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ABSTRACT
With the increasing demand for deeper understanding of users’ pref-
erences, recommender systems have gone beyond simple user-item
�ltering and are increasingly sophisticated, comprised of multiple
components for analyzing and fusing diverse information. Unfortu-
nately, existing frameworks do not adequately support extensibility
and adaptability and consequently pose signi�cant challenges to
rapid, iterative, and systematic, experimentation. In this work, we
propose OpenRec, an open and modular Python framework that
supports extensible and adaptable research in recommender sys-
tems. Each recommender is modeled as a computational graph that
consists of a structured ensemble of reusable modules connected
through a set of well-de�ned interfaces. We present the architecture
of OpenRec and demonstrate that OpenRec provides adaptability,
modularity and reusability while maintaining training e�ciency
and recommendation accuracy. Our case study illustrates how
OpenRec can support an e�cient design process to prototype and
benchmark alternative approaches with inter-changeable modules
and enable development and evaluation of new algorithms.
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1 INTRODUCTION
Today’s recommender systems have gone beyond simple collabora-
tive or content-based �ltering algorithms to become large-scale
learning machines that ingest and analyze a wide range of in-
formation, e.g., diverse user feedback signals (ratings [3], click-
through [17], likes [16], views [33]) and auxiliary, contextual and
cross-platform traces (images [15], video [8], audio [30] and other
associated metadata [25]; as well as social networks [12], so�ware
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tool traces [33], and personal digital traces [16]). A state-of-the-art
system [8] usually involves numerous heterogeneous and com-
plex sub-models that analyze and fuse high-dimensional and multi-
channel data streams, and each of these sub-models may have di�er-
ent learning architectures and a large number of hyper-parameters
that need to be developed and maintained.

As a result, recommender system developers are facing an ex-
ponentially larger design space given the multiple interdependent
design decisions that they need to make, such as: (1) which col-
laborative �ltering model to use, (2) which additional data to in-
corporate, (3) for each additional data, which feature extraction
methods to use, and (4) how to integrate the extracted features with
the collaborative �ltering part of the model. Moreover, researchers’
design space now includes: identifying novel data sources to in-
corporate into the system, developing new feature extractors, and
experimenting with new ways to integrate features with the user-
item �ltering. �e so�ware frameworks previously available for
recommender systems are limited to “functional level” modularity
(e.g., Librec [11] decomposes a recommender system into inference,
prediction, and similarity), which does not provide the modularity
needed to build and evaluate increasingly complex models. �is
paper addresses key challenges of extensibility and adaptability.

On the one hand, traditional frameworks, such as MyMedi-
aLite [10] and LensKit [9], usually treat a recommendation algo-
rithm as single and monolithic. As a result, in order to experi-
ment with a new method for even a small part of the algorithm, re-
searchers o�en need to re-implement the whole model from scratch
or extensively patch existing code. For example, to build a recom-
mendation algorithm that incorporates image data, a researcher
needs to not only implement the neural network for image analy-
sis, but also re-build the factorization algorithm (e.g. Probablistic
Matric Factorization), because there is no interface available in the
traditional frameworks to access component modules. Signi�cant
rewriting is needed even when the recommendation is a simple
composition of existing models.

On the other hand, adapting traditional frameworks to diverse
recommendation scenarios requires tedious re-implementations,
which may signi�cantly a�ect recommendation performance de-
spite slight implementation di�erences (e.g., di�erent choices of
hyper-parameters and regularization terms) [9]. We argue that such
re-implementations are inevitable if the frameworks are built on di-
verse backend and programming languages, e.g., Java [11], C# [10],
and Python [18], because of the overhead and the opportunity cost
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Figure 1: A modular view of recommendation algorithms.
Each algorithm (R-1 to R-4) is a structured ensemble of
reusable modules under three categories - extraction mod-
ule, fusion module, and interaction module. �e modules’
color codex is shared throughout the paper. Arrows in the
�gure represent data �ows.

of switching between di�erent development environments. Addi-
tionally, existing frameworks typically assume a single machine
environment, which can not leverage the computation power from
distributed computing and modern hardware, e.g., GPU and TPU.
�erefore, it is hard to be adopted when the model size increases.

To tackle these challenges, we propose amodular recommender-
system design, where each recommender is a structured ensemble
of reusable modules with standard interfaces. �is allows the recom-
mendation system innovation to be decomposed into (1) designing
new modules, and (2) inventing new computational graphs that wire
modules together. As demonstrated in Fig. 1, future research can
readily reuse existing modules and graphs without re-implementing
or modifying prior algorithms. Under such a paradigm, changes to
a module or the computational graph does not a�ect other compo-
nents, and development and testing can be more readily achieved
via plug-in and go. Just as modular architectures and tools lead to
rapid advances in other AI �elds [5, 7, 24] and network protocol
simulation [4], a modular paradigm can signi�cantly reduce the
development overhead and become fertile ground for extensible
and adaptable recommender system research. In addition, we pro-
pose to use Tensor�ow [1] as the standard backend for framework
development. Because Tensor�ow can be easily deployed in diverse
computing environments (e.g., embedded devices, single machine,
and distributed cloud) and is optimized for modern hardware, its use
enables distributed and mini-batch (i.e., large-scale dataset) training
for OpenRec and can minimize the need for language-switching
re-implementations.

