
YATES: Rapid Prototyping for
Traffic Engineering Systems

Praveen Kumar
Cornell University

Chris Yu
Carnegie Mellon University

Yang Yuan
Cornell University

Nate Foster
Cornell University

Robert Kleinberg
Cornell University

Robert Soulé
Università della Svizzera italiana

ABSTRACT

This paper presents the design and implementation of Yates,
a software framework that seeks to dramatically lower the
cost of experimenting with different traffic engineering ap-
proaches. Yates offers a suite of tools that make it possible
to rapidly prototype and evaluate the performance of traffic
engineering systems including tools for modeling topologies,
routing schemes, demands, prediction algorithms, and fail-
ures. Yates comes with two backends: a network simulator
that calculates congestion, throughput, loss, latency, etc., and
an SDN-based implementation that can be used to validate
results obtained via simulation and also provides an easy
path to deployment. We evaluate Yates by prototyping 17
TE systems of varying complexity.

CCS CONCEPTS

• Networks→ Traffic engineering algorithms; Network sim-

ulations; Network experimentation;

KEYWORDS

Traffic Engineering, Wide-Area Networks, Simulation, Tools.

ACM Reference Format:

Praveen Kumar, Chris Yu, Yang Yuan, Nate Foster, Robert Klein-
berg, and Robert Soulé. 2018. YATES: Rapid Prototyping for Traffic
Engineering Systems. In SOSR ’18: ACM SIGCOMM Symposium on

SDN Research, March 28ś29, 2018, Los Angeles, CA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3185467.3185498

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOSR ’18, March 28ś29, 2018, Los Angeles, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5664-0/18/03. . . $15.00
https://doi.org/10.1145/3185467.3185498

1 INTRODUCTION

Imagine you are a network operator and you are asked to
develop a new traffic engineering (TE) solution for your
wide-area network (WAN). As recently as five years ago, you
quite likely would have followed a conventional approach:
build a system that tunes link weights so distributed routing
protocols such as CSPF and ECMP compute a good set of
forwarding paths. But the emergence of software-defined
networking (SDN) has made it possible to consider using
a much wider variety of solutions than in the past. For ex-
ample, systems like SWAN [18] and B4 [21] use centralized
controllers and constraint programming to compute forward-
ing paths that provide optimal levels of performance.

But although many interesting TE approaches have been
proposed over the years [1, 18, 21, 22, 27, 38], there is not a
single best choice that outperforms the others in every possi-
ble scenario. In practice, performance varies wildly depend-
ing on factors like the network topology and the conditions
in which they are deployed. Furthermore, each approach
was designed with a different objective in mindÐe.g., some
approaches optimize for minimizing congestion while others
optimize for fault tolerance. To make an informed choice,
we would need a way to model various design choices, build
prototypes, and perform what-if-style reasoning about trade-
offs across many possible alternatives.

In principle, it should be possible to use simulation frame-
works such as ns-2, ns-3, and Mininet [26, 29] to evaluate
these trade-offs. But actually doing this would be difficult:
because most simulation frameworks model the network at
a low level of abstraction, one would need to write a lot of
code that is unrelated to the behavior of the TE systems. For
example, interactions between individual traffic flows do not
typically have a major impact on the performance and ro-
bustness characteristics of WANs, since they deal with traffic
aggregates comprising millions of flows. What is needed is a
framework that abstracts away from low-level details of TE
systems while still capturing macroscopic behavior.
To this end, we present Yates (Yet Another Traffic Engi-

neering System), a software framework that is designed to

https://doi.org/10.1145/3185467.3185498
https://doi.org/10.1145/3185467.3185498

SOSR ’18, March 28ś29, 2018, Los Angeles, CA, USA P. Kumar et al.

Figure 1: Example topology: AT&T WAN (from Internet

Topology Zoo [24]).

dramatically lower the cost of experimenting with different
TE approaches. Our design goals for Yates include:
• Domain-specific: Yates focuses specifically on WAN-TE
and abstracts away from packet-level interactions while
still providing enough knobs to accurately capture macro-
scopic behavior.

• Modular: Yates is based on a modular design that makes
it possible to express complex TE behaviors as the compo-
sition of simpler components.

• Libraries: Yates offers a rich library of algorithms and
tools that can be used to rapidly assemble TE prototypes.

• Backends: Yates provides multiple backends including a
software simulator and an SDN backend, which offers a
level playing field for benchmarking different TE systems
as well as an easy path to deployment.

