
Quark: An Efficient XQuery Full-Text Implementation

[Demonstration Paper]

Anand Bhaskar, Chavdar Botev, Muthiah M Muthaia Chettiar, Lin Guo, Jayavel
Shanmugasundaram, Feng Shao, Fan Yang

Cornell University
Ithaca, New York

{ab394, cbotev, mm376, guolin, jai, fshao, yangf}@cs.cornell.edu

ABSTRACT
The XQuery 1.0 and XPath 2.0 Full-text (XQFT) language
has been developed by the W3C to extend XQuery and
XPath with full-text search capabilities. XQFT allows users
to specify a mix of structured and complex full-text predi-
cates, and also allows users to score/rank such queries. The
power and flexibility of XQFT gives rise to two interest-
ing questions. First, is it possible to efficiently integrate a
full-function XML query language with sophisticated full-
text search? Second, is it possible to score and rank arbi-
trary XQuery and XQFT queries? In this demonstration,
we present evidence that it is indeed possible to achieve the
above goals. We demonstrate the Quark open-source data
management system and show how we can seamlessly and ef-
ficiently integrate structured and unstructured search over
XML data. In particular, we demonstrate (a) techniques
for efficiently evaluating keyword search over virtual XML
views, and (b) a framework for scoring both structured and
full-text predicates.

1. INTRODUCTION
XQuery 1.0 and XPath 2.0 Full-text (XQFT) has been

recently developed and proposed for extending XQuery and
XPath with full-text search. While there have been many
previous proposals to integrate XML queries and full-text
search, an interesting aspect of XQFT is that it integrates
full-text search with a full-function XML query language
(XQuery). Consequently, it presents new challenges and op-
portunities for integrating sophisticated queries with full-
text search. In this demonstration, we focus on two such
challenges: (a) performing keyword search over XML views,
and (b) scoring arbitrarily complex combinations of XQuery
and XQFT queries. We illustrate the power of these two
features using an example movie database that stores XML
information about movies and their reviews (Figure 1).

Keyword Search Over Views. Given a movie database,
users may wish to create personalized views over the data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Figure 1: Movies Database Application

For instance, some users may only be interested in ‘thriller’
movies, while others may only be interested in movies made
after the year 2000. An even more interesting example is
a user who wishes to see the reviews of each movie nested
under the movie element, instead of being listed separately.
XQuery is well suited to creating such personalized views of
XML data. For instance, we can create a view in XQuery
for nesting reviews under their corresponding movies using
the following Query 1:

declare function AllMoviesData() {

for $facts in doc("facts/*.xml")/facts

for $reviews in doc("reviews/*.xml")/reviews

where $facts/@movieid = $reviews/@movieid

return <movie movieid="{$facts/@movieid}">

{$facts/*} {$reviews/*}

</movie>

}

Given the above personalized view, a user may wish to
search this view for “excellent greek” movies. This can be
expressed in XQFT using the following Query 2:

AllMoviesData()/movie[. ftcontains

{"Greek", "excellent"}]

However, this query raises an interesting challenge: how
do we efficiently evaluate keyword search queries over views?

1

In traditional information retrieval (IR), keyword search is
performed over static documents that are pre-indexed using
inverted lists. But how can we efficiently evaluate keyword
search queries over dynamically generated content; over vir-
tual views that have not been previously materialized and
indexed?

Scoring Arbitrarily Complex XQuery/XQFT Queries.
A common user task is querying for movies of interest, and
browsing the ranked results. A typical query can include
a mix of structured and full-text predicates. For example,
a user might query for “excellent Greek” movies that were
created after the year 2000, in rank order. The above query
can be expressed in XQFT as the following Query 3.

for $m score $s in

doc("facts/*.xml")/facts[./year > 2000 and

./summary ftcontains

{"Greek","excellent"}]

order by $s desc

return $m

In the XQFT query, the “score” clause binds a score to
each movie that satisfies the user predicates. The query then
orders the results and returns them in scored order. The in-
teresting aspect of the above query is that it involves both
structured (year > 2000) and full-text predicates (‘Greek’,
‘excellent’). Consequently, it makes sense to score the re-
sults based on a combination of structured and full-text
predicates. Specifically, a movie should be ranked higher
if it is more recent and if it is also more relevant to the full-
text search predicate. This query again raises an interesting
question: how can we score arbitrarily complex XQuery and
XQFT queries, which may contain any combination of struc-
tured and full-text predicates?

In this demonstration, we will present the Quark open-
source data management system (http://www.cs.cornell.edu
/database/quark) that is architected to effectively address
the above questions. In particular, we will demonstrate the
following features of Quark:

• An efficient technique for evaluating keyword search
queries over XML views by exploiting inverted list
structures on the base XML data.

