
JMS on Mobile Ad-hoc Networks

Einar Vollset1, Dave Ingham2 and Paul Ezhilchelvan3

1,3School of Computing Science, University of Newcastle, Newcastle upon Tyne, NE1 7RU,
United Kingdom

{1einar.vollset, 3paul.ezhilchelvan}@ncl.ac.uk
2Arjuna Technologies Ltd, Nanotechnology Centre, Herschel Building, Newcastle upon

Tyne, NE1 7RU, United Kingdom
dave.ingham@arjuna.com

Abstract. The Java Message Service (JMS) provides a standard asynchronous messaging
API, which simplifies the construction of loosely coupled, distributed applications. This
paper describes the design and implementation of a pure Java JMS solution for mobile ad-
hoc networks (MANETs). The resulting JMS solution simplifies not only the construction of
MANET applications but also the re-deployment of any existing JMS applications into a
MANET context. The central contribution of this paper lies in comprehensively identifying
and addressing the design challenges encountered. For example, common JMS
implementations rely, for reasons of efficiency, on a central, reliable server for maintaining
dynamic state information, e.g. routing information and group configuration. Construction
of a JMS solution for MANETs, on the other hand, cannot rely on such a centralized server.
Our server-less implementation involves building a new MANET transport module that is
incorporated into an existing JMS product. This transport module implements a MANET
multicast routing protocol that provides publish/subscribe semantics by mapping JMS topics
to multicast addresses. To our knowledge, our implementation is the first ever Java
middleware platform built for MANETs.

Keywords: MANETs, JMS, Mobile Ad-hoc Networks, Message-oriented Middleware,
Multicast.

1 (Correspondence Author) Tel: +44 (0)191 2228546, Fax: +44 (0)191 2228232
 This work has been supported in part by the EPSRC PACE project and Santosh Shrivastava

at the Distributed Systems Research Group at the University of Newcastle upon Tyne, UK

2!!!!!!Einar Vollset , Dave Ingham and Paul Ezhilchelvan

1. Introduction

A mobile ad-hoc network (MANET) is a network made up of a collection of
mobile, autonomous nodes that communicate using wireless multi-hop links without
any fixed infrastructure such as base stations. Only pairs of nodes that lie within each
other’s transmission radius can communicate directly. However, each node in the
network acts as a router and participates in forwarding packets for other nodes.

MANET technology is currently an active area of research. There is, for example, a
large number of proposed routing protocols, such as Ad Hoc On-demand Distance
Vector (AODV)[1] and Dynamic Source Routing (DSR)[2]. However, off-the-shelf
wireless devices, such as PDAs with 802.11b networking, do not currently possess a
standard built-in routing functionality necessary to form MANETs. This lack of
standardized routing functionality can be argued to be holding back the development
of applications for MANETs. In this paper we attempt to address the issue of
simplifying the development of MANET applications. Our work is influenced by our
experience in providing support for application development in the traditional wired
networking world.

In the traditional wired networking world, distributed application development is
greatly simplified through the use of middleware technologies, such as distributed
objects systems, e.g., CORBA[3], and message-oriented middleware (MoM)[4]. Of
these technologies, MoM appears to be the most appropriate model for the MANET
environment, for two main reasons: a) The message exchange model of MoM is
asynchronous (as opposed to RPC-style communication), which is the most
appropriate model for MANETs. b) The most popular messaging model in MoM,
namely publish/subscribe messaging, involves one-to-many communication which
maps well to the broadcast nature of MANETs.

The goal of the research presented here was to develop MoM middleware for
MANETs based on standard off-the-shelf hardware and operating systems.
Specifically, this paper describes the design and implementation of a message-
oriented middleware solution for MANETs that runs on top of a standard J2SE (Java
2 Standard Edition) virtual machine on a computer with 802.11b networking. The
system is largely compliant with the Java Message Service (JMS) specification[5]
which defines a standard asynchronous messaging API to message-oriented
middleware. Designing such a system in the MANET context raises new challenges
not present in the wired networking world. We formulate these challenges and
describe how we addressed them in building a JMS system that supports
publish/subscribe messaging. This system not only simplifies the development of new
MANET applications, but also allows existing JMS applications to be deployed in a
MANET environment. As a proof of concept we deployed an existing instant
messaging application, originally developed for wired networks, on a real MANET.
The paper is structured as follows. To present the design challenges faced in
designing a JMS system for MANETs into context, the next section provides a
description of the JMS specification. This forms the background to section 3, which
identifies the issues that need to be addressed when providing JMS on MANET
infrastructure. In particular, we argue that the approaches adapted from wired
networks are not appropriate. Sections 4 and 5 describe the design and

