
1

A Diversified and Correct-by-Construction
Broadcast Service

Vincent Rahli, Nicolas Schiper, Robbert Van Renesse, Mark Bickford, and Robert L. Constable

Cornell University, Computer Science Department

Abstract—We present a fault-tolerant ordered broadcast ser-
vice that is correct-by-construction. Our broadcast service allows
for diversity in space, whereby the participants in the broadcast
protocol run different code, as well as in time, whereby the
protocol itself is changed periodically. We use the Nuprl proof
assistant to specify the service, prove correctness, and synthesize
the code. The paper includes initial performance results.

I. INTRODUCTION

An application can be made fault-tolerant by replicating it.
It is then important that the replicas receive the same inputs in
the same order. This is known as the Replicated State Machine
Approach [25], [35]. In this paper we present Aneris1, a fault-
tolerant ordered broadcast service that provides replicas with
the same input streams. Aneris itself needs to be replicated
in order to survive failures. For maximum robustness, it is
important that the replicas fail independently.

In a typical implementation of a replicated service, all
participants run the same code and share vulnerabilities in that
code. Also, the broadcast service runs continuously, allowing
adversaries unbounded time to compromise the service. In
order to protect the service, it is not only important that partic-
ipants run different code and maintain different representations
of state, but also that this code and state changes over time
proactively. This is known as moving target defense [23].

Achieving such diversity can only be done automatically,
that is, through synthesis. This paper presents early experi-
ments with doing just this. We synthesize intermediate correct-
by-construction code from specifications. That code is then
evaluated by the participants in an environment that is by-
and-large hand-written and may have various bugs. This
environment includes the hardware, the operating system that
runs on that hardware, the compiler that compiles the code,
and the run-time and libraries of the language environment.
By diversifying the code we synthesize, we make it likely that
vulnerabilities in the environment are triggered independently
in different participants. By updating the code over time, we
make it harder for an adversary to find and exploit those
vulnerabilities.

We use the Nuprl proof assistant [16], [2] to specify
Aneris, prove correctness, and synthesize code. Nuprl allows
distributed protocols to be specified in the EventML functional
language [33]. Proving theorems about the protocol, such

1In Discordian mythology, Aneris is the Goddess of order.

as agreement on the decided value in the case of consen-
sus, is semi-automatic: some theorems are proven manually
while others are generated and proved automatically. Given
an EventML specification, Nuprl can also synthesize code
that is guaranteed to satisfy the specification. The code is
synthesized as a Nuprl term, and runs inside an evaluator.
Once the correctness proofs are complete, the synthesized
code is correct-by-construction and thus bug-free w.r.t. its
specification and the correctness criteria.

Nuprl implements constructive type theory [2], [16] in
which programs can be extracted from proofs, thereby creating
programs that satisfy the specifications given by theorems.
Given a specification, the code synthesized by Nuprl is ex-
tracted from a proof that the specification is implementable by
a collection of distributed processes, rather than from a proof
that the specification is correct. Proofs of correctness are done
independently as explained in Sec. V. Thus the proof is a high
level version of the program, and there can be several variants
of it at this level.

Aneris uses a consensus protocol to agree on the order of
input messages to the application replicas and is able to switch
consensus protocols. We have synthesized code for two crash-
resilient protocols: Paxos [26] and a protocol we call 2/3-
consensus [13]. Paxos is widely used and has many deployed
implementations: Google’s Chubby lock service [11] and
database Megastore [3], Microsoft’s Autopilot service [22],
and the Ceph distributed file system [39]. Diversity in time
is accomplished by switching between consensus protocols.
Diversity in space is provided by running synthesized code
in different evaluators, one implemented in OCaml and one in
SML. Although not implemented yet, we plan to provide more
diversification by synthesizing code that uses different data
structures and sends diversified messages between replicas of
the broadcast service.

The rest of this paper is organized as follows. Sec. II reviews
the related work. Sec. III discusses the system model. Sec. IV
presents the specification of the ordered broadcast service.
Sec. V describes the methodology to synthesize and guaran-
tee correctness of the service. Sec. VI presents preliminary
performance results of our service, and Sec. VII concludes.

