
Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

Tuning on a single core

1 From models to practice

In lecture 2, we discussed features such as instruction-level parallelism and
cache hierarchies that we need to understand in order to have a reasonable
mental model of performance of a single-processor code. Our goal in these
notes is to turn our new-found understanding of these details into practical
strategies for making single-core codes run fast, using the matrix multiplica-
tion project as a running example.

Note that these notes are an extended version of the start of lecture 3,
and they contain information that is not in the lecture 3 slides.

2 A cautionary notes

We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil.
– C. A. R. Hoare (quoted by Donald Knuth)

Performance tuning is like catnip for programmers. Most of us like the
idea of writing blazingly fast code and reveling in our own cleverness1. But
while computer cycles have become astonishingly cheap in terms of both
money and time, the same is not true for programmer cycles. It is easy
to fall into the trap of lovingly optimizing performance details at the cost
of increased development time (including time for testing and debugging),
higher maintenance overhead, and decreased robustness. A pragmatic ap-
proach is usually best. Worry about things that will have a big impact on
performance, like the choice of appropriate algorithms, data structures, and
memory layouts. Use fast libraries, and turn on the appropriate compiler
optimizations. Make sure that the code works correctly, and set up a test
framework so that you know immediately if you do something to break the
code. Then, if it makes sense to spend more time thinking about perfor-
mance, use a profiler to find bottlenecks where the code is spending most of
its time, and concentrate your efforts there.

1At least, I like reveling in my own cleverness.

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

const char∗ dgemm desc = ”Basic, three−loop dgemm.”;

void square dgemm(const int M,
const double ∗A, const double ∗B, double ∗C)

{
int i , j , k;
for (i = 0; i < M; ++i) {

for (j = 0; j < M; ++j) {
double cij = C[j∗M+i];
for (k = 0; k < M; ++k)

cij += A[k∗M+i] ∗ B[j∗M+k];
C[j∗M+i] = cij;

}
}

}

Figure 1: Naive matrix-matrix multiplication code in C.

3 Matrix multiplication

The Double precision General Matrix-Matrix multiplication routine (DGEMM)
is one of the Basic Linear Algebra Subroutines (BLAS). The BLAS interface
is a standard library interface for linear algebra building blocks like dot prod-
ucts, matrix-vector products, and matrix-matrix multiplication. Libraries
like LAPACK get good portable performance2 by organizing the work they
do so that most of the computation is done in calls to BLAS libraries; that
way, if someone has designed a fast implementation of the BLAS for a par-
ticular machine, LAPACK can run on that machine. The matrix-matrix
multiplication routine is one of the most important of the BLAS routines,
because it is a useful building block that can be made to run fast on modern
machines with deep cache hierarchies.

The BLAS DGEMM routine can actually do several different things, so
let’s consider a slightly simplified routine that computes C = C +AB where
A, B, and C are square matrices of dimension M (Figure 1). In terms of

2I may have to change this line in a couple years, since the LAPACK team is looking
at new organizations for multicore architectures that go beyond the performance of the
old BLAS-based blocked codes.

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

0 200 400 600 800 1000
0

1000

2000

3000

4000

n

M
F

lo
p
/s

Naive
Blocked
Tuned

Figure 2: Performance of naive, blocked, and tuned codes on one core of an
Intel Core 2 laptop.

matrix elements, we want to compute

cnewij = cij +
M∑
k=1

aikbkj.

Note that in the C code, we assume the matrices are in column-major order:
the first M elements of the C array represent the first column of the matrix C,
then the next M elements represent the second column, and so forth. That
is, the matrix element cij (row i, column j) appears at the array location
C[i+j*M], and the elements of A and B are accessed similarly. This is
different from the row-major order that C uses for its native two-dimensional
arrays. But the native two-dimensional array facility in C is quite limited,
and we generally will ignore it.

The arithmetic cost of the square dgemm routine is M2 multiplies and
M2 add, for a total of 2M3 floating point operations. For any matrix size M ,
we can take the number of flops and divide by the time required to execute
those flops in order to get the performance of our matrix-multiplication in
flop/s. Usually, we scale by a million or a billion, and report Mflop/s or
Gslop/s instead of flop/s. The theoretical peak flop rate on my laptop is 5

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

Gflop/s per core, or 10 Gflop/s if I use both cores. The actual flop rates for
three versions of square dgemm on this machine are shown in Figure 2. For
large matrices, the performance of the naive code from Figure 1 is only 330
MFlop/s, or less than 7% of the performance on a single core. In contrast,
with a little tuning3, we can reach nearly 90% of the peak performance on
this system. How do we do it?

4 DGEMM tuning ideas

4.1 Blocking

In class, we discussed the idea of blocking. For example, consider the matrix-
matrix product

650 762 874 986
740 868 996 1124
830 974 1118 1262
920 1080 1240 1400

 =


1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16




21 25 29 33
22 26 30 34
23 27 31 35
24 28 32 36

 .

We can think of the (1, 1) entry of the product as an inner product of the
first row and the first column of the two matrices in the product:

650 = 1 · 21 + 5 · 22 + 9 · 23 + 13 · 24.

Similarly, we can think of partitioning all three matrices into 2-by-2 blocks,
and writing the first block of the product in terms of the first block row and
block column of the two terms in the product:[

650 762
740 868

]
=

[
1 5
2 6

] [
21 25
22 26

]
+

[
9 13
10 14

] [
23 27
24 28

]
.

