
Parallel All-Pairs Shortest Paths

November 8, 2011

In lecture 15, we briefly discussed the Floyd-Warshall algorithm for com-
puting all pairwise shortest path lengths in a graph. As we noted then, the
computational pattern for Floyd-Warshall is much like the computational pat-
tern for Gaussian elimination. There is a closely related algorithm which is
slightly more expensive – O(n3 log n) time in general rather than the O(n3)
time required by Floyd-Warshall – but which looks very much like matrix mul-
tiplication. In this assignment, you will analyze the performance of a reference
OpenMP implementation of this method, and then implement and analyze your
own version using MPI.

1 The basic recurrence

At the heart of the method is the following basic recurrence. If lsij represents
the length of the shortest path from i to j that can be attained in at most 2s

steps, then
ls+1
ij = min

k
{lsik + lskj}.

That is, the shortest path of at most 2s+1 hops that connects i to j consists
of two segments of length at most 2s, one from i to k and one from k to j.
Compare this with the following formula to compute the entries of the square
of a matrix A:

a2ij =
∑
k

aikakj .

These two formulas are identical, save for the niggling detail that the latter has
addition and multiplication where the former has min and addition. But the
basic pattern is the same, and all the tricks we learned when discussing matrix
multiplication apply – or at least, they apply in principle. I’m actually going
to be lazy in the implementation of square, which computes one step of this
basic recurrence. I’m not trying to do any clever blocking. You may choose to
be more clever in your assignment, but it is not required.

The return value for square is true if l and lnew are identical, and false
otherwise.

int square(int n, // Number of nodes

int* restrict l, // Partial distance at step s

1

http://www.cs.cornell.edu/~bindel/class/cs5220-f11/slides/lec15.pdf

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

int* restrict lnew) // Partial distance at step s+1

{

int done = 1;

#pragma omp parallel for shared(l, lnew) reduction(&& : done)

for (int j = 0; j < n; ++j) {

for (int i = 0; i < n; ++i) {

int lij = lnew[j*n+i];

for (int k = 0; k < n; ++k) {

int lik = l[k*n+i];

int lkj = l[j*n+k];

if (lik + lkj < lij) {

lij = lik+lkj;

done = 0;

}

}

lnew[j*n+i] = lij;

}

}

return done;

}

The value l0ij is almost the same as the (i, j) entry of the adjacency matrix,
except for one thing: by convention, the (i, j) entry of the adjacency matrix
is zero when there is no edge between i and j; but in this case, we want l0ij
to be “infinite”. It turns out that it is adequate to make l0ij longer than the
longest possible shortest path; if edges are unweighted, n + 1 is a fine proxy
for “infinite.” The functions infinitize and deinfinitize convert back and
forth between the zero-for-no-edge and n + 1-for-no-edge conventions.

static inline void infinitize(int n, int* l)

{

for (int i = 0; i < n*n; ++i)

if (l[i] == 0)

l[i] = n+1;

}

static inline void deinfinitize(int n, int* l)

{

for (int i = 0; i < n*n; ++i)

if (l[i] == n+1)

l[i] = 0;

}

Of course, any loop-free path in a graph with n nodes can at most pass
theough every node in the graph. Therefore, once 2s ≥ n, the quantity lsij is

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

actually the length of the shortest path of any number of hops. This means we
can compute the shortest path lengths for all pairs of nodes in the graph by
dlg ne repeated squaring operations.