Contributions: This paper shows how we can use Yates
to easily prototype conventional distributed (ğ2) as well as
contemporary centralized (ğ3) TE systems, and how we can
evaluate their behavior under a variety of operational condi-
tions, including in the presence of failures (ğ4). We present
the detailed design and implementation of the Yates frame-
work (ğ5) along with over a dozen TE systems.

2 CONVENTIONAL TE

To start, let us see how Yates can be used to model a con-
ventional TE system based on the constrained shortest path
first (CSPF) algorithm. Although modeling existing systems
is arguably not its purpose, this example will illustrate the
main features of Yates in a familiar setting.
Consider the topology shown in Fig. 1, and suppose we

need to tune the link weights of an existing deployment to
better balance the load. However, before we actually modify
the weights, we want to ensure that doing so will not degrade
the steady-state performance under the current workload.

2.1 Yates Algorithm Modules

Yates provides a simple interface for modeling TE systems in
terms of demands, routing schemes, and algorithms, as shown
in Fig. 2. A demand maps each source-destination pair to a
floating-point number that encodes the required bandwidth
between those nodes. Demands may either be measured or

(* Map from src -dst pairs to traffic demands *)

type demands = float SrcDstMap.t

(* Map from src -dst pairs to path distributions *)

type scheme = (float PathMap.t) SrcDstMap.t

module type Algorithm = sig

val initialize : scheme -> unit

val solve : topology -> demands -> scheme

end

Figure 2: Yates Interface

(* Algorithm : ECMP *)

let solve (topo:topology) (dem:demands) : scheme =

SrcDstMap.fold dem ∼init:SrcDstMap.empty

∼f:(fun ∼key:(u, v) ∼data:_ acc ->

(* Compute all u-v paths *)

let paths = all_shortest_paths topo u v in

(* Compute weight in uniform distribution *)

let prob = 1. /.

Float.of_int (List.length paths) in

(* Construct uniform distribution *)

let uniform = List.fold_left paths

∼init:PathMap.empty

∼f:(fun acc path ->

PathMap.add acc ∼key:path ∼data:prob) in

(* Add u-v and distribution to scheme *)

SrcDstMap.add acc ∼key:(u, v) ∼data:uniform)

Figure 3: ECMP implementation in Yates.

predicted. A routing scheme is a mapping from node pairs
to probability distributions on paths between those nodes.
For example, given an input (u,v) a shortest path routing
scheme would return a single path (i.e., the shortest path
fromu tov) with probability 1.0, whereas amore complicated
scheme might return a set of paths, each weighted by a
different probability [18, 34, 38]. A TE algorithm computes a
routing scheme given a topology and a demand. In simple
cases, the algorithm may depend only on the topology (e.g.
shortest path routing), but more generally it may maintain
state, or adapt to changing conditions as encoded in the
demands. Hence, a TE algorithm may be invoked repeatedly,
in response to changes in demands or the topology.

2.2 ECMP and CSPF

ECMP spreads traffic uniformly across all shortest paths from
a source to a destination. These shortest paths, used to carry
traffic, can be manipulated by changing link weights. To pro-
totype ECMP in Yates, we implement a TE algorithmmodule
that: (i) given a topology, computes all shortest paths for ev-
ery node pair and (ii) generates a routing scheme that assigns
uniform probability to the shortest paths for each node pair.
Fig. 3 shows that the corresponding Yates implementation
is just a few lines of OCaml code.

YATES: Rapid Prototyping for Traffic Engineering Systems SOSR ’18, March 28ś29, 2018, Los Angeles, CA, USA

0 5 10 15 20
Time (hours)

0.2

0.4

0.6

0.8

1.0

M
ax

. C
on

ge
st

io
n

ECMP (Hop)
CSPF (Hop)

CSPF (RTT)
KSP+MCF

Figure 4: Timeseries of max. congestion on AT&T topology.

Similarly, CSPF is a distributed routing algorithm that
routes traffic over shortest paths that have sufficient available
bandwidth. Many deployments reserve headroom on each
link to handle unexpected surge in traffic. Let us assume that
all link weights are set to 1 so that length of a path is its hop-
count, and that 20% of the capacity on each link is reserved
as headroom. Returning to the top-level example, we wish
to decide if modifying the link weights to be proportional to
their RTT would improve performance.
To evaluate this choice using Yates, we first provide the

topology and a timeseries of demands (generated using grav-
ity model described later) to the system. Yates simulates
traffic based on the demands and routes it based on the
specified TE algorithm to provide a detailed analysis of net-
work performance. For instance, Fig. 4 shows the maximum
link congestion in the network for the TE approaches men-
tioned above on the sample topology. It is easy to see that
the RTT-based implementation of CSPF outperforms the
implementation based on hop counts in this setting.