JMS on Mobile Ad-hoc Networks!!!!!!3

implementation of our system. Section 6 describes testing and the proof of concept
deployment of an instant messaging application, while section 7 describes how the
system could be extended to provide more powerful message delivery semantics.
Finally, we present our concluding remarks.

2. Java Message Service

The Java Message Service (JMS) is a specification developed by Sun
Microsystems that provides a common way for Java applications to access each other
via message-oriented middleware (MoM).
The JMS specification defines a set of interfaces and associated semantics that allow
Java applications to create, send, receive, and read messages. The specification does
not define how messages need to be transported with in a particular implementation,
known as a JMS Provider. This clear separation of concerns was essential in order to
allow vendors of existing messaging products, such as IBM MQSeries[6] and Tibco
Rendezvous[7] to support the JMS specification. Furthermore, some JMS vendors
provide multiple message-transportation implementations within the same product
thereby providing the user with the ability to select the most appropriate transport
technology for a particular deployment. An example is the Arjuna Message Service
(Arjuna-MS)[8] (formerly the Hewlett Packard Message Service), which provides
both server-based and server-less message transport technologies that can be mixed
within the same application.

2.1 JMS Messaging Models

The JMS API includes support for the two most common enterprise-messaging
models, namely, message queuing and publish/subscribe.

The message queuing model provides one-to-one delivery semantics. Clients send
messages to, and receive messages from, queues. There may be multiple sender and
receivers associated with a given queue, but each message sent by a sender is
consumed by exactly one receiver. This means that if multiple receivers are associated
with a queue, some sort of arbitration is required by the JMS Provider to decide which
one will receive a given message.

The publish/subscribe (pub/sub) model complements the queuing model in that it
provides one-to-many delivery semantics. Clients publish messages to and receive
messages from topics. Each message may be consumed by zero, one, or more
subscribers.

2.2 Reliability

JMS is able to support both best-effort and guaranteed delivery semantics called
respectively non-persistent or persistent delivery modes. Non-persistent messages are
delivered in a best-effort fashion by the JMS Provider. That is, they will generally be
delivered but in the event of an abnormal condition, such as resource-exhaustion or a

4!!!!!!Einar Vollset , Dave Ingham and Paul Ezhilchelvan

process failure, the message may be lost. Conversely, if a message producer specifies
that persistent delivery mode should be used, then this is an indication to the JMS
Provider that steps should be taken to ensure that the message is not lost in the
presence of abnormal conditions.

Thus a full JMS implementation can provide 4 types of message delivery
semantics: pub/sub non-persistent, pub/sub persistent, queuing non-persistent and
queuing persistent.

3. Issues arising when providing JMS on MANETs

JMS products typically utilize a hub-and-spoke architecture in which clients
connect to a central server (or cluster of servers) that manages the reliable message
routing between them. However, a server-based JMS solution is not appropriate for
mobile ad-hoc networks for a number of reasons. Mobile ad-hoc networks are aimed
at environments where fixed infrastructure support is unavailable. The philosophy of
MANET applications therefore is not to place reliance on centralized services, rather,
such service functionality should be distributed across nodes in the MANET so as to
minimize the dependency on any particular node and therefore improve overall
system resilience. Furthermore, the nodes participating in MANETs are often
resource-constrained devices such as PDAs or mobile phones. Because of this, it is
advantageous for the processing and networking overheads to be distributed across
the nodes rather than concentrated at a single server node.

Building a JMS solution for MANETs therefore requires a server-less architecture
in which nodes collaborate in a peer-to-peer manner to provide the JMS functionality.
We have identified the following issues (in increasing order of complexity), which
need to be resolved in order to provide such a solution:

1. Configuration: Configuration is the means with which client discover the
available queues and topics. A server-based JMS Provider can manage this
configuration information on a central server and respond to client queries on
configuration. In a server-less design, however, there is no such central server, and
the information needs to be maintained in a distributed manner.