II. RELATED WORK

N-version programming [14] is the first technique that
argues that for fault-tolerance not only redundancy but also

978-1-4673-2447-2/12/$31.00 c©2012 IEEE

2

diversity is needed. However, it has been shown that different
programming teams introduce correlated bugs into the code
of the same specification [24]. Also, while the methodology
may provide diversity in space, it does not scale for diversity
in time. While our synthesized approach has promise to do
better on both these fronts, we have yet to perform tests to
show that a synthesized approach provides superior failure
independence.

Various projects have support for dynamic protocol up-
dates [20], [21] or study how protocols should be adapted [12],
[10]. In [38], [34], the authors consider a stack of network
protocols where each layer of the stack can be dynamically
changed. The papers list properties that are maintained by the
protocol stack when one of the layers is changed, assuming
that the protocols themselves are correct.

Bickford et al. [9], [8] developed a switching protocol that
allows changing a communication protocol on the fly while
maintaing some of its properties (e.g., ordered delivery). They
proved its correctness, and they characterized those commu-
nication properties that can be preserved by switching as well
as those invariants that the switching protocol must satisfy
to work correctly. They envisioned that such systems “will
be able to increase security at run-time, for example when
an intrusion detection system notices unusual behavior.” [9].
However, they did not have the formal infrastructure to do
synthesis at that time.

There exist other systems based on constructive logic that
feature program extraction. Nuprl [16], [2] was the first and
Coq [4], [1] is another closely related and very prominent
system supported by INRIA.. Using Coq, Leroy has developed
and certified a compiler for a C-like language [30]. The com-
piler was obtained using Coq’s extraction mechanism to Caml
code. The compiler is certified thanks to “a machine-checked
proof of semantic preservation” [30]. Our approach is similar
to Leroy’s in the sense that extraction does not immediately
imply correctness of the extracted program. Correctness is
obtained via accompanying formally proved statements that
the program satisfies desirable properties.

Formal program synthesis from formal specifications is a
robust and flexible approach to build correct and easy to
maintain software. For example, Kestrel Institute synthesizes
concurrent garbage collectors by refinements from specifica-
tions [32], [31]. High-level specifications are stated in terms
of “high-level abstract data structures” [31] which get refined
to concrete data structures. In contrast, our specifications
are based on concrete data structures (raising the level of
abstraction of our specifications is left for future work). Also,
Bickford et al. [15], [7] synthesize correct-by-construction
distributed programs from specifications written in a theory
of events.

Some efforts have relied on model-checking to verify the
correctness of Paxos [27] as well as other consensus pro-
tocols [37]. The main drawback of these approaches is that
consensus specifications are checked rather than actual code,
and there is no formal mapping from specification to running
code.

Recently, Lamport proved the safety of a Byzantine Paxos
algorithm in TLAPS [28], [29] using a chain of refinement

mappings from Byzantine Paxos to a “trivial, high-level spec-
ification of consensus” [29]. Using these refinement mappings,
proving that Byzantine Paxos is safe boils down to proving the
safety of the trivial consensus specification. However, TLAPS
does not perform program synthesis.

F* [36] is a dependently-typed programming language
which aims, among other things, at verifying protocols using
types (such as refinement types) expressive enough to formal-
ize and reason about security properties.

III. MODEL AND DEFINITIONS

We assume a distributed system where processes may
fail by crashing. A process that crashes stops its execution
permanently and stops sending messages. A process that never
crashes is said to be crash-free.2

The system is asynchronous: the time it takes for a process
to take a step and for a message to be received is unbounded.
The system is fair however: given enough time a crash-free
process takes more steps and if a message is repeatedly sent
by a crash-free process to another crash-free process, then the
message will eventually be received.

A consensus protocol enables processes to propose a value
and guarantees that a single proposal is eventually chosen [17].
The protocol can be instantiated multiple times. The interface
consists of a call propose(i , v) and an upcall decision(i , v ′)
where i identifies the consensus instance, also known as slot
number, and where v, v′ are two values. Given a slot number i,
we say that a process proposes v when it calls propose(i , v). A
process decides on v′ when it receives an upcall decision(i , v ′).
For any slot number i, consensus guarantees the following
properties: (i) if a process decides on v, then some process
proposed v (consensus-validity) and (ii) all processes that
decide, decide the same value (consensus-agreement).