3 CENTRALIZED TE

Next we will see how the same programming interface used
to model conventional distributed TE algorithms, such as
ECMP, can also be used to implement centralized algorithms,
which have risen in popularity in recent years as more and
more networks adopt SDN-style management [18, 21].

To illustrate, consider two representative algorithms, which
would typically only be implemented on a centralized ar-
chitecture: (1) MCF: an optimal approach that minimizes
maximum link congestion [31] and (2) KSP + MCF: a simpli-
fied version of SWAN [18] which load balances traffic over
k-shortest paths. We can implement the former algorithm in
Yates by writing a single module that formulates the routing
problem as a multi-commodity flow (MCF) problem, encodes
it as a linear program (LP) using Yates libraries, and uses
an off-the-shelf LP-solver, such as Gurobi [15], to compute
the optimal routing scheme. More interestingly, we can im-
plement the latter by combining a module that computes
k-shortest paths (KSP), with another that optimizes the prob-
ability distribution over the paths computed by KSP using

(* YATES modules *)

module KSP : Algorithm

module SemiMCF : Algorithm

(* Compute base set of k-shortest paths *)

let initial_scheme : scheme =

let empty_scheme : scheme = SrcDstMap.empty in

let empty_demands : demands = SrcDstMap.empty in

KSP.initialize empty_scheme;

KSP.solve topo empty_demands

(* Initialize SemiMCF with k-shortest paths *)

let () = SemiMCF.initialize initial_scheme in

(* Helper: simulate one traffic matrix *)

let simulate_step (d:demands) : unit =

(* Compute current routing scheme *)

let (s:scheme) = SemiMCF.solve topo d in

(* Record performance statistics ... *)

...

(* Simulate all traffic matrices *)

let simulate_all (ds:demands list) : unit =

List.iter ∼f:simulate_step ds

Figure 5: Pseudocode for simplified SWAN (KSP + MCF).

50 100
Latency (ms)

0.0

0.5

1.0
CD

F
(T

hr
ou

gh
pu

t)

ECMP
MCF

(a) CDF of latency

0 10 20
Interval (hours)

0

100

200

Ch
ur

n
(#

pa
th

s)

MCF

(b) Path churn.

Figure 6: Overheads of congestion-optimal MCF-based TE.

the SemiMCF module, which solves the multi-commodity
flow problem restricted to just those paths. Fig. 5 gives pseu-
docode showing how this behavior can be obtained simply
by composing components of Yates modules. Hence, Yates
enables specifying complex TE algorithms as the modular
composition of simpler components. As demands evolve over
time or as failures occur, these modules would be repeatedly
invoked to meet the current operating conditions.

Fig. 4 shows the improvement in performance when using
a centralized approach like KSP+MCF in contrast to conven-
tional approaches. Moreover, Yatesmakes it easy to examine
a large set of additional performance metrics such as latency,
solver time, churn etc. To illustrate, Fig. 6a shows that MCF,
which is optimal in terms of minimizing maximum conges-
tion, may select paths with higher latency. Further, the rout-
ing scheme generated by MCF is not stable under changing
demandsÐi.e., the set of paths used for forwarding traffic can
change significantly even if demands change slightly. This
leads to churn in network state as shown in Fig. 6b. Thus,
Yates enables studying trade-offs between TE systems on a
level playing field.

SOSR ’18, March 28ś29, 2018, Los Angeles, CA, USA P. Kumar et al.

type failure = EdgeSet.t

val recovery :

(* Initial routing scheme and topology *)

scheme -> topology ->

(* Failure scenario *)

failure ->

(* Post -recovery routing scheme *)

demands -> scheme

Figure 7: Generic failure recovery type.

4 ROBUST TE

TE systems are expected to gracefully handle unexpected
failures, such as fiber cuts or router malfunctions. One mech-
anism that is widely deployed in practice is Fast Reroute
(FRR) [3], which protects MPLS-based distributed TE sys-
tems against failures. FRR works by rerouting traffic over a
precomputed backup path when a failure affects the primary
routing path. Using the high-level programming interface
exposed by Yates, it is straightforward to implement failure
recovery in a generic way by implementing a function with
the type shown in Fig. 7.