• A general and efficient framework for scoring and rank-
ing arbitrary XQuery and XQFT expressions. To the
best of our knowledge this is the first scoring imple-
mentation for the complete XQuery language, includ-
ing XQFT.

For the demonstration, we have created and indexed a
data set with movies and reviews extracted from Internet
movie sites. We also have other XML data sets including
INEX (http://inex.is.informatik.uni-duisburg.de:2004/), DBLP
in XML (http://dblp.uni-trier.de/xml/), and SIGMOD Record
in XML (http://www.dia.uniroma3.it/Araneus/Sigmod/). The
total size of all collections is over 900MB of XML data,
and Quark provides interactive response time for most user
queries.

The rest of this paper is organized as follows. We first
present an overview of the Quark architecture, and then
present the details of the techniques for keyword search over
views and scoring arbitrary XQuery expressions. We con-
clude by describing the GUI for interacting with users.

2. QUARK SYSTEM ARCHITECTURE

Figure 2: Quark System Architecture

Figure 3: Structured Inverted List

Figure 2 shows the architecture of Quark. When an XML
document is loaded into the system, it is processed by the
Document Loader. The Document Loader first assigns unique
Dewey IDs [8] to the nodes of the document (a Dewey ID is
a hierarchical numbering scheme where the ID of the node
contains the ID of its parent node as a prefix). The docu-
ment is then stored/indexed in three different formats1, as
described below.

The document is stored in a compressed binary format in
the Filesystem Storage – this format uses techniques simi-
lar to the XML binary representation techniques described
in [1], and is used as the primary storage format for the doc-
ument. The Structure+Value Based Index (SVBI) is simi-
lar to RootPaths [3] and can efficiently support branching
XPath queries, including those with structured predicates
(such as year > 2000). Finally, the Structure Based In-
verted List Index (SBILI) is similar to the XML inverted
list organization proposed in [2]. For each keyword occur-
ring in the stored documents, the inverted list stores the
Dewey IDs of the elements that directly contain the key-
word. Each keyword inverted list also has a B+-tree index
built on the Dewey ID to allow for fast access to different
parts of the list. Figure 2 shows the Structured Inverted
List for the term “Troy” from the document in Figure 1.

3. KEYWORD SEARCH OVER VIEWS
As mentioned in the introduction, the ability to create

views over data is one of the powerful features of XQuery
(and other database-style query languages). Views have
many advantages, including logical data independence, ac-
cess control and the presentation of tailored views of data to
users as illustrated in the movie example. Given such views,
users may then wish to evaluate full-text search queries over
the views. As in our example Query 2, a user may wish
to issue a keyword search query over the view containing
movies and its reviews. An interesting question thus arises:

1One of the design decisions of Quark is to deal with “read
and append-mostly” applications, such as document repos-
itories and content management systems. Consequently,
storing/indexing each document in three different formats
is not expected to adversely affect performance.

2

what is the most efficient way to support full-text queries
over views?

At a high level, there are three possible solutions to this
problem. The first solution is to compute the view at the
time of loading XML documents, materialize and index the
view as a separate XML document, and then use regular
query processing techniques to evaluate queries (structured
or full-text) over this view. However, the main disadvantage
of this method is that the view may not be known until query
time, and hence cannot be materialized and indexed before
query execution time. For instance, using XQFT, users can
create views “on the fly”, as in Query 1.

A second solution is to materialize the view during query
processing, and then process full-text queries over the view.
The main disadvantage of this approach is that there are
no indexes built over the view (since it is not known until
query time), and hence evaluating queries over the view can
be inefficient.

To address the above issues, we propose a third solution
where the entire view is not materialized during document
loading or query processing. Rather, the indices on the base
data (facts and reviews, in our example) are used at query
time to identify the view elements that satisfy the full-text
query, and only the relevant view elements are materialized.
An interesting aspect of our solution is that it can produce
the same score for the relevant view elements as the other
two techniques, using a variant of TF-IDF scoring.

The above solution is similar to the problem of answering
database queries over views by rewriting the queries over
the base data (e.g., see [4, 7]). The main difference be-
tween these approaches and our proposed approach is that
we consider keyword search queries – the different semantics
of keyword queries and the presence of scoring gives rise to
new challenges.

We now describe the main idea behind our technique for
processing keyword search over views. Figure 4 presents
the original query evaluation plan for Query 2. Intuitively,
the bottom part of the plan evaluates the AllMoviesData
view, and the top part evaluates the keyword search query
over the view. We propose to rewrite the above query plan
by pushing down the keyword search query over the vari-
ous XQuery operators until it is evaluated directly over the
base data. Since the base data is indexed using Structured
Inverted Lists, the query can then be evaluated efficiently.