The shortest path routine attempts to save a little bit of work by only
repeatedly squaring until two successive matrices are the same (as indicated by
the return value of the square routine).

void shortest_paths(int n, int* restrict l)

{

// Generate l_{ij}^0 from adjacency matrix representation

infinitize(n, l);

for (int i = 0; i < n*n; i += n+1)

l[i] = 0;

// Repeated squaring until nothing changes

int* restrict lnew = (int*) calloc(n*n, sizeof(int));

memcpy(lnew, l, n*n * sizeof(int));

for (int done = 0; !done;) {

done = square(n, l, lnew);

memcpy(l, lnew, n*n * sizeof(int));

}

free(lnew);

deinfinitize(n, l);

}

2 The random graph model

Of course, we need to run the shortest path algorithm on something! For the
sake of keeping things interesting, let’s use a simple random graph model to
generate the input data. The G(n, p) model simply includes each possible edge
with probability p, drops it otherwise – doesn’t get much simpler than that. We
use a thread-safe version of the Mersenne twister random number generator in
lieu of coin flips.

int* gen_graph(int n, double p)

{

int* l = calloc(n*n, sizeof(int));

struct mt19937p state;

sgenrand(10302011UL, &state);

for (int j = 0; j < n; ++j) {

for (int i = 0; i < n; ++i)

l[j*n+i] = (genrand(&state) < p);

l[j*n+j] = 0;

}

return l;

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

}

3 Result checks

Simple tests are always useful when tuning code, so I have included two of
them. Since this computation doesn’t involve floating point arithmetic, we
should get bitwise identical results from run to run, even if we do optimizations
that change the associativity of our computations. The function fletcher16

computes a simple checksum1 over the output of the shortest paths routine,
which we can then use to quickly tell whether something has gone wrong. The
write matrix routine actually writes out a text representation of the matrix,
in case we want to load it into MATLAB to compare results.

int fletcher16(int* data, int count)

{

int sum1 = 0;

int sum2 = 0;

for(int index = 0; index < count; ++index) {

sum1 = (sum1 + data[index]) % 255;

sum2 = (sum2 + sum1) % 255;

}

return (sum2 << 8) | sum1;

}

void write_matrix(const char* fname, int n, int* a)

{

FILE* fp = fopen(fname, "w+");

if (fp == NULL) {

fprintf(stderr, "Could not open output file: %s\n", fname);

exit(-1);

}

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j)

fprintf(fp, "%d ", a[j*n+i]);

fprintf(fp, "\n");

}

fclose(fp);

}

4 The main event

1http://en.wikipedia.org/wiki/Fletcher’s_checksum

http://en.wikipedia.org/wiki/Fletcher's_checksum

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

const char* usage =

"path.x -- Parallel all-pairs shortest path on a random graph\n"

"Flags:\n"

" - n -- number of nodes (200)\n"

" - p -- probability of including edges (0.05)\n"

" - i -- file name where adjacency matrix should be stored (none)\n"

" - o -- file name where output matrix should be stored (none)\n";

int main(int argc, char** argv)

{

int n = 200; // Number of nodes

double p = 0.05; // Edge probability

const char* ifname = NULL; // Adjacency matrix file name

const char* ofname = NULL; // Distance matrix file name

// Option processing

extern char* optarg;

const char* optstring = "hn:d:p:o:i:";

int c;

while ((c = getopt(argc, argv, optstring)) != -1) {

switch (c) {

case ’h’:

fprintf(stderr, "%s", usage);

return -1;

case ’n’: n = atoi(optarg); break;

case ’p’: p = atof(optarg); break;

case ’o’: ofname = optarg; break;

case ’i’: ifname = optarg; break;

}

}

// Graph generation + output

int* l = gen_graph(n, p);

if (ifname)

write_matrix(ifname, n, l);

// Time the shortest paths code

double t0 = omp_get_wtime();

shortest_paths(n, l);

double t1 = omp_get_wtime();

printf("== OpenMP with %d threads\n", omp_get_max_threads());

printf("n: %d\n", n);

printf("p: %g\n", p);

printf("Time: %g\n", t1-t0);

printf("Check: %X\n", fletcher16(l, n*n));

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220)

// Generate output file

if (ofname)

write_matrix(ofname, n, l);

// Clean up

free(l);

return 0;

}

	The basic recurrence
	The random graph model
	Result checks
	The main event