Such a function can be composed with an existing TE sys-
tem, perhaps one designed without built-in fault-tolerance,
to make it more robust. For example, Yates comes equipped
with a generic failure recovery method called normalization

recovery, which normalizes the path distributions in the rout-
ing scheme after removing all paths affected by the failure.

To demonstrate this, let us take KSP+MCF and augment it
with normalization recovery to improve its robustness. As an
example of a robust-by-design TE system, we also implement
a prototype of FFC [27], a TE system that is designed to be
resilient to a configurable number of failures (a single link in
our implementation). Fig. 8 shows the total throughput (nor-
malized to total demand) achieved by these TE systems in an
experiment where we systematically test every possible sin-
gle link failure scenario. As expected, FFC uses a diverse set
of paths which can tolerate any single link failure, and thus it
always achieves throughput of 1 while KSP+MCF’s through-
put under failures improves significantly with normalization
recovery.

5 DESIGN AND IMPLEMENTATION

So far, we have seen how Yates’s high-level and modular pro-
gramming interface makes it easy to implement various TE
algorithms in a unified setting. This section explores the de-
sign and implementation of Yates in further detail.Yates pro-
vides three main tools for evaluating TE approaches: (i) a sim-
ulator that enables quantitative comparison of approaches
in a common framework under a variety of scenarios (ğ5.1),
(ii) a set of tools for generating topologies, demands, and
predictions using multiple statistical models (ğ5.2), and (iii) a

0 6 12 18 24 30 36 42 48 54
Failure Scenario (sorted by throughput)

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Th

ro
ug

hp
ut

FFC (Robust)
KSP+MCF with Recovery
KSP+MCF without Recovery

Figure 8: Combining TE systems with recovery mechanism

to improve robustness. (Path budget = 4)

backend for deploying TE approaches in an SDN-enabled
network, allowing for empirical validation (ğ5.3).

Our implementation comprises approximately 12k lines of
C, C++, and OCaml code. We have made all Yates code pub-
licly available on GitHub under an open-source license [43].
To evaluate the ease of prototyping TE systems with Yates,
we have implemented 17 different TE systems ranging from
simple approaches like OSPF, ECMP etc. to more complex
ones like MCF [31], FFC [27], SMORE [25] etc.

5.1 Simulator

The Yates simulator models how the state of the network
evolves in response to changing demands and failures. It has
four required input parameters: (i) the network topology,
(ii) a list of actual traffic matrices (TMs), (iii) corresponding
predicted TMs, and (iv) a list of algorithms to evaluate. The
simulator also supports a number of parameters for modeling
different scenarios such as failures and traffic bursts.
The simulator iterates over the sequence of algorithms

and TMs. In each iteration, it uses the selected algorithm and
predicted TM to compute the routing scheme, and the corre-
sponding actual TM to simulate traffic. To maintain accuracy
of aggregate statistics of interest, such as link utilizations,
while ensuring scalability of the simulator, Yates relies on
the fluid model [30]. To enforce link capacities, Yates asso-
ciates each link with a queue. At each time step, sources
push traffic onto the queue associated with the appropriate
ingress link. Likewise, each link forwards traffic to next hops
for each flow that it is handling by pushing traffic to the
queue for the next link. The simulator allocates each flow its
max-min fair share of bandwidth at each link, and records
any excess traffic as dropped. Based on the specified failure
model, the simulator can fail certain network elements at
run time, and notify the TE algorithm of such changes in
topology to allow it to react by updating the routing scheme.

Runtime Parameters. The performance of a TE algorithm
is affected by a number of runtime and deployment condi-
tions. Yates’s simulator provides several parameters that can
be systematically tuned to model these conditions:

YATES: Rapid Prototyping for Traffic Engineering Systems SOSR ’18, March 28ś29, 2018, Los Angeles, CA, USA

SDN

Controller

Traffic

statistics

OpenFlow

rules

Linux End Host

Linux

Kernel

User-

Space

Agent

Netfilter

Module

Traffic matrix +

Path-to-tag mapping

VLAN-tagged

packets

SDN

Switch

Figure 9: SDN backend architecture.

• Budget: Network devices are often constrained in terms of
the number of forwarding rules. To evaluate the impact of
such resource constraints, Yates allows imposing specified
limits on the number of paths that an algorithm can use
per source-destination pair.

• Failure Model: To measure robustness of TE algorithms,
Yates allows simulating failure scenarios based on differ-
ent approaches such as failing: (i) random links, (ii) shared
risk link groups (SRLG), and (iii) links based on a empiri-
cally measured probability distribution, and so on.