The result of rewriting the query plan in Figure 4 is shown
in Figure 5. Essentially, the keyword search for “Greek”
and “excellent” over items in the AllMoviesData view has
been rewritten into four sub-queries. Each sub-query tries
to match the keywords in one or two of the underlying data
sets, the facts data set and the reviews data set, and then
assembles these intermediate results to determine the result
of the keyword search query. Figure 6 shows another possi-
ble plan after the rewrite. The difference between the two
plans is that the first plan matches “excellent” in the facts
and “Greek” in the reviews. The second plan matches both
“excellent” and “Greek” in the facts. However, both plans
have significant benefits over the original plan because the
keyword search query is evaluated over the base data, which
is indexed using Structured Inverted Lists.

4. SCORING ARBITRARILY COMPLEX
XQUERY / XQFT QUERIES

Figure 4: Original Query-over-view Plan

Figure 5: Rewriten Query-over-View Plan 1

The second challenge outlined in the introduction stems
from the fact that users can score arbitrarily complex XQuery
and XQFT queries. While there has been some previous
work on scoring a mix of structured and full-text queries [6,
5, 9], these techniques focus on the relational model or re-
stricted XML query languages. In contrast, we focus on
scoring the entire XQuery language, including XQFT.

We support such a general scoring mechanism as follows.
First, we extend the basic XQuery evaluation model with
scores. Traditionally, each XQuery expression produces a
sequence of items. To capture scores, each XQuery expres-
sion now produces a sequence of scored items. Second, we
extend each XQuery expression to propagate scores. The
score propagation is based on a probabilistic interpretation
of scores [6], and is extended to work with any XQuery ex-
pression. Third, we extend each XQuery function to prop-
agate scores, again preserving the probabilistic interpreta-
tion. Finally, we integrate TF-IDF scores for full-text search
with the scores of other XQuery expressions.

Expr : ScoredSequencek → ScoredSequence

Figure 6: Rewriten Query-over-View Plan 2

3

Figure 7: Score Computation and Propagation

ScoredSequence := (Item, Score)∗

Figure 7 demonstrates how the scores are computed and
propagated for Query 3. At the bottom of the plan, we have
the access to the index structures, SVBI for the structured
predicate and SBILI for the full-text predicate. The access
methods for these indexes generate resulting (item, score)
pairs using index-dependent scoring methods. Then, we ag-
gregate the scores from the index lookups and generate the
score for the conjunction s3, which in our implementation
is the product of s1 and s2. Further, the score is associated
with the result of the conjunction and is further propagated
up the expression tree.

5. QUARK DEMONSTRATION GUI
For the purpose of the demonstration, we have created a

Java-based GUI, which provides a user-friendly interface to
the Quark server. The GUI allows the user to enter queries,
view their results, and control the internal aspects of the
Quark server such as the rewriting and optimization tech-
niques used. The GUI also provides a visualization of the
query graph at different stages of query processing - such as
after the parsing, rewriting or optimization phases (Figures
8(a) and 8(b)).

We will demonstrate queries similar to those described
in this paper. We will also demonstrate the implementa-
tion of the XQuery 1.0 and XPath 2.0 Full-text Use Cases
(http://www.w3.org/TR/xmlquery-full-text-use-cases/).

6. REFERENCES
[1] R. J. Bayardo, D. Gruhl, V. Josifovski, and

J. Myllymaki. An evaluation of binary xml encoding
optimizations for fast stream based xml processing. In
WWW’04.

[2] C. Botev and J. Shanmugasundaram. Context-sensitive
keyword search and ranking for xml. In WebDB’2005
Poster.

(a) Query Entry and Results

(b) Visualizing Query Plans

Figure 8: The Quark GUI

[3] Z. Chen, J. Gehrke, F. Korn, N. Koudas,
J. Shanmugasundaram, and D. Srivastava. Index
structures for matching xml twigs using relational
query processors. In XSDM’2005.

[4] M. Fernandez, W.-C. Tan, and D. Suciu. Silkroute:
Trading between relations and xml. In WWW’1999.

[5] N. Fuhr and K. Groβjohann. Xirql: a query language
for information retrieval in xml documents. In
SIGIR’2001.

[6] N. Fuhr and T. Rolleke. A probabilistic relational
algebra for the integration of information retrieval and
database systems. ACM Trans. Inf. Syst., 15(1):32–66,
1997.

[7] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan,
and J. Funderburk. Querying xml views of relational
data. In VLDB’2001.

[8] I. Tatarinov, S. Viglas, K. Beyer,
J. Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and querying ordered xml using a relational
database system. In SIGMOD’2002.

[9] A. Theobald and G. Weikum. The index-based xxl
search engine for querying xml data with relevance
ranking. In EDBT’2002.

4