Although not formally proven in the Nuprl system, the
synthesized consensus protocols also guarantee consensus-
termination: if a crash-free process proposes a value, then
all crash-free processes eventually decide. The FLP result
says that no consensus protocol can guarantee consensus-
termination in a purely asynchronous system with crash fail-
ures [18]. Thus, we need to make additional assumptions. For
Paxos, we assume that the network goes through good and
bad periods. In bad periods, messages may experience large
delays, be lost, and processes may be slow. In good periods,
correct processes communicate in a timely fashion. We assume
that there are infinitely many good periods for each instance of
consensus to decide on a value. For 2/3-consensus, we require
messages to be eventually received in the same order. Proving
consensus-termination under these conditions is future work.

IV. THE BROADCAST SERVICE

Our ordered broadcast service, Aneris, is defined by calls
broadcast(v), which allows a client to broadcast message v,
and deliver(s, v ′), which informs a client that v′ is the message
delivered in slot s, where s ≥ 1. Aneris ensures the following
properties: (i) a client delivers message v in some slot s only

2The more common name for “crash-free” is “correct”. In this paper, we use
the term correct to signify that an implementation satisfies its specification.

3

process Aner is (paxos−procs , 2/3−procs , c l i e n t s)
var proposals := [] ; var s l o t := 1 ;
var dec is ions := ∅; var a c t i v e := f a l s e ;
var p ro toco l := ‘ ‘ 2/3 ‘ ‘ ;

function on decis ion ((s , v))
i f not (∃s : s <= s l o t ∧ (s , v) ∈ dec is ions) then

dec is ions := dec is ions ∪ {(s , v)} ;
end i f
proposals := proposals \ {v} ;
while ∃v ’ : (s l o t , v ’) ∈ dec is ions do

a c t i v e := f a l s e ; perform (v ’) ;
end while
i f not (nul l (proposals)) then

propose (hd (proposals)) ;
end i f

end function

function perform (v)
i f v == i n l (c id , new protocol) then

p ro toco l := new protocol ;
end i f
∀k ∈ c l i e n t s : send (k , 〈 ‘ ‘ d e l i v e r ‘ ‘ , (s l o t , v) 〉) ;
s l o t := s l o t + 1 ;

end function

function propose (v)
i f not (∃s : (s , v) ∈ dec is ions) then

i f not (v ∈ proposals) then
proposals := proposals @ [v] ;

end i f
i f not a c t i v e then

a c t i v e := t r ue ;
switch p ro toco l

case ‘ ‘ paxos ‘ ‘ : ∀ l oc ∈ paxos−procs :
send (loc , 〈 ‘ ‘ paxos propose ‘ ‘ , (s l o t , v) 〉) ;

case ‘ ‘ 2 /3 ‘ ‘ : ∀ l oc ∈ 2/3−procs :
send (loc , 〈 ‘ ‘ 2 /3 propose ‘ ‘ , (s l o t , v) 〉) ;

end switch
end i f

end i f
end function

for ever
switch rece ive ()

case 〈 ‘ ‘ broadcast ‘ ‘ , v〉 : propose (in r v) ;
case 〈 ‘ ‘ swap ‘ ‘ , v〉 : propose (i n l v) ;
case 〈 ‘ ‘ dec is ion ‘ ‘ , (s , v) 〉 : on decis ion (s , v) ;

end switch
end for

end process

Fig. 1: The pseudo-code of our ordered broadcast service.

if some client called broadcast(v) (broadcast-validity), (ii) a
client delivers a message at most once (broadcast-uniqueness),
(iii) for any slot s, clients that deliver a message in slot
s deliver the same message (broadcast-agreement), (iv) if a
client is crash-free, a call to broadcast(v) eventually results in
a client delivering v for some slot s (broadcast-termination),
(v) if a client delivers v for some slot s, then all crash-free
clients eventually deliver v (broadcast-relay). (vi) if a replica
delivers some message v in some slot s ≥ 1 then it previously
delivered some message v′ in slot s− 1 (broadcast-gap-free).