• Prediction Error: Some TE approaches that use predicted
TMs to compute routing schemes, such as MCF, are sensi-
tive to inaccuracies in TM prediction. In addition to error
margin [1], Yates provides other realistic ways to model
prediction error, as described later.

• Path-split quantization: Current routers support flexible
splitting of traffic over multiple paths by mapping next-
hop groups [21] to paths in proportion to the splitting
ratio. As the number of next-hop groups is limited, path
splitting ratio cannot be arbitrary, but should be a multiple
of the path-split quantum supported by the router.

5.2 Workload Generation

To evaluate TE approaches under varying workloads, Yates
provides tools for modeling topologies, generating demands,
and predicting demands using a variety of statistical models.

Topologies. Yates accepts topologies expressed in standard
graph formats, which can be easily generated using a variety
of toolsÐe.g., NetworkX [16]. In our experiments, we have
used a large public set of WAN topologies provided by Inter-
net Topology Zoo [24] and Rocketfuel [37] as well as some
proprietary topologies shared by ISPs and content providers.

Demands. Yates implements the gravity model [36] to gen-
erate synthetic but realistic TMs. This model ascribes to
each node i a non-negative weight, wi , and posits that the
amount of traffic flowing from i to j is proportional to the
productwi ·w j for all pairs i, j . Yates computeswi based on
empirically determined TMs from real WANs.

As demands vary over time, Yates uses two techniques to
model these variations depending on timescale. For diurnal
and weekly patterns, it introduces noise to the Fourier co-
efficients of the time-series of total flow measurements. For
hourly timescales, Yates samples TMs from a Markov chain,

whose stationary distribution is the gravity model based TM,
using Metropolis-Hastings algorithm. This algorithm up-
dateswi in consecutive time steps by randomly sampling an
adjusted value forwi based on a proposal distribution. Yates
defines a proposal distribution for additive adjustment (∆w)
that incorporates gradual variation over time (N(0,w2/4)

with probability 0.99) accompanied by rare discrete jumps
(U([−w,−0.8w] ∪ [0.8w,w]) with probability 0.01).

Flash Bursts: To model unexpected bursts of traffic, Yates
supports inducing spikes in demand to a sink followed by
a heavy-tailed decrease back to the stationary distribution.
The burst amount parameters, the half-life of the decreasing
tail, and the selection of sink nodes are all configurable.

Prediction. Yates provides two kinds of algorithms for pre-
dicting the next TM in a sequence of TMs: (i) machine learn-
ing methods including linear regression, lasso/ridge regres-
sion, logistic regression, random forest prediction etc. and
(ii) algebraic methods including FFT fit and polynomial fit,
which are based on approximating the time series with a
Fourier-sparse or low-degree-polynomial, respectively.

Prediction error : To model inaccuracies in TM estimation,
Yates perturbs eachwi in the gravity model by multiplying it
withU({1−ϵ, 1+ϵ}) and then generating the TMs using the
perturbed weights. Predicting TMs in this way allows direct
modulation of the error parameter (ϵ) in order to evaluate
robustness of TE algorithms to prediction inaccuracy.

5.3 SDN Backend

Yates enables easy deployment of TE approaches by provid-
ing a OpenFlow-based SDN backend. We use SDN to demon-
strate the fact that the same implementation of TE systems
can be used for simulation within the framework as well as
to control real networks. Yates’s modular design enables us
to replace the default backend with other mechanisms to
control network devices. The default backend generates traf-
fic based on specified TMs and routes packets using a path
identifier, similar to source routing. Fig. 9 shows the architec-
ture of the SDN backend, which has four main components:
(i) an SDN controller, (ii) OpenFlow switches, (iii) an end-host
agent in user space, and (iv) an end-host kernel module.

SDN controller. The controller performs the following func-
tions: (i) compute the forwarding paths based on the TE
algorithm and assign a physical network path identifier to
each forwarding path, (ii) install appropriate forwarding
rules, (iii) send the path-to-identifier mappings to each of
the user-space end-host agents in the network, and (iv) peri-
odically gather traffic statistics from switches.

OpenFlow-enabled switch. The switches route traffic by
examining the identifier tag in a packet, and forwarding the
packet out on the port decided by thematching flow rule. Our
prototype uses VLAN tags to store the identifier, although

SOSR ’18, March 28ś29, 2018, Los Angeles, CA, USA P. Kumar et al.

we could have also used MPLS labels. Switch counters collect
statistics about the amount of traffic on each link.