The advantage of thinking about matrix multiplication in this way is that
even if our original matrices don’t fit into cache, the little blocks will; and
if we break the matrices into b-by-b blocks, then each block multiplication
involves 2b3 flops and 2b2 data. Note that the idea of blocking can be applied
recursively: a large matrix might be partitioned into big blocks that fit in L2
cache, which in turn are partitioned into smaller blocks that fit in L1 cache,
which in turn are partitioned into tiny blocks that fit into the registers.

3For an embarrassingly large value of “little.”

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

4.2 Loop orders

In the naive code, we loop over i, then j, then k. We could equally well loop
over i, k, j, or j, i, k, or something else. In the i, j, k order, we have to go
across a row of A in the inner loop, which is a non-unit-stride access. The
reference Fortran DGEMM does better with the j, k, i ordering. You may
want to think about other alternatives. Note that if you use blocking, you
can potentially use different loop orders over blocks than within blocks.

4.3 Copy optimization

Even if we block and choose careful loop orderings, we might run into prob-
lems with conflict misses (associated with cache associativity) when the ma-
trix sizes are evenly divisible by a large power of two. One way around this
problem is to explicitly copy blocks into a contiguous block of local stor-
age before multiplying them. Often, the extra O(b2) cost of copying the
data into a temporary location is more than compensated by the improved
performance of the subsequent multiplication.

Apart from cache associativity issues, there is another reason why it might
make sense to copy blocks into separate storage before multiplying them. The
short vector instructions (SSE instructions) care about data alignment, and
we usually can’t enforce that alignment if we’re just handed general arrays
by the user.

Another side benefit of copy optimization is that you can use it to grace-
fully deal with fringe blocks. If you copy “fringe” blocks of your matrices
into temporary storage and fill the rest of the temporary storage with zeros,
then you can always pretend the fringe blocks are a little bigger than they
actually are in order to conveniently fit your lower-level blocking. You may
end up doing some pointless multiplications by zero; but if you do a little
extra work and improve the regularity of your data access, you may still end
up getting better performance in the end.

4.4 Compiler flags and annotations

Modern compilers do some types of optimizations much better than people
do. Even a mediocre compiler will usually do a reasonable job at scheduling
instructions and figuring out which registers should store which variables.

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

But it’s worthwhile playing with the flags that control the compiler opti-
mizations. Some flags to try with GCC are

• -O3: Aggressive optimization

• -march=core2: Tuning for a specific architecture (my laptop is a Core
2; you should figure out the appropriate architecture flag for the cluster
yourself).

• -ftree-vectorize: Automatically use the SSE units intelligently (the
Intel compiler is still much better at this)

• -funroll-loops: Unroll loops (basic loop unrolling is automatic with
-O3).

• -ffast-math: Allow risky floating point optimizations.

In addition to fiddling with compiler flags, you can help the compiler find
opportunities for optimization by adding a few annotations to the code. For
example:

• The aligned (16) attribute in GCC makes sure that some things are
aligned in memory on 16-byte boundaries. That’s useful with the SSE
instructions, some of which only work with aligned data.

• The restrict modifier for pointers in C is a promise to the compiler
that there will be no aliasing between different points. For example,
consider the following function:

void add vecs(int n, double∗ restrict x, double∗ restrict y)
{

int i ;
for (i = 0; i < n; ++i) {

x[i] += y[i];
}

}

Without the restrict keyword, the compiler has to worry about the
possibility that the data array pointed to by x overlaps the data array
pointed to by y.

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

Note that this level of tuning is usually only worthwhile after you have wor-
ried about issues of memory layout and figured out a good set of optimiza-
tion flags. A profiler can help guide you to places where such detailed tuning
might help.

4.5 Vector instructions

Unfortunately, GCC is still not very good at generating code that takes full
advantage of the SSE instructions. I hope in a couple years it will improve
to the point where I never again have to write these instructions directly
(the Intel compiler is already at this point). For the moment, though, it may
make sense to use the SSE intrinsics defined in xmmintrin.h.

There is a reasonably good overview of SSE programming on the Apple
developer web site:

http://developer.apple.com/hardwaredrivers/ve/sse.html

Though the topic of this page is nominally about SSE on OS X, most of
the information is not specific to Macs, and applies equally well to Intel
systems running other operating systems. A Google search for the keywords
“SSE” and “xmmintrin” will bring you to many other resources for SSE
programming.

4.6 Auto-tuning

Most of the tuning ideas described in this section involve some choice. What
loop orders should we use? What blocking factors make sense? Should we do
a copy optimization, and if so, at which levels? Which compiler flags should
we try? When the answers to these questions are not obvious, it may make
sense to do an experiment: try several possible parameter settings, and see
what works best. But there’s no need for you to be directly involved in all of
these experiments – you can just as well write a script to have the computer
do it for you! For example, this strategy is used very successfully in the
ATLAS project (Automatically Tuned Linear Algebra Software)

http://developer.apple.com/hardwaredrivers/ve/sse.html

	From models to practice
	A cautionary notes
	Matrix multiplication
	DGEMM tuning ideas
	Blocking
	Loop orders
	Copy optimization
	Compiler flags and annotations
	Vector instructions
	Auto-tuning