2. Message transportation: Server-based Providers typically use unicast
communication for message transportation. Message producers send messages to
the server, which stores and forwards them to the consumers, either a single
receiver for the queuing model or several subscribers for the pub/sub model. This
store-and-forward method is unsuitable for a MANET-based Provider as there can
be no central message delivery mediator.

3. Reliability: Guaranteed message delivery in server-based JMS Provider is
achieved by the server persisting the messages in a central database. Since the
server manages the communication between all clients, it knows when a message
has been consumed by all intended recipients and can be discarded from the
database. Such a central database is not readily available in a MANET

JMS on Mobile Ad-hoc Networks!!!!!!5

environment, as the availability of any one node at all times cannot be relied upon.
This greatly increases the complexity involved in achieving guaranteed message
delivery.

4. Coordination: As previously noted, if there are several receivers associated with a
queue, then for each message, the provider has to select a single receiver to
consume the message. With a server-based architecture it is straightforward for the
server to make this decision. In a server-less architecture, distributed coordination
mechanisms are required if fair, non-simplistic queue semantics are to be achieved
(i.e. the messages are evenly distributed among the associated receivers). Such
mechanisms require the use of an agreement (consensus) protocol. Note that the
consensus problem cannot be deterministically solved in an asynchronous
environment [23] and protocols are possible only when certain assumptions
restricting asynchrony are possible to make.

In the following section, we describe how we addressed the first two of these issues,
resulting in the construction of JMS system for MANETs with pub/sub non-persistent
message delivery semantics. Section 6 addresses how the third issue can be solved
and incorporated into the implemented system. We then indicate the ways of solving
or circumventing the distributed coordination problem in MANETs. Our ongoing
work involves the former.

4. Designing a JMS Provider for MANETs

In order to provide a complete JMS solution for MANETs, the design issues
described in the previous section would all have to be dealt with.
The next two sections describe how we have designed a system based on an existing
messaging product, which provides non-persistent JMS topic semantics by
addressing the two primary issues (configuration and message transportation) required
in order to develop a JMS solution for MANETs.

4.1 Configuration

The server-less nature of our JMS solution leads to the somewhat meta-physical
question: when do queues and topics come into being, and how do the JMS clients
find out about them? In traditional server-based JMS providers, an administrator
creates a destination on the JMS server. It thus resides on the server as a tangible
entity from creation until it is destroyed by an administrator. All clients then typically
use JNDI to lookup by name, the queues and topics they require. With MANETs it is
not so straightforward, as there is no central entity to lookup topics and queues from.

The approach taken in our system is to require all clients participating in a message
exchange to have a local copy of an identical configuration file. This configuration

6!!!!!!Einar Vollset , Dave Ingham and Paul Ezhilchelvan

file then contains all information the client needs to lookup and use the destination.
This resolves both of the above issues, as a lookup of destinations only requires
reading the configuration file, and a queue or a topic will have existed “forever” as far
as the client is concerned. Although inflexible, it is worth considering that the creation
of queues and topics on server-based JMS providers requires the intervention of an
administrator on the JMS Server. Of course, there are other possible and more
flexible solutions, including broadcasting destination information on a well-known
multicast address, but these are outside the scope of this paper.

4.2 Message transportation

In order to provide the required message transportation, an application-level
implementation of a multi-hop routing protocol had to be developed. The reason for
this is the lack of readily available MANET routing protocols integrated into the
network layer in most commercially available mobile devices. As the main goal of
this research was to provide JMS topic semantics to MANETs, it was decided to
implement a multicast multi-hop routing protocol. In multicast, the key concept is that
of a multicast group, which any node can send and receive packets to and from. In
order for a packet to be delivered to all the members of a multicast group, a node only
needs to send a packet once to a given multicast address. Clearly this functionality
closely mirrors that of JMS topics, where a message producer only needs to send a
message once to a given topic in order for all subscribers on that topic to receive the
message.
Several multicast protocols specifically designed for MANETs have been proposed.
These include ODMRP[9], AMRIS[10], CAMP[11] and MAODV[12]. ODMRP, or
the On Demand Multicast Routing Protocol, was chosen because it has performed
well with regards to throughput and control packet overhead in several simulation
studies[13, 14].