Aneris is replicated for fault-tolerance. When broadcasting
a message, a client sends a copy of the message to each
replica. Because there are multiple clients, different replicas
may receive messages in different orders. The replicas uses
consensus to agree on the order of messages to deliver. Aneris
is able to use different consensus protocols for different slots.
The replicas have to agree on which consensus protocol they
use for a slot, and use the broadcast service itself in order to
facilitate this agreement. One can also send a special message
〈swap p〉 to request Aneris to use consensus protocol p.
When deliver(i , 〈swap p〉) is invoked, it signals that from slot
i + 1 consensus protocol p is being used. Such message can
be sent by a monitoring service when unusual behavior of
Aneris is detected. Using standard cryptographic techniques,
only the monitoring service is allowed to issue swap messages,
preventing an adversary from gaining control over which
consensus protocol is executed.

Aneris uses f+1 replicas, where f is the maximum number
of tolerated failures. Fig. 1 presents pseudo-code for the
replicas. While functionally similar, Paxos and 2/3-consensus
use different processes and Aneris has to be aware of this.
After receiving a broadcast request, function propose in Fig. 1
has to send the proposed message to the processes of the
current protocol. Because the consensus protocol can change,
a replica cannot propose a value in slot s+1 until it has learned
the decision of slot s (which may be a decision to use a new
consensus protocol). The active flag keeps track of whether
the replica is waiting for a decision.

The service keeps track of the received proposals, the
decided values for each slot number, the current slot number,
and the current protocol. When a proposed message v has
been decided, v is removed from the proposals queue and
stored in the set of decisions. The decision v is forwarded to
all clients. If the decision is a request to swap protocols, the
current protocol is updated. The next message, if any are left,
is then proposed for the next slot. Due to asynchrony of the
system, a replica may decide on a slot s before slot s − 1.
Decisions are handled in slot order to ensure that replicas use
the same consensus protocol for each slot.

A. 2/3-Consensus

The 2/3-consensus protocol consists of 3f + 1 processes.
The protocol is round-based. A process that receives a proposal
for a particular message and slot forwards the proposal to all
processes. Each process votes on the proposal and informs the
other processes of their vote. Each process waits for 2f + 1
of these votes, and if the received votes are unanimous, it is
decided and a decision message is sent to the Aneris replicas.
If not unanimous, a process selects the most frequent proposal
among the received votes and re-proposes this proposal for the
next round. (Ties can be broken arbitrarily.)

B. Paxos

In order to tolerate up to f failures, Paxos requires 2f + 1
instances of processes called acceptors. Additionally, Paxos
relies on f+1 leaders to get proposals accepted—a leader and
an acceptor may be hosted on the same physical machine. Like
2/3-consensus, Paxos is round-based, but the rounds are called
ballots and are identified by ballot numbers. Each ballot has
a unique leader. When the system goes through a bad period,
there may be multiple leaders that try to get different proposals
decided. Ballots are designed to ensure that this cannot happen
and that multiple leaders will decide the same proposal. A
Paxos ballot executes in two phases. In the first phase, the
leader collects information about prior ballots and previous
proposals. In the second phase the leader tries to get a majority
of acceptors to vote for a proposal that is consistent with prior

4

Specification in English Pseudo-code specification

EventML specificationNuprl specification

Synthesized code Correctess proofs

evaluated

a

b

d

e f

Untrusted code

c

Fig. 2: Synthesis and verification workflow in Nuprl.

ballots. In particular, if a prior ballot decided a proposal, then
the first phase will detect this proposal.

V. SYNTHESIZING THE BROADCAST SERVICE

A. Methodology

Fig. 2 illustrates our workflow to obtain correct-by-
construction code from high-level specifications. Given an
informal protocol specification, e.g., a specification in En-
glish or pseudo-code, we generate by hand a corresponding
EventML specification (see markers a© and b© in Fig. 2).
EventML is an ML dialect targeted to develop networks of
distributed processes that react to events, where an event is an
abstract object corresponding to a point in space/time that has
information associated to it. Concretely, an event can be seen
as the receipt of a message by a process. Using EventML,
programmers design systems by specifying their information
flow, and the tool automatically synthesizes code from such
specifications (see marker c© in Fig. 2). EventML features a
collection of combinators corresponding to combinators of the
Logic of Events [5], [6], a logical framework implemented in
Nuprl to reason about and synthesize distributed systems. We
believe these combinators provide a “workable” abstraction
for structuring and reasoning about large systems because
of the following computation/logic dualism: (1) each these
combinators is implementable, and (2) logical formulas allow
us to reason about their meaning.