In this work, we present the design, implementation, and evalu-
ation of OpenRec, an open and modular framework that supports
extensible and adaptable research in recommender systems. Specif-
ically, we build such a framework by (1) modularizing prior rec-
ommender systems, (2) identifying reusable modules and de�ning

standard interfaces, and (3) iteratively implementing and devel-
oping in Tensor�ow. In addition, we evaluate and demonstrate
OpenRec in the following three contexts.
• Reproducing monolithic implementations with OpenRec

modular design. We extensively compare the performance of
the modular implementations to the prior implementations and
demonstrate that the modularity in OpenRec does not degrade
the models’ performance in terms of both training e�ciency and
prediction accuracy. To the contrary, in many cases, OpenRec
outperformed the existing implementations due to the ability to
conduct large-batch training.

• Rapid prototyping using OpenRec as a sandbox. Using
book recommendation as an example, we illustrate how de-
velopers can use OpenRec to address speci�c recommendation
problems by e�ciently prototyping and bench-marking a large
number of approaches with modules that are inter-changeable.

• Developing new recommendation algorithms by extend-
ing existing modules in OpenRec. We use OpenRec to build
a time-aware movie rating prediction algorithm for the Net�ix
dataset. We demonstrate that OpenRec can signi�cantly alleviate
the development burden when exploring new techniques.
�e OpenRec framework (Apache-2.0) is publicly available under

the URL: h�p://www.openrec.ai

2 EVOLUTION OF RECOMMENDER SYSTEMS
In this section we brie�y review the evolution of recommender
systems. We discuss how recommender systems have evolved
from pure collaborative �ltering approaches to hybrid and content-
aware models, and discuss the design challenges that arise with
such development.

2.1 Pure Collaborative Filtering Models
Early recommender system research focused on designing collabo-
rative �ltering models that process users’ past user-item interaction
data (e.g., ratings, click-through, etc.) to predict what users will like
in the future [3, 17]. A well-known example is matrix factorization,
where users’ past behaviors are encoded in an incomplete user-item
matrix, and the prediction is made by estimating the values of the
missing cells in the matrix with a low-rank assumption. Matrix
factorization and other collaborative �ltering models achieved great
results in the Net�ix competition [3], and a great amount of work
has been devoted to improving upon these original approaches. �e
most recent examples include Neural Collaborative Filtering [14]
that utilizes a neural network to allow for non-linear interactions
between users and items, and Collaborative Metric Learning [15],
that approaches the collaborative �ltering problem from a metric
learning perspective.

2.2 Hybrid and Content-ware Models
�e original use cases of collaborative �ltering algorithms were
for the scenarios where user-item interactions are abundant (e.g.
movie recommendations on Net�ix or product recommendations
on Amazon [3, 21]) and the user-item interaction data alone is
su�cient to make high quality recommendations. However, with
digital services becoming more ubiquitous in daily life, there is a
increasing demand for recommender systems to work for other
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scenarios where users have had li�le or no prior interaction with the
system (i.e. the user cold start scenarios), or for the scenarios where
candidate items have not received much feedback from users yet
(i.e. the item cold start scenarios). Collaborative �ltering algorithms
work poorly in such scenarios as the amount of interaction data
are too sparse for them to reliably estimate users’ preferences.

�is demand for more powerful and diverse recommender sys-
tems, along with the rapid advances in machine learning algorithms
for content analysis, has driven a new generation of research that
goes beyond the user-item matrix; in particular, new algorithms
use various machine learning models to extract relevant features
from additional sources [28]. For example, speci�c algorithms have
been designed to extract item features from a large variety of sig-
nals, such as text and image data associated with items; similarly,
di�erent approaches have been proposed to extract user features
from their social media traces, reviews, or other public and personal
digital traces [16]. �e extracted features are fused with the collab-
orative �ltering portion of the model to allow the system to get a
deeper understanding of items and users. Such hybrid models o�en
show superior performance in cold-start scenarios, and continue
to outperform the collaborative �ltering solutions later on [13, 16].
Moreover, the use of content information also allows for more spe-
ci�c explanations to the recommendation results as compared with
the generic “users like you also like this” explanations enabled by
prior collaborative �ltering based approaches.

3 RELATED FRAMEWORKS
�e rapid evolution of recommender systems (Section 2) has posed
signi�cant challenges to the existing so�ware frameworks. In this
section, we brie�y review the limitations of existing solutions, and
discuss why OpenRec is timely and is preferable to modularizing
existing frameworks. We show the core functions of previous frame-
works and their comparisons to OpenRec in Table. 1. Existing
solutions are limited in the following two aspects.
• Lack of algorithm levelmodularity support. Previous frame-

works usually provide modularity at the “functional level”, i.e.,
each recommender is divided into functionally-independent com-
ponents (e.g. train, predict, and dataset). Such functionality-
based modularity is convenient while developing new systems,
but falls short when it comes to inventing and experimenting
with complex algorithms, i.e. developers still need to build algo-
rithms monolithically. In addition, because there is no “algorithm-
level modularity”, it is non-trivial to add complex auxiliary fea-
tures into recommendation. �erefore, OpenRec addresses a
timely need for the recommender system community.

• Lack of reliable backend support. As is shown in Table 1,
previous frameworks were built on either no explicit backend or
a backend that is not scalable and unfriendly to complex mod-
els, e.g. Scikit. With such backends, the recommender systems
can not leverage modern hardware, such as GPUs, and is hard
to scale to distributed computing environment. It is also very
cumbersome for the developers to build new functions as there
is li�le support for basic mathematical operations. �erefore,
modularizing based on a legacy backend is limiting. We develop
OpenRec over Tensor�ow, a next generation computing engine
for machine learning.