A Java application-level implementation of ODMRP has been developed. This
implementation has been named the Java on-demand multicast routing protocol
(Jomp). Further details on Jomp can be found in the next section.

After developing Jomp, the required multicast functionality was now available for
MANETs, and the Arjuna-MS client library has been extended to map between JMS
publish-subscribe semantics and the multicast functionality provided by Jomp. Figure
1 shows a conceptual view of the Arjuna-MS client library and how it uses Jomp and
its configuration file (as described above) to provide JMS messaging on MANETs.

JMS on Mobile Ad-hoc Networks!!!!!!7

Fig. 1. Conceptual view of the Arjuna-MS client library for MANETs.

5. Implementing a JMS Provider for MANETs

This section describes in more detail the implementation aspects of extending Arjuna-
MS to MANETs. As mentioned in section 4.2, a Java application-level version of the
ODMRP protocol (Jomp) was implemented in order to provide the required message
transportation for the system. Section 5.1 describes the architecture and programming
interface to Jomp, while section 5.2 describes our experiences implementing an
application-level routing protocol in Java. A complete description of the system is
available in [24].

5.1 Jomp architecture and programming interface

Jomp was designed to provide a clean API for asynchronous message passing. This
was achieved by designing a Jomp object for use when sending packets and a
JompEventHandler interface which an application developer had to implement when
using Jomp.

Jomp consists of 5 main components: the PacketListener, which is a thread that
continuously listens on the network for any packets and passes any received packets
up to the PacketHandler. The PacketHandler contains most of the ODMRP
functionality and uses the MessageCache, RoutingTable and ForwardingGroupTable
objects to make routing decisions (The last 3 are tables used by ODMRP, for further
detail, see [9]). These routing decisions may result in the PacketHandler broadcasting

 Jomp

Arjuna-MS Client Library

Transport
Subsystem

 JMS Application

802.11b in Ad Hoc mode

Config files

8!!!!!!Einar Vollset , Dave Ingham and Paul Ezhilchelvan

a packet, passing the packet up to the application at the local host or discarding the
packet.

Figure 2 shows a conceptual view of the architecture of Jomp, showing how these
components interact and how Jomp interacts with the application using it and the
network. The large “ODMRP cloud” indicates where the ODMRP protocol
functionality is implemented.
Fig. 2. Jomp architecture

Application

Jomp

java.net.MulticastSocket

IEEE 802.11b in Ad Hoc mode

PacketHandler

MessageCache

RoutingTable

Forwarding
Group Table

PacketListener

JompEventHandler
Interface

processMessage()

processPacket()

send()

ODMRP

send()

5.2 Experiences implementing a Java application-level routing protocol

Implementing anything in Java always raises the issues of performance,
particularly when implementing something traditionally as low level as a routing
protocol. However, based on the fact that Jomp is an application-level protocol, and
on the observation that previous application-level implementations of routing
protocols in Java, such as LRMP[15], has adequate performance, we have come to the
conclusion that performance in most cases are not adversely affected by the choice of
an interpreted programming language.

A more pertinent issue when using Java is the lack of direct access to devices such
as the 802.11b network card. Most simulations and implementations of MANET
routing protocols imply that the network card has to be set to promiscuous mode,
where it will receive packets destined to all addresses. This is not possible in Java,
and could have been problematic, as without a work-around, only nodes interested in

JMS on Mobile Ad-hoc Networks!!!!!!9

a given multicast address would be aiding in forwarding packets on that multicast
group.

The implication of this with respect to using Jomp as the transport for Arjuna-MS
is that a node will only aid in forwarding messages destined for topics that the node is
subscribed to. Clearly this is not beneficial for the MANET as a whole. In fact the
problem with “selfish” nodes is something that has been highlighted as a problem for
a number of routing algorithms and applications in MANETs[16].