End-host user-space agent. The agent serves as an inter-
mediary between the controller and the end-host kernel
module. It listens on a designated port for messages from the
controller, containing path-to-identifier mappings and a pe-
riodically updated routing scheme. The agent communicates
this information to the kernel module through /proc.

End-host kernel module. The kernel module intercepts
outgoing packets using netfilter hooks and tags each packet
with the appropriate path identifier. It ensures that packets
in the same flow are sent along the same paths by tracking
flows in a hash table. Flows are evicted lazily from the hash
table based on an idle timeout. For randomized schemes, it
assigns path to a new flow by sampling from the probability
distribution over paths specified by the routing scheme.

Calibration. We used this backend to emulate Abilene [19]
on a hardware testbed. We generated traffic using measured
TMs [28] and benchmarked the simulator’s accuracy using
detailed measurements on the testbed. Overall, we found the
simulator results to be consistent with the measured results
on the testbed. We also calibrated Yates using data collected
from the network of a major content-provider [25].

5.4 Limitations

Although Yates provides a number of powerful algorithms
and tools for modeling and evaluating TE algorithms, it also
has several important limitations. One such limitation is
the choice to use the fluid model. While Yates attempts to
achieve high accuracy for macroscopic performance metrics
like throughput, it is not designed to reason about precise per-
packet behavior in the network. Consequently, Yates is not
ideal for micro-benchmarking such as evaluating TCP con-
gestion control algorithms or studying the effects of packet-
reordering, queueing delays etc. Similarly, the simulator can-
not capture the effects of hashing algorithms used to map
traffic onto paths. Many alternatives exist for such measure-
ments [26, 29, 40], and they provide complementary features
to Yates. Moreover, using the SDN backend, Yates could be
deployed in a hardware testbed or on top of emulators or
virtualized environments such as Mininet, EmuLab etc.

Yates is designed with a focus on centralized TE algo-
rithms, and evaluating de-centralized ones requires a differ-
ent infrastructure. Although it is possible to approximate
them inYates, as demonstrated in ğ2, it comeswith drawbacksÐ
e.g, no ability to reason about convergence of distributed
protocols or performance during transient states.

6 RELATED WORK

TE has been an area of extensive research for decades [8, 9, 18,
21, 22, 27, 38, 42, 44]. The traditional approach is to carefully

tune link weights in distributed routing protocols, such as
OSPF and ECMP, so they compute a near-optimal set of
forwarding paths [10, 11]. The optimal approach is based on
solving theMCF problemwith LP techniques [15], or relaxing
optimality and using approximation algorithms [2, 13, 33].

TE approaches often try to optimize certain metrics such
as congestion, throughput [18], latency, robustness [38], fair-
ness [21] etc. Several recent systems have exploited the global
visibility offered by SDN to distribute traffic across paths in
near-optimal ways [18, 21]. Another line of work has ex-
plored robust approaches in the presence of limited network
information [1, 34, 39]. Many of these projects claim impres-
sive performance results, but the operational conditions that
were used to evaluate them are not always easy to replicate.
Yates allows them all to be put on a level playing field.

Numerous simulators and emulators have been developed
over the years [4, 5, 17, 20, 23, 26, 29, 32, 35, 40]. While these
are powerful research tools, they are difficult to scale for
WANs. Recently, robust validation [6] techniques have been
used for worst-case analysis of TE systems. To get more
accurate behavior, operators might use a live testbed, such as
Emulab [41], or PlanetLab [7] but building realistic testbeds is
difficult. REPETITA [14] is closest to our work. Like Yates, it
provides a framework for experimenting with TE algorithms.
Yates abstracts away from packet-level interactions and

focuses on macroscopic performance of WANs. Yates is de-
signed specifically to evaluate TE algorithms, and to enable
rapid deployment and validation on SDN networks. Addi-
tionally, Yates can be extended with verification tools like
ProbNetKAT [12] to reason about network properties.

7 CONCLUSION

WAN operators face competing requirements, such as per-
formance versus robustness, and a wide range of operational
conditions when implementing TE solutions. Comparing
different strategies is a difficult task, compounded by the
fact that many TE solutions are tailored to specific assump-
tions about network behavior. We believe that innovation
has been hindered owing to lack of realistic and credible
ways to compare systems through careful experiments.

