification. https://www.khronos.org/registry/webgl/specs/latest/1.0/.

Andrew J. Kennedy. 1994. Dimension Types. In European Symposium on Programming (ESOP).
Andrew J. Kennedy. 1997. Relational Parametricity and Units of Measure. In ACM SIGPLAN–SIGACT Symposium on Principles

of Programming Languages (POPL).
Microsoft. 2008. Direct3D. https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx.

K. Murota. 1987. Homotopy Base of an Acyclic Graph: a Combinatorial Analysis of Commutative Diagrams by Means of

Preordered Matroid. Discrete Applied Mathematics 17, 1–2 (May 1987), 135–155.

Chandrakana Nandi, James R. Wilcox, Pavel Panchekha, Taylor Blau, Dan Grossman, and Zachary Tatlock. 2018. Functional

Programming for Compiling and Decompiling Computer-Aided Design. In ACM SIGPLAN International Conference on
Functional Programming (ICFP).

Jiawei Ou and Fabio Pellacini. 2010. SafeGI: Type Checking to Improve Correctness in Rendering System Implementation.

Bui Tuong Phong. 1975. Illumination for Computer Generated Pictures. Commun. ACM 18, 6 (June 1975), 311–317.

Adrian Sampson. 2017. Let’s Fix OpenGL. In Summit on Advances in Programming Languages (SNAPL).
Adrian Sampson, Kathryn S McKinley, and Todd Mytkowicz. 2017. Static Stages for Heterogeneous Programming. In ACM

Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
Donald J. Schuirmann. 2005. A comparison of the Two One-Sided Tests Procedure and the Power Approach for assessing

the equivalence of average bioavailability. Journal of Pharmacokinetics and Biopharmaceutics 15 (2005), 657–680.
Mark Segal and Kurt Akeley. 2017. The OpenGL 4.5 Graphics System: A Specification. https://www.opengl.org/registry/doc/

glspec45.core.pdf.

Sebastian Sylvan. 2017. Naming Convention for Matrix Math. https://www.sebastiansylvan.com/post/matrix_naming_

convention/.

The Khronos Group Inc. [n. d.]. The OpenGL ES Shading Language (1.0 ed.). The Khronos Group Inc.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
https://www.opengl.org/registry/doc/glspec45.core.pdf
https://www.opengl.org/registry/doc/glspec45.core.pdf
https://www.sebastiansylvan.com/post/matrix_naming_convention/
https://www.sebastiansylvan.com/post/matrix_naming_convention/

	Abstract
	1 Introduction
	1.1 The Problem
	1.2 Geometry Types

	2 Running Example: Diffuse Shading
	2.1 Gentle Introduction to Shader Programming
	2.2 Diffuse Lighting
	2.3 Where Things Go Wrong: GLSL Implementation

	3 Geometry Types
	3.1 Reference Frames
	3.2 Coordinate Schemes
	3.3 Geometric Objects

	4 Automatic Transformations
	4.1 Canonical Functions
	4.2 Correctness of Generated Transformations

	5 Formal Semantics
	5.1 Syntax
	5.2 Typing Rules
	5.3 Translation Soundness

	6 Implementation
	6.1 Practical Features
	6.2 Standard Library

	7 Gator in Practice
	7.1 Case Studies
	7.2 Performance

	8 Related Work
	9 Conclusion
	References