However, we worked around this limitation by sending all packets on a single,
configurable multicast address. The packets that were sent on this address were all
tagged with the relevant multicast addresses mapping to the topic to which they were
destined. This setup means that all nodes running Jomp will participate in the routing
and forwarding of all packets, not just packets destined for the multicast addresses
they were interested in. It is thought that there is no performance hit due to this, as the
sending and receiving of multicast packets using an 802.11b network card is the same
no matter what multicast address the packets are sent to.

6. Simulation and real world deployment

Testing real world implementations of any type of application built for MANETs
presents a number of difficulties due to the dynamic nature of the MANET
environment. One of the main problems is the lack of control the tester has over the
accuracy of test parameters, with issues such as interference from other radio sources
and the difficulties in managing a (potentially high) number of mobile units making
the testers task very difficult indeed. Because of this, a network simulator, the Java
Network Simulator (JNS)[18], has been modified to enable it to use real world
implementations as nodes in a simulation. This allows tests of real world MANET
applications to be carried out in a controlled environment. The next section describes
how we used JNS to verify the correct operation of Jomp and to run a simple JMS
application.

In addition to this verification through simulation, we realize that any MANET
middleware needs to be tested in the real world. As an indication of the potential of
Arjuna-MS for MANETs we have deployed Arjuna Chat Demonstrator, the instant
messaging demonstration application that ships with the standard, wired version of
Arjuna-MS, in a real world scenario. Details of this deployment are described in
section 6.2.

6.1 Testing

As ODMRP has already been shown in literature [13,14] to perform well compared to
other MANET multicast protocols, the emphasis of the testing was to satisfy
ourselves that Jomp adhered to the ODMRP specification.
In order to verify the correct operation of both Jomp itself and Arjuna-MS using
Jomp, we setup a simulation environment with 10 nodes with partial connectivity, as
could be found in a MANET at any instant in time. In this scenario, we made one of

10!!!!!!Einar Vollset , Dave Ingham and Paul Ezhilchelvan

the nodes publish messages to 9 subscribers. The trace files describing the message
flow between the nodes verify that Jomp act according to the ODMRP specification.
Additionally, all the JMS subscribers received the published message, which shows
that Arjuna-MS using Jomp also works. Figure 3 shows the initial broadcast from the
source node. Space limitations prevent us from presenting the complete sequence of
message exchanges, but a video clip showing the interaction and several screenshots
is available at [19].
Fig. 3. A simulation run of Arjuna-MS running on JNS

6.2 Proof of concept

In addition to the test runs on JNS, we have also deployed quite a large JMS
application, the Arjuna Chat Demonstrator instant messaging demo application, in a
real world scenario. This involved almost no change in the code base of the
application, which shows the advantage of providing standard middleware for
MANETs. The application, although not extensively tested, was successfully used in
an office environment with several instances of the application running. Some
anecdotal evidence of this successful deployment is available at [19].

JMS on Mobile Ad-hoc Networks!!!!!!11

7. Extensions and future work

7.1 Reliability

Currently, our JMS solution does not provide persistent messaging. This is because
Jomp is an implementation of the basic operation of the ODMRP protocol, which
only provides best effort message delivery guarantees.

Typical server-based JMS providers usually implement persistent messaging by
putting the messages on stable storage on a central server. However, there are
weaknesses even with this approach, as the assumption made when making a message
persistent on the server is that the disk will not fail. This assumption is not necessarily
100% accurate in all situations, as disks might indeed fail. However, the underlying
assumption is that the level of fault tolerance is dependant on the environment in
which the JMS provider is operating. This implies that in an inherently unreliable
environment such as MANETs, a JMS provider does not need to provide the same
level of fault tolerance as it would do in for example a wired environment where the
JMS provider could make use of for example RAID disks or off-site replication.

Based on this observation, if it is possible to increase the packet delivery ratio of
Jomp to a high enough level, it could be argued that both of JMS’ message delivery
guarantees could be provided by Arjuna-MS over Jomp.

One method of extending Jomp to reach the required level of reliability is by
adding Anonymous Gossip (AG) [20] to Jomp. In general, gossip is the name given to
the technique where nodes share the data they possess with other nearby nodes, in
order for all nodes to share a consistent view of what has been communicated.