This paper presentsYatesÐa domain-specific, open-source
TE framework. Yates provides a unified set of high-level and
modular abstractions to allow users to quickly implement,
evaluate, and deploy different TE algorithms. The research
community has recognized the importance of sharing data
and artifacts, as can be seen by recent initiatives such as
artifact evaluation. Yates is a tool designed to facilitate such
efforts and encourage a scientific approach to TE research.

Acknowledgments. We wish to thank the SOSR reviewers
for their helpful feedback. This work is supported by NSF
grant CCF-1637532 and ONR grant N00014-15-1-2177.

YATES: Rapid Prototyping for Traffic Engineering Systems SOSR ’18, March 28ś29, 2018, Los Angeles, CA, USA

REFERENCES
[1] David Applegate and Edith Cohen. 2003. Making Intra-domain Routing

Robust to Changing and Uncertain Traffic Demands: Understanding
Fundamental Tradeoffs. In ACM SIGCOMM.

[2] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The Multiplicative
Weights Update Method: a Meta-Algorithm and Applications. Trans-
actions on Computers 8, 1 (2012), 121ś164.

[3] Alia Atlas, George Swallow, and Ping Pan. 2005. Fast Reroute Exten-
sions to RSVP-TE for LSP Tunnels. RFC 4090. (May 2005).

[4] Lee Breslau, Deborah Estrin, Haobo Yu, Kevin Fall, Sally Floyd, John
Heidemann, Ahmed Helmy, Polly Huang, Steven McCanne, Kannan
Varadhan, et al. 2000. Advances in Network Simulation. Computer 5
(2000), 59ś67.

[5] Xinjie Chang. 1999. Network simulations with OPNET. In ACM Con-

ference on Winter Simulation.
[6] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani. 2017. Robust

Validation of Network Designs under Uncertain Demands and Failures.
In USENIX NSDI.

[7] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Pe-
terson, Mike Wawrzoniak, and Mic Bowman. 2003. PlanetLab: An
Overlay Testbed for Broad-coverage Services. In ACM SIGCOMM CCR,
Vol. 33. 3ś12.

[8] Emilie Danna, Subhasree Mandal, and Arjun Singh. 2012. A Practi-
cal Algorithm for Balancing the Max-Min Fairness and Throughput
Objectives in Traffic Engineering.. In IEEE INFOCOM.

[9] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, and
Jennifer Rexford. 2000. NetScope: Traffic engineering for IP networks.
IEEE Network 14, 2 (2000), 11ś19.

[10] B. Fortz, J. Rexford, and M. Thorup. 2002. Traffic Engineering with
Traditional IP Routing Protocols. IEEE Communications Magazine 40,
10 (2002).

[11] B. Fortz and M. Thorup. 2000. Internet Traffic Engineering by Opti-
mizing OSPF Weights. In IEEE INFOCOM.

[12] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt,
and Alexandra Silva. 2016. Probabilistic NetKAT. In ESOP.

[13] Naveen Garg and Jochen Könemann. 2007. Faster and Simpler Al-
gorithms for Multicommodity Flow and Other Fractional Packing
Problems. SIAM J. Comput. 37, 2 (2007), 630ś652.

[14] Steven Gay, Pierre Schaus, and Stefano Vissicchio. 2017. REPETITA:
Repeatable Experiments for Performance Evaluation of Traffic-
Engineering Algorithms. CoRR abs/1710.08665 (2017).

[15] Gurobi Optimization, Inc. 2016. Gurobi Optimizer. http://www.gurobi.
com. (2016).

[16] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring
Network Structure, Dynamics, and Function using NetworkX. In SciPy.

[17] Thomas R Henderson, Mathieu Lacage, George F Riley, C Dowell,
and J Kopena. 2008. Network Simulations with the ns-3 Simulator.
SIGCOMM demonstration 14 (2008).

[18] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving High
Utilization with Software-Driven WAN. In ACM SIGCOMM.

[19] Internet2. 2003. Historical Abilene Data. http://noc.net.internet2.edu/
i2network/live-network-status/historical-abilene-data.html. (2003).

[20] Teerawat Issariyakul and EkramHossain. 2011. Introduction to Network
Simulator NS2. Springer Science & Business Media.

[21] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen Stuart, and Amin
Vahdat. 2013. B4: Experience with a Globally Deployed Software
Defined WAN. In ACM SIGCOMM.

[22] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. 2005.
Walking the Tightrope: Responsive Yet Stable Traffic Engineering. In
ACM SIGCOMM.

[23] Srinivasan Keshav. 1988. REAL: A network simulator. University of
California.