Table 1: Comparing OpenRec to existing so�ware frame-
works for recommender systems. (Sys-m: system-level mod-
ularity, Algo-m: algorithm-level modularity)

Framework Sys-m
Auxiliary
features

Backend Algo-m

MLlib [29] 7 7 7 7

MyMediaLite [10] 3 categorical 7 7

LensKit [9] 3 7 7 7

Surprise [18] 3 7 SciKits 7

PredictionIO [6] 3 categorical 7 7

Librec [11] 3 categorical 7 7

OpenRec 3 complex Tensor�ow 3
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Interaction
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…
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…
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Figure 2: �e architecture of OpenRec. A recommender is
built out of modules. All three components (Module, Rec-
ommender, and Utility) can be used seamlessly together to
conduct training, evaluation, experimentation, and serving
for recommendation algorithms.

4 OPENREC FRAMEWORK
In this section, we describe the architecture of OpenRec. It views
each recommendation algorithm as a computational graph that
connects reusable modules together. OpenRec is comprised of
two levels of abstractions - module and recommender - along
with a collection of utility functions (Fig. 2). Under this frame-
work, a module de�nes standard input/output interfaces for each
category of algorithmic component. A recommender provides
mechanisms to build end-to-end systems out of modules. Utility
includes functions for e�cient data sampling and model evalu-
ation. In the rest of this section, we present the details of each
abstraction. Although we illustrate OpenRec with collaborative �l-
tering approaches, the framework is also designed for more general
recommendation techniques, e.g., content-based, conversational
and group recommendations. We discuss the generalization of the
framework in Section 4.4.

4.1 Recommenders
�e Recommender abstraction provides a standard way to construct
recommendation systems with modules (Section 4.2) and to easily
conduct training and testing. �e design philosophy behind the
recommender is to decouple the construction of a complex system
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Recommender

build_inputs(train)

build_user_extractions(train)

build_item_extractions(train)

build_extra_extractions(train)

build_default_fusions(train)

build_custom_fusions(train)

build_default_interactions(train)

build_custom_interactions(train)

build_extractions(train)

build_fusions(train)

build_interactions(train)

…

…

build_optimizer()

if		train==true

build_training_graph() build_serving_graph()

train=true train=false

train(...) serve(…) save(…) load(…)

Figure 3: Standard interfaces of the Recommender abstrac-
tion. It contains procedures used to construct the compu-
tational graph and functions used to drive training, testing
and model saving and loading.

into many small steps, so that the system can be easily extended to
include new features. As shown in Fig. 3, it consists of two major
steps - build training graph and build serving graph, each of which
calls corresponding modules. When building the training graph,
a sequence of functions (i.e., build inputs, build extractions, build
fusions, build interactions, and build optimizer) is called with the
�ag train set to True, where the extraction, fusion, and interaction
modules are built through decomposed child functions. Similarly,
when building the serving graph, all of the functions above except
build optimizer are called with the �ag train set to False. During
model training, the function train is called for each iteraction; and
during testing or evaluation, the function serve is used to e�ciently
score items for a list of users. We show the �exibility and extensi-
bility of the recommender abstraction in Section 5 with concrete
examples.

4.2 Modules
Modules represent reusable components in a recommendation algo-
rithm. As discussed in Section 2, a recommender typically contains
three components that (1) model the interactions (including ratings,
views, likes and thumb-ups, etc.) between users and items in the
targeted recommendation context; (2) derive a user’s, an item’s or a
context’s representation from a data trace (Fig. 4), such as one-hot
encoding, images, text, audio, video, location or demographic infor-
mation, etc.; and (3) fuse together multiple feature representations
from users, items, or environmental contexts. In OpenRec, we name
components in these three categories as interaction, extraction,
and fusion modules respectively. As shown in Fig. 4, OpenRec
modules share the same conceptual architecture and outputs (i.e., a

build_shared_graph()

build_training_graph()

build_serving_graph()user	repr.

item	repr.

context	repr.

train=True train=False

outputs

loss

data

module	#1

module	#n

…

Extraction

Fusion

Interaction

Figure 4: �e structure of the Module abstraction. (Le�: in-
puts, Right: outputs)

loss and an output list) but ingest di�erent forms of inputs. Speci�-
cally, each module is composed of three core functions: build shared
graph, build training graph, and build testing graph. �ese func-
tions are invoked based on the value of a train �ag that determines
whether we are in training or testing mode.
• Interaction Module. An interaction module takes represen-

tations from users, items or interaction contexts as inputs and
then calculates the loss (during training) and item rankings (dur-
ing testing). �e inputs to the interaction module are typically
derived from one-hot encoding or auxiliary information using
extraction and fusion modules. �e derived loss is used to drive
the end-to-end training of the recommender system, and the item
rank is used for testing and real-time recommendations. For the
interaction module, we do not put any restriction on the number
of users and items allowed as inputs so that it is general enough
to handle a wide variety of collaborative �ltering and content-
based algorithms (e.g., Probablistic Matrix Factorization (PMF) is
built on pairs of users and items, whereas Baysian Personalized
Ranking (BPR) requires triplets of users and items). Our initial
prototype of OpenRec includes implementations of many inter-
action modules using state-of-the-art algorithms, e.g., pairwise
logarithm used in BPR [26], pointwise mean square error (MSE)
introduced by PMF [27], pairwise euclidean distance adopted in
Collaborative Metric Learning (CML) [15], and pointwise cross
entropy proposed by Neural Matrix Factorization (NeuMF) [14].

