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1 Deriving SPH

The Navier-Stokes equations with gravity are

ρa = −∇p+ µ∇2v + ρg.

The acceleration is the material derivative of velocity, and we usually take an
Eulerian perspective and write this as

a =
Dv

Dt
=
∂v

∂t
+ v · ∇v.

In smoothed particle hydrodynamics, though, we take a Lagrangian perspective,
and actually associate computational particles with material points. This makes
it easy to deal with the left-hand side of the Navier-Stokes equation.

To compute the spatial derivatives on the right hand side of the equation,
we interpolate pressures and velocities at the material particles to get smoothed
fields (hence the name). Then we differentiate the smoothed fields. For example,
suppose we care about some scalar field A(r). Each particle j has a mass mj , a
location rj , and a value Aj = A(rj). Between particles, we write

(1) AS(r) =
∑
j

mj
Aj

ρj
W (r− rj , h),

where W is a smoothing kernel with radius h. The densities ρj that appear in
(1) are themselves are computed using (1):

ρi = ρS(ri) =
∑
j

mj
ρj
ρj
W (r− rj , h),=

∑
j

mjW (r− rj , h).

Putting everything together, the SPH approximation computes field quanti-
ties at locations associated with computational particles. The governing equa-
tions for the particles and the associated quantities are then

ρiai = fpressurei + fviscosityi + ρig(2)

fpressurei = −
∑
j

mj
pi + pj

2ρj
∇W (ri − rj , h)(3)

fviscosityi = µ
∑
j

mj
vj − vi

ρj
∇2W (ri − rj , h),(4)

where the pressure and viscous interaction terms have been symmetrized to
ensure that particle i acts on particle j in the same way j acts on i.

To compute the pressure, we use the ideal gas equation of state

(5) pi = k(ρi − ρ0).

Of course, this is not the right equation of state for a liquid! This equation
is best regarded as a non-physical approximation that is legitimate as long as
the artificial speed of sound is much greater than the velocities of interest in
the problem (as is the case with the incompressible approximation that is more
commonly used in other settings).
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2 Smoothing kernels

Müller describes three radially symmetric different kernels for 3D simulation,
each with the form

W (r, h) =
1

Chd

{
f(q), 0 ≤ q ≤ 1

0, otherwise

where q = ‖bfr‖/h and d = 3 is the dimension. The kernels are based on
the choices fpoly6(q) = (1 − q2)3 for general interpolation, fspiky(q) = (1 − q)3
for interpolating pressures, and fviscosity(q) for viscosity computations. The
gradients are given by

∇W (r, h) =
r

Chd+2

{
q−1f ′(q), 0 ≤ q ≤ 1

0, otherwise

and the Laplacians are

∇2W (r, h) =
1

Chd+2

{
f ′′(q) + (d− 1)q−1f ′(q), 0 ≤ q ≤ 1

0, otherwise

The pressure kernel is designed with relatively steep gradients close to the
origin to prevent the clustering of computational particles that occurs when
pressures are interpolated with Wpoly6. The viscosity kernel is designed so that
the Laplacian will be positive definite, ensuring that we don’t accidentally get
negative viscous contributions that add energy to the system (and compromise
stability). Specifically, the viscosity kernel is chosen so that the Laplacian will be
proportional to (1−q) (so that the kernel Laplacian will always be positive) and
the kernel and its gradient vanish at q = 1. Because the Laplacian is different in
two and three dimensions, these conditions lead to different functions fviscosity(q)
in two and three dimensions. In two dimensions, the correct choice is

fviscosity(q) =
q2

4
− q3

9
− 1

6
log(q)− 5

36
.

The normalizing constants in two dimensions are determined by

C =

∫
01

2πqf(q) dq.

For our three functions, these constants are

Cpoly6 = π/4

Cspiky = π/10

Cviscosity = π/40.
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3 Condensed interaction force expressions

Making things completely explicit for the cases we care about most, we have
(for 0 ≤ q ≤ 1)

Wpoly6(r, h) =
4

πh8
(h2 − r2)3(6)

∇Wpoly6(r, h) = − 24r

πh8
(h2 − r2)2(7)

∇2Wpoly6(r, h) = − 48

πh8
(h2 − r2)(h2 − 3r2)(8)

∇Wspiky(r, h) = − 30

πh4
(1− q)2

q
r(9)

∇2Wviscosity(r, h) =
40

πh4
(1− q)(10)

If we substitute (9), (10), and the equation of state (5) into (3) and (4), we have

fpressurei =
15k

πh4

∑
j∈Ni

mj
ρi + ρj − 2ρ0

ρj

(1− qij)2

qij
rij

fviscosityi =
40µ

πh4

∑
j∈Ni

mj
vi − vj

ρj
(1− qij)

where Ni is the set of particles within h of particle i and qij = ‖rij‖/h, rij =
ri − rj . Putting these terms together, we have

fpressurei + fviscosityi =
∑
j∈Ni

f interactij

where

f interactij =
mj

πh4ρj
(1− qij)

[
15k(ρi + ρj − 2ρ0)

(1− qij)
qij

rij − 40µvij

]
,

and vij = vi − vj . We then rewrite (2) as

ai =
1

ρi

∑
j∈Ni

f interactij + g.

4 Sanity checks

I fairly regularly make typographical and copying errors when I do algebra and
implement it in code. In order to stay sane when I actually write something
somewhat complicated, I find it helpful to put together little test scripts to check
my work numerically. For your edification, in this section I give my MATLAB
test script corresponding to the derivation in these notes. The test script is
done in MATLAB.