[24] Simon Knight, Hung X Nguyen, Nick Falkner, Rhys Bowden, and
Matthew Roughan. 2011. The Internet Topology Zoo. IEEE Journal on

Selected Areas in Communications 29, 9 (2011), 1765ś1775.
[25] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg,

Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. 2018. Semi-Oblivious
Traffic Engineering: The Road Not Taken. In USENIX NSDI.

[26] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a
Laptop: Rapid Prototyping for Software-Defined Networks. In ACM

HotNets.
[27] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang,

and David Gelernter. 2014. Traffic Engineering with Forward Fault
Correction. In ACM SIGCOMM.

[28] Matthew Roughan. 2017. Internet Traffic Matrices. http://www.maths.
adelaide.edu.au/matthew.roughan/project/traffic_matrix. (2017).

[29] Steven McCanne and Sally Floyd. 1995. NS network simulator. (1995).
[30] Vishal Misra, Wei-Bo Gong, and Don Towsley. 2000. Fluid-based

analysis of a network of AQM routers supporting TCP flows with an
application to RED. In ACM SIGCOMM CCR, Vol. 30. 151ś160.

[31] Debasis Mitra and KG Ramakrishnan. 1999. A Case Study of Multiser-
vice, Multipriority Traffic Engineering Design for Data Networks. In
IEEE GLOBECOM.

[32] Michal Piorkowski, Maxim Raya, A Lezama Lugo, Panagiotis Papadim-
itratos, Matthias Grossglauser, and J-P Hubaux. 2008. TraNS: Realistic
Joint Traffic and Network Simulator for VANETs. ACM SIGMOBILE

MC2R 12, 1 (2008).
[33] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. 1995. Fast Approx-

imation Algorithms for Fractional Packing and Covering Problems.
Mathematics of Operations Research 20, 2 (April 1995), 257ś301.

[34] Harald Räcke. 2008. Optimal Hierarchical Decompositions for Con-
gestion Minimization in Networks. In ACM STOC.

[35] George F Riley. 2003. The Georgia Tech Network Simulator. In ACM

SIGCOMM MoMeTools.
[36] Matthew Roughan, Albert Greenberg, Charles Kalmanek, Michael

Rumsewicz, Jennifer Yates, and Yin Zhang. 2002. Experience in Mea-
suring Backbone Traffic Variability: Models, Metrics, Measurements
and Meaning. In ACM SIGCOMM Workshop on Internet measurment.

[37] Neil Spring, Ratul Mahajan, and David Wetherall. 2002. Measuring ISP
topologies with Rocketfuel. In ACM SIGCOMM CCR, Vol. 32. 133ś145.

[38] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jen-
nifer Rexford. 2011. Network Architecture for Joint Failure Recovery
and Traffic Engineering. In ACM SIGMETRICS.

[39] L. Valiant. 1982. A Scheme for Fast Parallel Communication. SIAM J.

Comput. 11, 2 (1982), 350ś361.
[40] András Varga et al. 2001. The OMNeT++ Discrete Event Simulation

System. In European Simulation Multiconference.
[41] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-

ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
2002. An Integrated Experimental Environment for Distributed Sys-
tems and Networks. In USENIX OSDI.

[42] Xipeng Xiao, Alan Hannan, Brook Bailey, and Lionel MNi. 2000. Traffic
Engineering with MPLS in the Internet. IEEE Network 14, 2 (2000).

[43] YATES authors. 2018. YATES Implementation. http://github.com/
cornell-netlab/yates. (2018).

[44] Baobao Zhang, Jun Bi, and Jianping Wu. 2013. Making Intra-domain
Traffic Engineering Resistant to Failures. In ACM SIGCOMM.

http://www.gurobi.com
http://www.gurobi.com
http://noc.net.internet2.edu/i2network/live-network-status/historical-abilene-data.html
http://noc.net.internet2.edu/i2network/live-network-status/historical-abilene-data.html
http://www.maths.adelaide.edu.au/matthew.roughan/project/traffic_matrix
http://www.maths.adelaide.edu.au/matthew.roughan/project/traffic_matrix
http://github.com/cornell-netlab/yates
http://github.com/cornell-netlab/yates

	Abstract
	1 Introduction
	2 Conventional TE
	2.1 Yates Algorithm Modules
	2.2 ECMP and CSPF

	3 Centralized TE
	4 Robust TE
	5 Design and Implementation
	5.1 Simulator
	5.2 Workload Generation
	5.3 SDN Backend
	5.4 Limitations

	6 Related Work
	7 Conclusion
	References