• Extraction Module. An extraction module computes represen-
tations for a data trace from users, items, or contexts. A simple
example is to compute a representation from a one-hot encod-
ing, which performs a basic lookup operation in an embedding
matrix. Such a module is leveraged by traditional recommender
systems without using auxiliary information, and we refer to it
as a Latent Factor module. �e development of extraction mod-
ules will bene�t from advancements in other machine learning
�elds (e.g., computer vision, natural language processing and
speech processing). Models from these �elds can be introduced
to recommender systems to analyze multi-modal data from users
and items. Because OpenRec is highly modular and implemented
on Tensor�ow, introducing a new content analysis model is
rather straightforward and e�cient. In our initial prototype,
we implemented two general extraction modules, Multi-layer
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Perceptron (MLP) and Latent Factor (LF). We expect an open
source framework like OpenRec will result in development of
more sophisticated models dedicated to analyzing speci�c data
types, such as Convolutional Neural Network (CNN) for images
and Recurrent Neural Network (RNN) for sequential data.

• Fusion Module. In many recommendation scenarios, users,
items, and environmental context may have multiple data sources.
For example, in the context-aware recommendation [2] and im-
mersive recommendation [16], a user can be modeled by many
personal data traces, e.g., emails, tweets and facebook posts. To
bridge the gap between multiple extraction modules and a single
interaction module, an fusion module is designed to fuse multiple
extraction modules together (Fig. 4). We prototype two intuitive
fusion modules, i.e., concatenation and element-wise average.

4.3 Utility functions
In OpenRec, a set of utility functions are included for the ease of
model training and evaluation. �e model training for recommen-
dation systems usually involves user-item sampling. For example,
in BPR, (user, positive-item, negative-item) need to be sampled for
each training batch. �e samplers take the data forma�ed in Numpy
dict as inputs and produce batches of training or validation data for
a recommender. We implement popular sampling procedures (e.g.
pointwise and pairwise sampling) in the OpenRec framework to
drive the training process. In addition, to provide standard model
testing, we implement common evaluation metrics (e.g., MSE, Re-
call@K and AUC) which can be seamlessly integrated with the
constructed recommendation model.

4.4 Generalization
Since OpenRec makes few assumption about users and items, it
can be used for a wide range of recommendation techniques and
scenarios, e.g., recommendations with di�erent forms of feedback,
as well as interactive, conversational, and group recommendation.
• For di�erent forms of feedback signals, researchers can cus-

tomize sampling strategies and interaction modules, for example,
using pointwise sampling with the pointwise MSE module for
explicit feedback, and pairwise sampling with the pairwise loga-
rithm module for implicit feedback.

• For interactive and conversational recommender systems,
the optimizers can be designed to update user and item represen-
tations in the active-learning se�ings [34]. For every iteration, a
recommender makes recommendations and updates model pa-
rameters according to users’ and items’ representations and their
real-time interactions.

• For group recommendations, as OpenRec uses Numpy struc-
tured arrays as the input data format and does not have restric-
tions on the number of extraction modules. Users can be grouped
based on the additional group id inputs to the sampler.

5 EXPERIMENTS AND USE CASES
In this section, we demonstrate the validity, e�ciency and extensi-
bility of OpenRec under the following three concrete contexts.
• Validity. By comparing the modular implementations with the

previous ad-hoc ones, we demonstrate that modularizing rec-
ommendation algorithms does not a�ect the performance and

e�ciency. Instead, because OpenRec is built on an open-source
and industry-standard deep learning tool, it can more e�ciently
conduct the training. (Section 5.1)

• E�ciency. Using OpenRec as a sandbox, developers are able
to quickly and e�ciently prototype and experiment with di�er-
ent se�ings of recommender systems and look for the optimal
solution (Section 5.2).

• Extensibility. By extending and reusing existing modules, Open-
Rec signi�cantly reduces the overhead of implementing new
recommendation algorithms (Section 5.3).
For the sake of space, we show the graphical illustration of

the modular implementations in the main content and a sample
pseudocode snippet in the Appendix A. More examples are available
online at h�p://www.openrec.ai.

5.1 Validity: Reproducing monolithic
implementations with modular framework

In order to test whether modularization a�ects the accuracy and ef-
�ciency of the recommendation algorithms, we compare the Open-
Rec implementations with the implementations released by the
original algorithm authors. We use the same model structures and
parameter se�ings from the original papers but replace the train-
ing strategies with the standard optimization methods adopted in
OpenRec, e.g.. mini-batch stochastic gradient descent. Speci�cally,
we experiment with the following three algorithms in this paper,
each of which represents recommender systems with di�erent com-
plexity levels.

5.1.1 Bayesian Personalized Ranking (BPR). As introduced by
Rendle et al. [26], Bayesian Personalized Ranking learns latent
representations for users and items by using a pairwise ranking
loss, as shown in eqn. 1. It is one of the most popular method used
under the traditional recommendation context without considering
users’ and items’ auxiliary information.∑

(u,i, j)∈DS
lnσ (x̂u,i − x̂u, j ) − λΘ‖Θ‖ (1)

where x̂u,i = βu + βi + γTu γi . γ represents a latent representation
for an user or an item, and β denotes the corresponding bias term.
DS contains training triplets (u, i, j) where the user u likes the item
i but does not indicate her preference for the item j.

To implement the vanilla version of the BPR model using Open-
Rec, we employ the Latent Factor (LF) extraction module to com-
pute latent representations for users and items respectively and a
pairwise logarithm interaction module that takes users’ and items’
representations and computes the loss, which is illustrated in Fig. 5.
Note that we do not need to re-implement the existing modules
to run the experiment. Building such a recommender system can
be achieved by simply pu�ing together the reusable modules with
standard interfaces.