Simulation has shown[20] that the addition of Anonymous Gossip to an unreliable
multicast protocol will substantially increase the reliability of the protocol. Based on
this observation, it is our opinion that adding Anonymous Gossip to Jomp would
sufficiently increase the reliability of Jomp in order for us to be able to claim that
Arjuna-MS on MANETs support persistent messaging.

7.2 Coordination

Extending Arjuna-MS on mobile ad-hoc networks to support queues is a different
matter altogether, and the main problem is achieving the required semantics of a JMS
queue without incurring too much of an overhead.

Broadly speaking there are two main approaches to achieving JMS queue
semantics. The first is to use a multicast protocol implementation, such as Jomp, to
disseminate a message sent to a queue to all nodes containing receivers on that queue.
The nodes would then need to agree amongst themselves which one receiver is to be
handed the message. This would be achieved through some sort of consensus
algorithm, for example through the use of a distributed leader election algorithm,
where the elected leader would pass the message up to its queue receiver. This
approach has the benefit that we can use Jomp without modification and that fair,
non-simplistic queue semantics is achieved. However, it has the drawback that comes

12!!!!!!Einar Vollset , Dave Ingham and Paul Ezhilchelvan

with any currently available consensus algorithms for MANETs, in that it can be very
costly both in terms processing power and network bandwidth.

The other approach is to weaken the fairness of JMS queue semantics and thus
circumventing the distributed coordination problem. One way to do this is to handle
all synchronization on the sender side. For example, JMS queue semantics could be
achieved by having the node containing the queue sender know the identity of all the
nodes with queue receivers. The node containing the queue sender would then simply
pick one queue receiver and unicast the packet to that receiver. This approach has the
benefit that no processing is required on the nodes with the queue receivers, and the
required bandwidth is substantially less compared to the first approach. However, this
approach does require the implementation of a unicast protocol, as well as requiring
the nodes with queue senders to maintain some sort of membership information of the
queue receivers. This in itself adds an overhead both in processing and network
bandwidth. Another way to circumvent the coordination problem is through the use of
an anycast protocol. Anycasting protocols are a fairly recent development in the
mobile networking community, and essentially provide one-to-any delivery
semantics. That is, a packet that is being anycasted will be delivered to only one of a
group of nodes, typically the closest to the sender. An example of an anycast protocol
is the extensions made to the Temporally Ordered Routing Algorithm (TORA)[21]
when it was extended to support geocasting (GeoTORA)[22].

Clearly the two approaches circumventing the distributed coordination problem are
fairly similar, diluting the message queuing semantics and fairness in order to reduce
overhead, and choosing between these two and the use of a consensus protocol will
have to be based on the desired properties of the system.

Our current research involves developing consensus algorithms specifically for
MANETs, which aim to reduce the required network and processing bandwidth, thus
making it more suitable for the MANET environment, and perhaps making the above
choice a little easier.

8. Conclusion

Mobile ad-hoc networking is likely to become an important future communication
technology; many interesting application areas have been suggested, including
applications in vehicular and sensor networks. However, the development of such
applications is currently held up by the unavailability of MANET-capable mobile
devices. Current wireless devices, such as PDAs with 802.11b networking, do not
support the necessary multi-hop routing protocols as standard.

Despite such disadvantages and due to potential application benefits, this paper has
met the objective of designing and implementing a Java Message Service (JMS)
solution for MANETs using an application-level multicast routing protocol. Since
JMS is known to simplify the construction of loosely coupled distributed applications
using familiar APIs and messaging models, the provision of a JMS solution for
MANETs greatly eases the effort required to build MANET applications.

JMS on Mobile Ad-hoc Networks!!!!!!13

Our implementation was integrated into the Arjuna Message Service product as a
pluggable transport module. Currently, our JMS solution for MANETs supports non-
persistent publish/subscribe messaging. Several existing JMS applications have been
successfully deployed on top of it without the necessity for any code changes. Further
verification of the correct operation of the underlying multicast routing protocol was
obtained by extending an existing network simulator (JNS) to trace the behaviour of
the executing JMS applications. Ideas for future work include support for the queuing
messaging model through the development of distributed consensus algorithms for
MANETs and reliable delivery through the use of message replication using the
anonymous gossip protocol.