The code synthesized by EventML (see marker c© in Fig. 2)
is not formally guaranteed to be correct because the tool has
not interacted with Nuprl to generate that code yet. This
untrusted code is however useful for debugging purposes.
In order to obtain correct-by-construction code, one has to
interface with Nuprl. EventML facilitates this interaction by
generating the formal semantic meaning of a specification
(see marker d© in Fig. 2) which is a collection of predicates
expressed in the Logic of Events.

Once the formal semantic meaning of a specification is
loaded in Nuprl, we have designed a tactic that automatically
proves that the specification is implementable, i.e., that there
exists a collection of distributed processes that produce exactly
the information flow defined by the specification. That tactic
works by recursively proving that each component of the
specification is implementable. Because EventML specifica-
tions use a small number of implementable combinators, it is
straightforward to prove that a specification is implementable.
One can then extract from such a proof the above mentioned
collection of processes which is provably correct w.r.t. the
specification (see marker e© in Fig. 2). The synthesized code

is a collection of Nuprl terms that can be evaluated using any
of the term evaluators available in Nuprl and EventML. Since
processes react to and produce messages, EventML features a
messaging system that allows the synthesized code to run on
multiple machines.

We then prove that the specified protocol satisfies correct-
ness criteria such as the consensus properties presented in
Sec. III. Our logical framework allows to do that reasoning
at the specification level rather than at the code level (see
marker f© in Fig. 2). Finding bugs at this stage, i.e., while
proving a protocol’s correctness, remains costly. However, this
is balanced by the fact that EventML can synthesize running
code that can be used for debugging purposes.

B. Synthesis and Verification of a Broadcast Service

1) Synthesis: As illustrated in Fig. 2, one of the steps of
our methodology consists in translating the informal Aneris
pseudo-code into a more formal EventML specification. Fig. 3
shows the EventML translation of the “propose” function
defined in Fig. 1. One can observe that the function expressed
using pseudo-code and its EventML version are similar. The
variable cmdt is the value to propose, it is a “tagged” com-
mand, i.e., either an inl (the left injection of a swap message)
or an inr (the right injection of a broadcast message). The tuple
(slot , active ,proposals,decisions,protocol) is the current state
of the process running propose. The propose function returns
the updated state (slot , true ,proposals’,decisions,protocol) and
msgs, a collection of messages to send to either the leaders
of Paxos (ldrs), the paxos-procs in Fig. 1, or the processes of
2/3-consensus (locs), the 2/3-procs in Fig. 1.

Once an EventML specification type checks it can be loaded
in Nuprl. Fig. 4 shows the Nuprl version of propose that
EventML generates. The five variables Cid, Op, eq_Cid, ldrs,
and locs are parameters of our specification: Cid is the type
of command identifiers, Op is the type of commands, eq_Cid
is an equality decider of command identifiers, and ldrs and
locs are collections of leaders of paxos and processes of 2/3-
consensus respectively. Once again, one can observe that the
EventML and Nuprl versions of propose are similar.

Finally, given an implementable specification, Nuprl can
synthesize a process generator, i.e., a function that given the
location of a machine, returns the code that has to be installed
at that location. Therefore, given a collection of locations, we
can generate a collection of processes that have to be installed
at these locations. Our Aneris specification is parametrized
by reps, a collection of replica locations. It defines what
a replica is and specifies that each location in reps runs a
replica. The process generator synthesized by Nuprl is a total
function that given a location returns a replica running at that
location. To obtain the collection of processes that implement
our specification, we then have to apply this function to each
of the locations in reps.