We compare the OpenRec modular implementation with the
implementation released by He et al. [13] and MyMediaLite li-
brary [10] and evaluate them against tradesy.com dataset [13],
where the products that users want and bought are treated as pos-
itive feedback. As a result, 19,243 users and 165,906 items are
included in the experiments. For each user, we randomly sample an
item that she likes for validation and another one for testing, which
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inputs user	extractions item	extractions interactionsBPR

LatentFactor PairwiseLog
Extraction	module Interaction	module

… …Modules

Figure 5: Implementing BPR with OpenRec (45 lines). We
use rectangles to represent functions in aRecommender and
shade the reusablemodules and implementations. An arrow
denotes an adoption or an inheritance. (Lines of code does
not include blank and import lines)
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Figure 6: tradesy.com dataset [13] testing performance
in terms of AUC (BPR-OpenRec, BPR-original, and BPR-
MyMediaLite).

is consistent with the strategy used in the original paper [13]. We
use the same parameter se�ings as [13] (λΘ is set to 0.1, and the
dimensionality of γ is set to 20) and conduct the evaluations on an
Amazon EC2 c4.4xlarge instance, which contains 16 CPU cores and
30 GB of memory.

We measure models’ performance in terms of Area Under the
ROC Curve (AUC), as de�ned in eqn. 2, against the training time.

AUC = 1
U

U∑
u=1

1
|P(u)|

∑
(u,i)∈P(u),(u, j)∈N(u) δ (x̂u,i > x̂u, j )

|N(u)| (2)

where P(u) contains items the user u likes in the validation/testing
dataset, and N(u) contains items that did not receive any feedback
signals from the user u.

�e results presented in Fig. 6 show that the modular implemen-
tation achieves comparable performance to the best performed BPR
implementation, and signi�cantly outperforms the implementation
from previous recommendation libraries (MyMediaLite). In other
words, modularization does not a�ect the algorithm accuracy and
e�ciency for simple models such as BPR.

5.1.2 Visual Bayesian Personalized Ranking (VBPR). �e vanilla
BPR model does not incorporate any auxiliary information. To
investigate recommendation scenarios where such information is
leveraged, the second model that we experiment with is Visual
Bayesian Personalized Ranking (VBPR), as proposed by [13]. VBPR
incorporates visual features into recommendation by learning a
transformation function f that projects visual features into the item
embedding space. VBPR minimizes the same loss function as BPR
but models x̂u,i as follows.

x̂u,i = βu + βi + γ
T
u γi + θ

T
u (Efi ) (3)

inputs user	extractions item	extractions interactionsVBPR

LatentFactor
Extraction	module

…Modules

BPR inputs user	extractions item	extractions interactions

MLP Concatenation
Fusion	module

fusions

Figure 7: Implementing VBPR with OpenRec (50 lines). We
use the same annotations as Fig. 5.
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Figure 8: tradesy.com dataset [13] testing performance in
terms of AUC (VBPR-OpenRec and VBPR-original).

where fi is the visual feature for item i , and E is a learnable projec-
tion matrix1.

To build such a model with OpenRec, we can easily extend the
BPR recommender and modify the functions build inputs, and build
item extractions. We change the build item extractions function
from a LF extraction module to a concatenation fusion module
that takes as inputs the representations derived from LF and MLP
extraction modules, as shown in Fig. 7. At the same time, other
functions can be directly reused except adding additional inputs
for visual features. We evaluate the VBPR implementation with the
same tradesy dataset and computing environment, but set λΘ to be
0.1 and the dimensionality of γ and θ to be 10. �e items’ visual
features are extracted using the ca�e reference model as released
by the He et al. [13].

As shown in Fig. 8, compared to the previous implementation by
He et. al. [13], the model implemented by OpenRec is signi�cantly
faster (more than 103 times) and yields be�er performance in terms
of AUC. �e reason for such a phenomenon is that the prior imple-
mentation uses a batch size of 1 for the training while OpenRec is
able to use much larger mini-batches (batch size is set to 1000) and
fully utilize the available hardware resources, e.g. multi-core and
GPU, using Tensor�ow (We did not use GPU in the experiments
for fair comparision). Under the scenario where much auxiliary
information is incorporated, the larger batch size brings signi�-
cant bene�ts, and OpenRec makes such bene�ts easily available
to the end developers. �is example also indicates the need for a
benchmarking platform like OpenRec, as directly comparing the
performance reported in the literature may be problematic, espe-
cially in the cases where some ad-hoc implementation details make
signi�cant changes to the recommendation performance.

1Compared to the original VBPR, we did not include the visual biases
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Table 2: citeulike dataset [31] testing performance in terms
of AUC and Recall@K (CDL-OpenRec and CDL-Original).

Implementation AUC R@10 R@50 R@100
CDL-OpenRec 0.923 0.107 0.246 0.343
CDL-Original 0.918 0.099 0.248 0.349

5.1.3 Collaborative Deep Learning (CDL). �e third algorithm
that we explore is Collaborative Deep Learning (CDL), an algo-
rithm built upon the framework of Probabilistic Matrix Factoriza-
tion (PMF) that uses a de-noising auto-encoder to incorporate text
into the recommendations [31]. We refer readers to the original
paper [31] for the technical details. Similar to VBPR, CDL can be
implemented by extending the PMF recommender, and the exten-
sion is analogous to the Fig. 7. We evaluate CDL implementations
on the citeulike dataset [31], which contains 5,551 users and 16,980
items and extracts item features using bag-of-words approach. We
leverage the same strategy as used in the original paper to split the
data into training and testing. �e evaluation is conducted under
the optimal parameter se�ings suggested by [31] and on a desktop
machine with 8 CPU cores and 16 GB of memory. �e performance
of each implementation is measured by AUC and Recall@K a�er
convergence. As shown in Table. 2, the results stay consistent
with the �ndings in the previous BPR and VBPR examples - the
modular implementation of OpenRec does not degrade the perfor-
mance and can completely reproduce the results from the original
implementations.