References

1. Charles E. Perkins, Elizabeth M. Royer, and S. Das,Ad Hoc On Demand Distance Vector
(AODV) Routing. draft-ietf-manet-aodv-10.txt, 2002

2. Johnson, D.B. and D.A. Maltz, Dynamic Source Routing in Ad Hoc Wireless Networks, in
Mobile Computing, H.F. Korth, Editor. 1996, KluwerAcademic Publishers Group. p. 153-
179.

3. Richard E. Schantz and D.C. Schmidt, Middleware for Distributed Systems: Evolving the
Common Structure for Network-centric Applications, in Encyclopedia of Software
Engineering. 2001, Wiley & Sons.

4. Banavar, G., et al., A Case for Message Oriented Middleware, in Distributed Computing, P.
Jayanti, Editor. 1999, Springer Verlag Kg. p. 1-18.

5 . Mark Hapner , e t a l . , Java Message Service. Version 1 .0 .2b,
http://java.sun.com/products/jms/docs.html, 2001

6. IBM website. http://www.ibm.com,
7. Tibco website. http://www.tibco.com,
8. Arjuna website. http://www.arjuna.com
9. Lee, S.J., M. Gerla, and C.C. Chiang. On-Demand Multicast Routing Protocol. in Wireless

communications and networking conference. 1999. New Orleans; LA: IEEE Operations
Center.

10. Wu, C. and Y. Tay, AMRIS: A Multicast Protocol for Ad Hoc Wireless Networks. Milcom,
1999. 1: p. 25-29.

11. Garcia-Luna-Aceves, J.J. and E.L. Madruga, The Core-Assisted Mesh Protocol. Ieee
Journal on Selected Areas in Communications Sac, 1999. 17(8): p. 1380-1394.

12. Elizabeth M. Royer and C.E. Perkins, Multicast Ad hoc On- Demand Distance Vector
 (MAODV) Routing. Work in progress, 2000
13. Kunz, T. and E. Cheng. On-Demand Multicasting in Ad-Hoc Networks: Comparing AODV

and ODMRP. in Distributed computing systems. 2002. Vienna: IEEE Computer Society.
14. Lee, S.J., et al. A Performance Comparison Study of Ad Hoc Wireless Multicast Protocols.

in Computer communications; IEEE INFOCOM 2000. 2000. Tel Aviv, Israel: Ieee.
15. Liao, T., WebCanal: a multicast Web application. Computer Networks and Isdn Systems,

1997. 29(8/13): p. 1091-1102.
16. Sonja Buchegger and J.-Y.L. Boudec. Performance Analysis of the CONFIDANT Protocol.

in MobiHoc. 2002. Lausanne, Switzerland.
17. S-J Lee, William Su, and M. Gerla, On Demand Multicast Routing Protocol (ODMRP) for

Ad Hoc Networks. http://www.ietf.org/proceedings/00jul/ID/ manet-odmrp-02.txt, Work in
progress, 2000

14!!!!!!

18. The Java Network Simulator (JNS). http://jns.sourceforge.net,
19. Arjuna-MS for MANETs webpage http://www.cs.ncl.ac.uk/people/einar.vollset/home.fo

rmal/arjunamanet.html, 2002
20. Chandra, R., V. Ramasubramanian, and K. Birman, Anonymous Gossip: Improving

Multicast Reliability in Mobile Ad-Hoc Networks. International Conference on Distributed
Computing Systems, 2001. 21: p. 275-283.

21. Park, V.D. and M.S. Corson, A Highly Adaptive Distributed Routing Algorithm for Mobile
Wireless Networks. Ieee Infocom, 1997. 3: p. 1405-1413.

22. Ko, Y.B. and N. Vaidya. GeoTORA: A Protocol for Geocasting in Mobile Ad Hoc
Networks. in Network protocols. 2000. Osaka, Japan: IEEE Computer Society.

23. M.J. Fischer, N.A. Lynch, and M.S. Paterson, "Impossibility of Distributed Consensus with
one faulty Process," Journal of the ACM, Vol. 32, No. 2, pp. 374-382, April 1985

24. Einar Vollset, “Extending an enterprise messaging system to support mobile devices”, MSc
thesis, University of Newcastle upon Tyne, September 2002.