2) Verification: We have formally proved, in Nuprl, that
2/3-consensus and Paxos satisfy the consensus-agreement and
consensus-validity properties. These results are necessary to
prove the validity and agreement properties of Aneris. Thanks
to Nuprl’s large library of facts and tactics that implement
some patterns of reasoning in the Logic of Events [6], we

5

l e t propose cmdt (s l o t , ac t i ve , proposals , dec is ions , p ro toco l) =
l e t p roposa ls ’ = i f b l−e x i s t s ((map snd dec is ions) ++ proposals) (same command tag cmdt)

then proposals
e lse proposals ++ [cmdt] i n

l e t msgs = i f a c t i v e & (b l−e x i s t s (map snd dec is ions) (same command tag cmdt)) then {}
else i f p ro toco l = ‘ ‘ paxos ‘ ‘ then pax propose’broadcast l d r s (s l o t , cmdt)
e lse i f p ro toco l = ‘ ‘ 2/3 ‘ ‘ then t t p ropose ’b roadcas t locs (s l o t , cmdt)
e lse {} i n

((s l o t , t rue , p roposa ls ’ , dec is ions , p ro toco l) , msgs) ; ;

Fig. 3: The function “propose” in EventML.

Aneris_propose(Cid;Op;eq_Cid;ldrs;locs) ==
λcmdt,z. let slot,active,proposals,decisions,protocol = z in
let proposals’ = if (∃zh∈map(λx.(snd(x));decisions) @ proposals. Aneris_same_command_tag() cmdt zh)_b

then proposals
else proposals @ [cmdt] fi in

let msgs = if active ∧b (∃zh∈map(λx.(snd(x));decisions). Aneris_same_command_tag() cmdt zh)_b then {}
if list-deq(AtomDeq) protocol [paxos] then Aneris_pax_propose’broadcast() ldrs <slot, cmdt>
if list-deq(AtomDeq) protocol [2/3] then Aneris_tt_propose’broadcast() locs <slot, cmdt>
else {} fi in

<<slot, tt, proposals’, decisions, protocol>, msgs>

Fig. 4: The Nuprl version of “propose”.

∀[Cid,Op:ValueAllType].∀[eq_Cid:EqDecider(Cid)].∀[eq_Op:EqDecider(Op)].∀[accpts,ldrs,locs,reps:bag(Id)].
∀[ldrs_uid:Id → Z]. ∀[flrs:Z]. ∀[es:EO’].

(∀i:Id. ∀s:Z. ∀k:Cid. ∀c:Op.
if Aneris_main() outputs (Aneris_deliver’send() i <s, k, c>)
then Aneris_broadcast’base() observed <i, k, c>)

supposing ((∀i:Id. ∀s:Z. ∀c:Cid × (Atom List) + (Id × Cid × Op).
if c23_main() outputs (c23_notify’send([decision]) i <s, c>)
then c23_propose’base([tt_propose]) observed <s, c>)

and (∀i:Id. ∀s:Z. ∀c:Cid × (Atom List) + (Id × Cid × Op).
if cpax_main() outputs (cpax_decision’send([decision]) i <s, c>)
then cpax_propose’base([pax_propose]) observed <s, c>)

and Aneris_message-constraint-p1(es))

Fig. 5: The request-validity property as stated in Nuprl.

were able to prove broadcast-validity in a matter of a few
hours, and we anticipate being able to prove the other validity
and agreement properties in a matter of a few days. Fig. 5
shows the statement we have proved (where we make explicit
that we need consensus-validity for both 2/3-consensus and
Paxos). The formula states that if at event e, Aneris (named
Aneris_main() in Nuprl) sends a deliver message to location
i containing the triple (slot number/command identifier/com-
mand) <s, k, c> then there exists an earlier event e’ at
which the pair <k, c> was proposed (i.e., Aneris received a
broadcast message). It was easily proved by tracing back the
information flow of the system, i.e., tracing back the outputs
of Aneris to the state variables of its processes and their
inputs. To prove that Aneris’s safety properties hold, we also
need to assume that decisions received by Aneris are sent by
either 2/3-consensus or Paxos, and that the proposals received
by 2/3-consensus and Paxos are sent by Aneris. Proposition
Aneris_message-constraint-p1(es) in Fig. 5 is a Nuprl
definition that states these various necessary assumptions.