5.2 E�ciency: OpenRec as a sandbox for quick
prototyping and experimentation

In this section, we show that because of its modular nature, Open-
Rec can be used as a sandbox for quick designing, prototyping and
evaluation in recommendation system research and development.
We demonstrate this in the context of building a book recommen-
dation system with rich context and content information, where
much information is available from many di�erent channels, in-
cluding users’ purchasing histories, books’ content, metadata, user
reviews and cover images. �erefore, developers not only need to
decide what information to include in the recommender system,
but also need to choose appropriate algorithms to analyze data with
di�erent modalities. In the rest of this section, we �rst describe the
dataset for experimentation and then show the power of OpenRec
in assisting and accelerating such a prototyping process.

5.2.1 Amazon book recommendation dataset. We conduct exper-
iments using an Amazon book recommendation dataset derived
from an Amazon review data dump released by [22, 23]. �e goal
of the system is to recommend books that users are willing to buy.
In this experiment, we focus on the utilities of three data sources -
users’ book purchasing history, users’ purchases outside of book
category and books’ cover images. We include users who have
at least 2 purchases in the book category and 5 purchases in non-
book categories, which ends up with a dataset containing 99,473
users, 450,166 books and 996,938 purchases. For each user, we de-
rive a user feature by taking the bag-of-words representation of
the labels for the products purchased in non-book categories. For
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Figure 9: Implementing UserVisualPMF with OpenRec (32
lines). We use the same annotations as Fig. 5.

each book, a visual feature is extracted based on the cover image
using ca�e reference model [19]. We divide the dataset into train-
ing/validation/testing by randomly sampling a purchase record for
each user for validation and another one for testing.

5.2.2 What information to include? To decide what information
to include in the book recommender system, we need to experiment
with combinations of the following three data sources: (A) purchas-
ing histories, (B) user features, and (C) visual features - PMF(A),
UserPMF(A+B), VisualPMF(A+C), and UserVisualPMF(A+B+C).
Previously, experimenting on these models required monolithic de-
velopment for each of them independently, which is a cumbersome
and ine�cient process. With OpenRec, the UserPMF and Visu-
alPMF are direct extensions of PMF, and the model UserVisualPMF
is an extension of UserPMF or VisualPMF. To incorporate users’ or
items’ features, we project them into a low-dimensional embedding
space with a multilayer perceptron and treat the outputs as the
prior for �nal representations. In other words, the users’ or items’
representations are the element-wise addition (fusion) between
the projected features and the corresponding latent factors. We
implement UserVisualPMF as shown in Fig. 9 (the implementations
for VisualPMF and UserPMF are likewise). As the implementation
extends most of the functions from VisualPMF and builds addi-
tional functions using reusable modules, the overhead of building
UserVisualPMF is signi�cantly reduced compared to a monolithic
approach. Other fusing strategies such as concatenation are also
applicable here, and OpenRec is intuitive in supporting such exper-
iments as well. To compare the performance of these recommender
systems, we select the best performed L2 regularization term among
{0.01, 0.001, 0.0001} using the validation set, and then report the
AUC and Recall@K on the testing set. Because of the large number
of items, for each user, we randomly sample 1000 items that did not
receive any feedback signals to calculate performance metrics.

As shown in Fig. 11a, in terms of AUC, adding visual features
or user features signi�cantly improves the recommendation per-
formance, and the best performance is achieved when only visual
features are incorporated. However, in terms of Recall@K, the
PMF model performs relatively well and the VisualPMF is able to
outperform it when K ≥ 40. From these results, we can conclude
that (1) in general, incorporating auxiliary features is helpful to
book recommendations but it does not mean that more features
always translate to be�er performance, and (2) the model selection
is contingent on the metric that we want to optimize.

5.2.3 Which algorithm to use? As is studied in the previous
experiment, VisualPMF signi�cantly outperforms other systems
in terms of AUC. Another interesting question is whether PMF is
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Figure 10: Implementing VisualCMLwith OpenRec (7 lines).
We use the same annotations as Fig. 5. �e model and train-
ing pseudocode is presented in the Appendix A.
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Figure 11: Book recommendation testing performance in
terms of AUC and Recall@K.

the best collaborative �ltering algorithm under such a recommen-
dation context? We can use OpenRec to quickly investigate this
question by leveraging di�erent interaction modules and reusing
the rest of the algorithmic components. Speci�cally, we show
the performance of VisualPMF, VisualBPR, VisualGMF and Vi-
sualCML in Fig. 11b. �e sample implementation of VisualCML is
shown in Fig. 10, which demonstrates that OpenRec provides an
elegant and e�cient way to quickly experiment with alternative
system components.

As shown in the Fig. 11b, varying the interaction module does
make a di�erence in recommendation performance, and the best
choice of the interaction module is dependent on the metric that
we want to optimize. For example, VisualCML performs the best
in terms of Recall@10, while VisualGMF achieves the best ranking
performance, i.e. AUC.

�e above examples also illustrate that there is no clear-cut so-
lution to design a be�er recommender system. Design decisions
involve trade-o�s and require careful experimentation and bench-
marking. With the modular design of OpenRec, we are able to
support such a development process and allow experimentation of
di�erent designs with minimal overhead.

