
Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

Spatial binning and hashing

In the smoothed particle hydrodynamics simulation, particles interact
only with those particles that are within a circle of radius h of them. In
the naive reference code, a substantial fraction of the total time is spend
finding which pairs of particles interact, and the cost of finding interacting
pairs scales quadratically with the number of particles in the simulation. But
the particles in the simulation never get too close together, and so any given
particle will typically only interact with a bounded number of neighbors. We
can therefore make the simulation much faster by checking for interactions
only between particles that are close enough that they could conceivably
interact.

One simple way to limit the number of interactions we check is to partition
space into fixed-size bins. In particular, if we partition space into bins with
side length l ≥ 2h, then a particle in a particular bin can interact with at
most the other particles in that bin and particles in three neighboring bins;
see Figure 1

I do something very simple: I represent each particle as a structure1, and
use a linked list structure for each bin. The particle structure has the form

typedef struct particle_t {

// Position, velocity, acceleration, etc.

struct particle_t* next; // Next in bin

} particle_t;

and I have an array of head pointers particle_t* bins[], one for each bin.
Before computing interactions at each time step, I clear the bins pointers,
and then re-build the bins with a loop of the form

for (int i = 0; i < n; ++i) {

// Figure out bin for particle i

int b = ...;

// Add particle to the start of the list for bin b

part[i].next = bins[b];

bins[b] = part[i];

}

1I use parallel arrays in the reference code, but refactoring into an array of structures
gives better performance. I hope you can explain why at this point in the class!



Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

2h

Figure 1: The red particle in the bin at zero-indexed coordinates (1, 1) can
only interact with particles in the grey bins at (1, 1), (1, 2), (2, 1), and (2, 2).

Then when I want to compute interactions for particle i, I only need to
look up those particles in the bin where particle i resides, along with a few
neighboring bins.

Of course, giving you this much code still leaves you with a number of
practical issues to address, such as how to index the bins and how to keep
using symmetry in the computations of the interactions between particles!
And there’s nothing that says that you have to structure your computation
in the same way that I do. For example, you could eschew pointers entirely
and just use a bucket sort algorithm2 to re-order your particles at each step
so that particles in the same bin are in contiguous array locations3.

Partitioning space into bins that are 2h on a side is reasonable when a
large fraction of the total volume is filled with particles, as is the case for
the dam break simulation that we run by default. But this is not such a
reasonable approach if only a small fraction of the volume in the computa-
tional domain is filled with particles. In such a case, we would not have a
separate bucket for every bin in space. Instead, we would do spatial hashing,
which is a fancy way of saying that we would index the buckets by a hash of
the bin identifier. As long as the hash table is around the same size as the

2I’m happy to tell you about bucket sort if you come ask me, but you might be better
of just doing a Google search (or looking in a favorite algorithms textbook).

3I actually do a sort in my code in order to improve locality, but only once every
hundred steps or so



Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

number of particles, we expect not to have too many collisions; and for any
given particle, it is still easy to look up the hash buckets that would contain
any particles with which it might interact. Note that I do not expect you to
do spatial hashing for this assignment — simply having one bucket for each
spatial bin is fine!