VI. PRELIMINARY PERFORMANCE RESULTS

We currently have a working prototype of Aneris running
on a cluster of Linux machines connected by a gigabit switch.
Aneris runs on 4 quad-core 3.6 Ghz Intel Xeons with 4GB
of RAM each. We set f = 1, 2/3-consensus is thus using
4 machines, while Paxos only 3. The synthesized code runs
inside our SML evaluator.

For testing, we ran a client on a dual-core 2.8 Ghz AMD
Opteron with 4GB of RAM. We ran experiments to mea-

sure the average time it took for the client to broadcast a
message and deliver it, using either Paxos or 2/3-consensus.
We obtained 1.9 seconds and 2.5 seconds for Paxos and 2/3-
consensus respectively.

These performance numbers are currently prohibitive for
most applications. We are currently working on identifying
major bottlenecks in our synthesized code and term evaluators,
and are applying compilation optimizations techniques to the
code synthesizer.

VII. CONCLUSION

We presented a correct-by-construction ordered broadcast
service that allows inputs to an application to be delivered
in the same order at the application replicas. Our service
offers diversity in time, by allowing to dynamically change the
consensus protocol, and in space, by offering the possibility
to run the synthesized code in an SML or OCaml evaluator.

One could argue that our approach does not result in more
reliable code as there might be bugs in the code synthesizer
and evaluators. Although we recognize that this could be an is-
sue, Nuprl is based on the LCF tactic mechanisms [19], and is
especially safe because Nuprl’s primitive proofs were checked
by an independent prover, ACL2. The extractor and evaluator
are simple code, and we could write separate verifications for
those, but in 20 years of using the code, we have not found a
problem.

As future work, we intend to make Byzantine-resilient
consensus protocols available to the service—2/3-consensus
can be quite easily adapted to tolerate such failures. We also

6

wish to diversify the synthesized code to make process failures
more independent.

ACKNOWLEDGEMENTS

This work has been partially funded by NSF, DARPA
CRASH (FA8750-10-2-0238) and AFRL (FA8750-08-2-
0153).

REFERENCES

[1] The Coq Proof Assistant. http://coq.inria.fr/.
[2] S. F. Allen, M. Bickford, R. L. Constable, R. Eaton, C. Kreitz, L. Lorigo,

and E. Moran. Innovations in computational type theory using Nuprl.
J. Applied Logic, 4(4):428–469, 2006.

[3] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larson, J.-
M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing
scalable, highly available storage for interactive services. In CIDR’11,
pages 223–234, 2011.

[4] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program
Development. Springer Verlag, 2004.

[5] M. Bickford. Component specification using event classes. In
Component-Based Software Engineering, 12th Int’l Symp., volume 5582
of LNCS, pages 140–155. Springer, 2009.

[6] M. Bickford and R. L. Constable. Formal foundations of computer
security. In NATO Science for Peace and Security Series, D: Information
and Communication Security, volume 14, pages 29–52. 2008.

[7] M. Bickford, R. L. Constable, J. Y. Halpern, and S. Petride. Knowledge-
based synthesis of distributed systems using event structures. Logical
Methods in Computer Science, 7(2), 2011.

[8] Mark Bickford, Christoph Kreitz, and Robbert van Renesse. Formally
verifying hybrid protocols with the NUPRL logical programming envi-
ronment. Technical Report TR2001-1839, Cornell University, Ithaca,
New York, 2001.

[9] Mark Bickford, Christoph Kreitz, Robbert van Renesse, and Xiaoming
Liu. Proving hybrid protocols correct. In R. Boulton and P. Jackson,
editors, Proceedings of 14th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’01), volume 2152, pages
105–120. Springer-Verlag, 2001.

[10] G. S. Blair, L. Blair, V. Issarny, P. Tuma, and A. Zarras. The role
of software architecture in constraining adaptation in component-based
middleware platforms. In Middleware’00, pages 164–184, Secaucus, NJ,
USA, 2000.

[11] M. Burrows. The Chubby Lock Service for loosely-coupled distributed
systems. In SOSP’06, Seattle, WA, 2006.