I begin by implementing the functions f(q), the normalizing constants, and
the kernel functions for each of the three kernels.
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fp6 = @(q) (1-q^2)^3;

fsp = @(q) (1-q)^3;

fvi = @(q) q^2/4 - q^3/9 - log(q)/6 - 5/36;

Cp6 = pi/4;

Csp = pi/10;

Cvi = pi/40;

Wp6 = @(r,h) 1/Cp6/h/h * fp6( norm(r)/h );

Wsp = @(r,h) 1/Csp/h/h * fsp( norm(r)/h );

Wvi = @(r,h) 1/Cvi/h/h * fvi( norm(r)/h );

I computed the normalization constants analytically, but I’m prone to alge-
bra mistakes when I compute integrals by hand. Let’s check against MATLAB’s
quad function.

fprintf(’Relerr for normalization constants:\n’);

nerr_p6 = quad( @(q) 2*pi*q*fp6(q)/Cp6, 0, 1 ) - 1;

nerr_sp = quad( @(q) 2*pi*q*fsp(q)/Csp, 0, 1 ) - 1;

nerr_vi = quad( @(q) 2*pi*q*fvi(q)/Cvi, 1e-12, 1 ) - 1;

fprintf(’ Cp6: %g\n’, nerr_p6);

fprintf(’ Csp: %g\n’, nerr_sp);

fprintf(’ Cvi: %g\n’, nerr_vi);

Now check that I did the calculus right for the gradient and Laplacian of the
Wpoly6 kernel and for the gradient of the pressure kernel.

h = rand(1);

r = rand(2,1)*h/4;

q = norm(r)/h;

r2 = r’*r;

h2 = h^2;

dr = norm(r)*1e-4;

gWp6_fd = fd_grad(@(r) Wp6(r,h), r, dr);

gWp6_ex = -24/pi/h^8*(h2-r2)^2*r;

gWsp_fd = fd_grad(@(r) Wsp(r,h),r,dr);

gWsp_ex = -(30/pi)/h^4 * (1-q)^2 / q * r;

lWp6_fd = fd_laplace(@(r) Wp6(r,h), r, dr);

lWp6_ex = -48/pi/h^8*(h2-r2)*(h2-3*r2);

fprintf(’Check Wp6 kernel derivatives:\n’);

fprintf(’ grad Wp6: %g\n’, norm(gWp6_fd-gWp6_ex)/norm(gWp6_ex));

fprintf(’ grad Wsp: %g\n’, norm(gWsp_fd-gWsp_ex)/norm(gWsp_ex));

fprintf(’ laplacian: %g\n’, (lWp6_fd-lWp6_ex)/lWp6_ex);

Now check that fviscosity(q) satisfies the conditions that are supposed to
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define it:

f(1) = 0

f ′(1) = 0

f ′′(q) +
1

q
f ′(q) = 1− q, 0 < q < 1

The first two conditions we check directly; the last we check at a randomly
chosen q.

q = rand(1);

dq = 1e-4*q;

fq = fvi(q);

lffd = fd_laplace_radial(fvi,q,dq);

fprintf(’Relerr for viscosity kernel checks:\n’);

fprintf(’ fvi (1): %g\n’, fvi(1) );

fprintf(’ dfvi(1): %g\n’, fd_deriv(fvi,1,dq) );

fprintf(’ Laplace: %g\n’, fd_laplace_radial(fvi,q,dq)/(1-q)-1);

Now, let me check that I did the algebra right in getting the condensed
formula for the interaction forces.

% Set up random parameter choices

r_ij = rand(2,1);

v_ij = rand(2,1);

k = rand(1);

rho0 = rand(1);

rhoi = rand(1);

rhoj = rand(1);

mass = rand(1);

mu = rand(1);

q = norm(r_ij)/h;

% Compute pressures via equation of state

Pi = k*(rhoi-rho0);

Pj = k*(rhoj-rho0);

% Differentiate the kernels

Wsp_x = -30/pi/h^4*(1-q)^2/q*r_ij;

LWvi = 40/pi/h^4*(1-q);

% Do the straightforward computation

fpressure = -mass*(Pi+Pj)/2/rhoj * Wsp_x;

fviscous = -mu*mass*v_ij/rhoj * LWvi;
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finteract1 = fpressure + fviscous;

% Do the computation based on my condensed formula

finteract2 = mass/pi/h^4/rhoj * (1-q) * ...

( 15*k*(rhoi+rhoj-2*rho0)*(1-q)/q * r_ij - ...

40*mu * v_ij );

% Compare

fprintf(’Relerr in interaction force check:\n’);

fprintf(’ fint: %g\n’, norm(finteract1-finteract2)/norm(finteract1));

Of course, all the above is supported by a number of little second-order
accurate finite difference calculations.

function fp = fd_deriv(f,r,h)

fp = ( f(r+h)-f(r-h) )/2/h;

function fpp = fd_deriv2(f,r,h)

fpp = ( f(r+h)-2*f(r)+f(r-h) )/h/h;

function del2f = fd_laplace_radial(f,r,h)

del2f = fd_deriv2(f,r,h) + fd_deriv(f,r,h)/r;

function del2f = fd_laplace(f,r,h)

e1 = [1; 0];

e2 = [0; 1];

del2f = (-4*f(r)+f(r+h*e1)+f(r+h*e2)+f(r-h*e1)+f(r-h*e2) )/h/h;

function gradf = fd_grad(f,r,h)

e1 = [1; 0];

e2 = [0; 1];

gradf = [f(r+h*e1)-f(r-h*e1);

f(r+h*e2)-f(r-h*e2)] / 2 / h;
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