5.3 Extensibility: Developing new algorithms
by extending existing modules in OpenRec

In this section, we demonstrate how researchers can use OpenRec
to develop new recommendation algorithms by directly extending
existing modules. Speci�cally, we develop a light-weight, iterative

inputs user	extractions item	extractions interactionsIterative
algorithm

Modules tLatentFactor Pointwise	MSE
Extraction	module Interaction	module

… …LatentFactor

Figure 12: Implementing iterative and temporal model with
OpenRec (57 lines). We use the same annotations as Fig. 5.

and temporal recommendation model for movie rating prediction
(similar to recent recommendation models [20, 32] that incorporate
temporal pa�erns). We build multi-layer deep neural networks to
project user and item vectors from time t − 1 to t , i.e. γ tu = f (γ t−1

u )
and γ ti = д(γ

t−1
i ) where f and д are two separate multi-layer per-

ceptrons, and the most recent user and item latent representations
are dot-producted to predict the user-item ratings. To develop such
a model with previous so�ware frameworks, we would need to
build everything from scratch even if there are many existing im-
plementations of matrix factorization and multi-layer perceptrons
available. However, using OpenRec, such a temporal model can be
built by implementing a new extraction module tLatentFactor that
executes the transition functions f and д and produces user and
item vectors at time t , and directly extending the existing Pointwise
MSE and LatentFactor modules, as Fig. 12 shows. �is is possible
because of the highly-modular nature of OpenRec. To train the
model, we use traditional mean square error as the loss with L2
regularization to drive the optimization. Because OpenRec is built
on a Tensor�ow backend, bene�ts such as automatic di�erentiation
are readily available to the developers.

We evaluate our temporal model using the Ne�ix dataset [3]
and compare it to the traditional matrix factorization (MF) imple-
mentation from MyMediaLite. We update users’ and items’ repre-
sentations daily2 and validate on each batch before training (Each
data point is only used once). �e user and item vectors are initial-
ized using MF over the �rst 3/4 of the dataset (75M ratings). We
refer readers to the OpenRec online repo for additional parame-
ter se�ings. �e experimental results demonstrate that our model
signi�cantly outperforms the MF baseline by 6% in terms of MSE
(0.066 for ours and 0.071 for MF) a�er only training on 3 days of
rating data, which justi�es the merits of temporal pa�erns. Note
that our model is not intended to be the state-of-the-art in temporal
recommendation but rather as an example of how researchers can
easily use OpenRec to explore their ideas.

6 CONCLUSION AND FUTUREWORK
We introduced OpenRec, a modular framework designed to sup-
port extensible and adaptable development and research in recom-
mender systems. �rough careful experiments and case studies, we
demonstrated the value of modularity and reusability. Moving for-
ward, future work will include: standardizing interfaces; building
new modules, recommenders, and utility functions (such as NDCG);
evaluating models against standard datasets and criteria; and creat-
ing modularized models with non-neural network structures (such
as random forest).

2We only make updates for users and items that have rating during that day.
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A VISUALCML OPENREC IMPLEMENTATION
from openrec.recommenders import VisualBPR
from openrec.modules.interactions import PairwiseEuDist

class VisualCML(VisualBPR):

def _build_default_interactions(self, train):
if train:

self._interaction_train = PairwiseEuDist(train=True,..)
else:

self._interaction_serve = PairwiseEuDist(train=False,..)

Listing 1: Pseudocode of an OpenRec implementation for
the VisualCML recommender (Section 5.2.3).
from openrec import ModelTrainer
from openrec.utils import Dataset
from openrec.recommenders import VisualCML
from openrec.utils.evaluators import AUC
from openrec.utils.samplers import PairwiseSampler

raw_train_data, raw_test_data = load_raw_data()
train_dataset = Dataset(raw_train_data, .., name='Train')
test_dataset = Dataset(raw_test_data, .., name='Test')

model = VisualCML(batch_size=512, ..)
sampler = PairwiseSampler(batch_size=512, dataset=train_dataset)
model_trainer = ModelTrainer(batch_size=512, dataset=train_dataset,

model=model, sampler=sampler, ..)
auc_evaluator = AUC()

model_trainer.train(num_itr=1e4, eval_datasets=[test_dataset],
evaluators=[auc_evaluator], ..)

Listing 2: Pseudocode of training VisualCMLwith OpenRec.

ACKNOWLEDGMENTS
We would like to sincerely thank the anonymous reviewers for
their insightful comments and suggestions. �is research is partly
funded by Oath through the Connected Experiences Laboratory at
Cornel Tech. �e work is further supported by the small data lab
at Cornell Tech, which receives funding from NSF (#1700832), NIH,
RWJF, UnitedHealth Group, Google, and Adobe.

REFERENCES
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Je�rey Dean, Ma�hieu Devin, and
others. 2016. Tensor�ow: Large-scale machine learning on heterogeneous dis-
tributed systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Linas Baltrunas, Bernd Ludwig, and Francesco Ricci. 2011. Matrix factorization
techniques for context aware recommendation. In Proceedings of the ��h ACM
conference on Recommender systems. ACM, 301–304.

[3] James Benne�, Stan Lanning, and others. 2007. �e net�ix prize. In Proceedings
of KDD cup and workshop, Vol. 2007. New York, NY, USA, 35.

[4] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed
Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and others.
2000. Advances in network simulation. Computer 33, 5 (2000), 59–67.