[12] Wen-Ke C., M.A. Hiltunen, and R.D. Schlichting. Constructing adaptive
software in distributed systems. In 21st Int’l Conf. on Distributed
Computing Systems., pages 635 –643, 2001.

[13] B. Charron-Bost and A. Schiper. The Heard-Of model: computing
in distributed systems with benign failures. Distributed Computing,
22(1):49–71, 2009.

[14] L. Chen and A. Avizienis. N-version programming: A fault-tolerance
approach to reliability of software operation. In FTCS’77, Los Alamitos,
CA, 1977. IEEE Computer Society Press.

[15] R. Constable, M. Bickford, and R. van Renesse. Investigating correct-
by-construction attack-tolerant systems. Technical report, Department
of Computer Science, Cornell University, 2010.

[16] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing mathematics
with the Nuprl proof development system. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1986.

[17] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988.

[18] M. J. Fischer, N. A. Lynch, and M. S. Patterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382,
1985.

[19] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF:
A Mechanised Logic of Computation., volume 78 of Lecture Notes in
Computer Science. Springer-Verlag, 1979.

[20] J. O. Hallstrom, W. M. Leal, and A. Arora. Scalable evolution of
highly available systems. Transactions of the Institute for Electronics,
Information and Communication Engineers, pages 2154–2164, 2003.

[21] R. Hayton, A. Herbert, and D. Donaldson. Flexinet-a flexible component
oriented middleware system. In Proceedings of the 8th ACM SIGOPS
European workshop on Support for composing distributed applications,
pages 17–24, New York, NY, USA, 1998. ACM.

[22] M. Isard. Autopilot: Automatic data center management. Operating
Systems Review, 41(2):60–67, 2007.

[23] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, editors.
Moving Target Defense - Creating Asymmetric Uncertainty for Cyber
Threats, volume 54 of Advances in Information Security. Springer, 2011.

[24] J.C. Knight and N.G. Leveson. An experimental evaluation of the
assumption of independence in multiversion programming. 12(1), 1986.

[25] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. CACM, 21(7):558–565, July 1978.

[26] L. Lamport. The part-time parliament. Trans. on Computer Systems,
16(2):133–169, 1998.

[27] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.
[28] L. Lamport. Byzantizing paxos by refinement. In David Peleg, editor,

DISC, volume 6950 of LNCS, pages 211–224. Springer, 2011.
[29] L. Lamport. Mechanically checked safety proof of a byzantine paxos

algorithm, 2011.
[30] X. Leroy. Formal certification of a compiler back-end or: programming

a compiler with a proof assistant. In POPL’06, pages 42–54. ACM,
2006.

[31] D. Pavlovic, P. Pepper, and D. R. Smith. Formal derivation of concurrent
garbage collectors. In Claude Bolduc, Jules Desharnais, and Béchir
Ktari, editors, MPC, volume 6120 of LNCS, pages 353–376. Springer,
2010.

[32] D. Pavlovic and D. R. Smith. Software development by refinement.
In Formal Methods at the Crossroads. From Panacea to Foundational
Support, 10th Anniversary Colloquium of UNU/IIST, volume 2757 of
LNCS, pages 267–286. Springer, 2002.

[33] V. Rahli. Interfacing with proof assistants for domain specific program-
ming using EventML. Presented to UITP 2012.

[34] O. Rutti and A. Schiper. A predicate-based approach to dynamic protocol
update in group communication. In IPDPS’08, pages 1–12, 2008.

[35] F.B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, 22(4):299–319,
December 1990.

[36] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. In 16th
ACM SIGPLAN Int’l Conf. on Functional Programming, pages 266–
278. ACM, 2011.

[37] T. Tsuchiya and A. Schiper. Using bounded model checking to verify
consensus algorithms. In DISC, pages 466–480, 2008.

[38] R. van Renesse, Kenneth P. Birman, Mark Hayden, Alexey Vaysburd,
and David Karr. Building adaptive systems using Ensemble. Software—
Practice and Experience, 1998.

[39] S. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C. Maltzahn. Ceph:
A scalable, high-performance distributed file system. In OSDI’06, 2006.