[5] Denny Britz, Anna Goldie, �ang Luong, and �oc Le. 2017. Massive Exploration
of Neural Machine Translation Architectures. ArXiv e-prints (March 2017).
arXiv:cs.CL/1703.03906

[6] Simon Chan, �omas Stone, Kit Pang Szeto, and Ka Hou Chan. 2013. PredictionIO:
a distributed machine learning server for practical so�ware development. In
Proceedings of the 22nd ACM international conference on Information & Knowledge
Management. ACM, 2493–2496.

[7] François Chollet and others. 2015. Keras. h�ps://github.com/fchollet/keras.
(2015).

[8] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 191–198.

[9] Michael D Ekstrand, Michael Ludwig, Joseph A Konstan, and John T Riedl. 2011.
Rethinking the recommender research ecosystem: reproducibility, openness,
and LensKit. In Proceedings of the ��h ACM conference on Recommender systems.
ACM, 133–140.

[10] Zeno Gantner, Ste�en Rendle, Christoph Freudenthaler, and Lars Schmidt-
�ieme. 2011. MyMediaLite: A free recommender system library. In Proceedings
of the ��h ACM conference on Recommender systems. ACM, 305–308.

[11] Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. 2015. LibRec: A Java
Library for Recommender Systems.. In UMAP Workshops.

[12] Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel. 2010.
Social media recommendation based on people and tags. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 194–201.

[13] Ruining He and Julian McAuley. 2015. VBPR: visual bayesian personalized
ranking from implicit feedback. arXiv preprint arXiv:1510.01784 (2015).

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Commi�ee.

[15] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative Metric Learning. In Proceedings of the 26th
International Conference on World Wide Web. International World Wide Web
Conferences Steering Commi�ee.

[16] Cheng-Kang Hsieh, Longqi Yang, Honghao Wei, Mor Naaman, and Deborah
Estrin. 2016. Immersive Recommendation: News and Event Recommendations
Using Personal Digital Traces. In Proceedings of the 25th International Confer-
ence on World Wide Web. International World Wide Web Conferences Steering
Commi�ee, 51–62.

[17] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative �ltering for im-
plicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. Ieee, 263–272.

[18] Nicolas Hug. 2017. Surprise, a Python library for recommender systems. h�p:
//surpriselib.com. (2017).

[19] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Ca�e: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. ACM, 675–678.

[20] Yehuda Koren. 2010. Collaborative �ltering with temporal dynamics. Commun.
ACM 53, 4 (2010), 89–97.

[21] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommenda-
tions: Item-to-item collaborative �ltering. IEEE Internet computing 7, 1 (2003),
76–80.

[22] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks
of substitutable and complementary products. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
785–794.

[23] Julian McAuley, Christopher Targe�, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 43–52.

[24] Slav Petrov and others. 2016. SyntaxNet. h�ps://github.com/tensor�ow/models/
tree/master/syntaxnet. (2016).

[25] István Pilászy and Domonkos Tikk. 2009. Recommending new movies: even a
few ratings are more valuable than metadata. In Proceedings of the third ACM
conference on Recommender systems. ACM, 93–100.

[26] Ste�en Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
�ieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In
Proceedings of the twenty-��h conference on uncertainty in arti�cial intelligence.
AUAI Press, 452–461.

[27] Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic Matrix Factorization..
In NIPS, Vol. 1. 2–1.

[28] Yue Shi, Martha Larson, and Alan Hanjalic. 2014. Collaborative �ltering beyond
the user-item matrix: A survey of the state of the art and future challenges. ACM
Computing Surveys (CSUR) 47, 1 (2014), 3.

[29] Apache Spark. 2017. MLlib. h�ps://spark.apache.org/mllib/. (2017).
[30] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep

content-based music recommendation. In Advances in neural information pro-
cessing systems. 2643–2651.

[31] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1235–1244.

[32] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. 2017.
Recurrent recommender networks. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining. ACM, 495–503.

[33] Longqi Yang, Chen Fang, Hailin Jin, Ma� Ho�man, and Deborah Estrin. 2017.
Personalizing So�ware and Web Services by Integrating Unstructured Applica-
tion Usage Traces. In Proceedings of the 26th International Conference on World
Wide Web. International World Wide Web Conferences Steering Commi�ee.

[34] Longqi Yang, Cheng-Kang Hsieh, Hongjian Yang, John P Pollak, Nicola Dell,
Serge Belongie, Curtis Cole, and Deborah Estrin. 2017. Yum-me: a personalized
nutrient-based meal recommender system. ACM Transactions on Information
Systems (TOIS) 36, 1 (2017), 7.

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

672

http://arxiv.org/abs/cs.CL/1703.03906
https://github.com/fchollet/keras
http://surpriselib.com
http://surpriselib.com
https://github.com/tensorflow/models/tree/master/syntaxnet
https://github.com/tensorflow/models/tree/master/syntaxnet
https://spark.apache.org/mllib/

	Abstract
	1 Introduction
	2 Evolution of Recommender Systems
	2.1 Pure Collaborative Filtering Models
	2.2 Hybrid and Content-ware Models

	3 Related Frameworks
	4 OpenRec Framework
	4.1 Recommenders
	4.2 Modules
	4.3 Utility functions
	4.4 Generalization

	5 Experiments and Use cases
	5.1 Validity: Reproducing monolithic implementations with modular framework
	5.2 Efficiency: OpenRec as a sandbox for quick prototyping and experimentation
	5.3 Extensibility: Developing new algorithms by extending existing modules in OpenRec

	6 Conclusion and Future work
	A VisualCML OpenRec Implementation
	Acknowledgments
	References



