Object Recognition Using Pictorial Structures

Daniel Huttenlocher
Computer Science Department

Joint work with Pedro Felzenszwalb, MIT AI Lab

In This Talk

- Object recognition in computer vision
 - Brief definition and overview
- Part-based models of objects
 - Pictorial structures for 2D modeling
- A Bayesian framework
 - Formalize both learning and recognition problems
- Efficient algorithms for pictorial structures
 - Learning models from labeled examples
 - Recognizing objects (anywhere) in images
Object Recognition

- Given some kind of model of an object
 - Shape and geometric relations
 - Two- or three-dimensional
 - Appearance and reflectance – color, texture, ...
 - Generic object class versus specific object

- Recognition involves
 - Detection: determining whether an object is visible in an image (or how likely)
 - Localization: determining where an object is in the image

Our Recognition Goal

- Detect and localize multi-part objects that are at arbitrary locations in a scene
 - Generic object models such as person or car
 - Allow for “articulated” objects
 - Combine geometry and appearance
 - Provide efficient and practical algorithms
Pictorial Structures

- Local models of appearance with non-local geometric or spatial constraints
 - Image patches describing color, texture, etc.
 - 2D spatial relations between pairs of patches
- Simultaneous use of appearance and spatial information
 - Simple part models alone too non-distinctive

A Brief History of Recognition

- Pictorial structures date from early 1970’s
 - Practical recognition algorithms proved difficult
- Purely geometric models widely used
 - Combinatorial matching to image features
 - Dominant approach through early 1990’s
 - Don’t capture appearance such as color, texture
- Appearance based models for some tasks
 - Templates or patches of image, lose geometry
 - Generally learned from examples
 - Face recognition a common application
Other Part-Based Approaches

- Geometric part decompositions
 - Solid modeling (e.g., Biederman, Dickinson)

- Person models
 - First detect local features then apply geometric constraints of body structure (Forsyth & Fleck)

- Local image patches with geometric constraints
 - Gaussian model of spatial distribution of parts (Burl & Perona)
 - Pictorial structure style models (Lipson et al)

Formal Definition of Our Model

- Set of parts \(V = \{v_1, \ldots, v_n\} \)
- Configuration \(L = (l_1, \ldots, l_n) \)
 - Random field specifying locations of the parts
- Appearance parameters \(A = (a_1, \ldots, a_n) \)
- Edge \(e_{ij}, (v_i, v_j) \in E \) for neighboring parts
 - Explicit dependency between \(l_i, l_j \)
- Connection parameters \(C = \{c_{ij} \mid e_{ij} \in E\} \)
Quick Review of Probabilistic Models

- Random variable X characterizes events
 - E.g., sum of two dice
- Distribution $p(X)$ maps to probabilities
 - E.g., $2 \rightarrow 1/36$, $5 \rightarrow 1/9$, ...
- Joint distribution $p(X,Y)$ for multiple events
 - E.g., rolling a 2 and a 5
 - $p(X,Y) = p(X)p(Y)$ when events independent
- Conditional distribution $p(X|Y)$
 - E.g., sum given the value of one die
- Random field is set of dependent r.v.’s

Problems We Address

- Recognizing model $\Theta=(A,E,C)$ in image I
 - Find most likely location L for the parts
 - Or multiple highly likely locations
 - Measure how likely it is that model is present
- Learning a model Θ from labeled example images $I^1, ..., I^m$ and $L^1, ..., L^m$
 - Known form of model parameters A and C
 - E.g., constant color rectangle
 - Learn a_i: average color and variation
 - E.g., relative translation of parts
 - Learn c_{ij}: average position and variation
Standard Bayesian Approach

- Estimate posterior distribution \(p(L|I,\theta) \)
 - Probabilities of various configurations \(L \) given image \(I \) and model \(\theta \)
 - Find maximum (MAP) or high values (sampling)
- Proportional to \(p(I|L,\theta)p(L|\theta) \) [Bayes’ rule]
 - Likelihood \(p(I|L,\theta) \): seeing image \(I \) given configuration and model
 - Fixed \(L \), depends only on appearance, \(p(I|L,A) \)
 - Prior \(p(L|\theta) \): obtaining configuration \(L \) given just the model
 - No image, depends only on constraints, \(p(L|E,C) \)

Class of Models

- Computational difficulty depends on \(\Theta \)
 - Form of posterior distribution
- Structure of graph \(G=(V,E) \) important
 - \(G \) represents a Markov Random Field (MRF)
 - Each r.v. depends explicitly on neighbors
 - Require \(G \) be a tree
 - Prior on relative location \(p(L|E,C) = \prod_{E}p(l_i,l_j|c_{ij}) \)
 - Natural for models of animate objects – skeleton
 - Reasonable for many other objects with central reference part (star graph)
 - Prior can be computed efficiently
Class of Models

- Likelihood \(p(I|L,A) = \prod_i p(I|l_i,a_i) \)
 - Product of individual likelihoods for parts
 - Good approximation when parts don’t overlap
- Form of connection also important – space with “deformation distance”
 - \(p(l_i,l_j|c_{ij}) \propto \eta(T_{ij}(l_i)-T_{ji}(l_i),0,\Sigma_{ij}) \)
 - Normal distribution in transformed space
 - \(T_{ij}, T_{ji} \) capture ideal relative locations of parts and \(\Sigma_{ij} \) measures deformation
 - Mahalanobis distance in transformed space
 (weighted squared Euclidean distance)

Bayesian Formulation of Learning

- Given example images \(I^1, \ldots, I^m \) with configurations \(L^1, \ldots, L^m \)
 - Supervised or labeled learning problem
- Obtain estimates for model \(\Theta=(A,E,C) \)
- Maximum likelihood (ML) estimate is
 - \(\arg\max_{\Theta} p(I^1, \ldots, I^m, L^1, \ldots, L^m | \Theta) \)
 - \(\arg\max_{\Theta} \prod_k p(I^k,L^k|\Theta) \) independent examples
- Rewrite joint probability as product – appearance and dependencies separate
 - \(\arg\max_{\Theta} \prod_k p(I^k|L^k,A) \prod_k p(L^k|E,C) \)
Efficiently Learning Models

- Estimating appearance \(p(I^k|L^k,A) \)
 - ML estimation for particular type of part
 - E.g., for constant color patch use Gaussian model, computing mean color and covariance
- Estimating dependencies \(p(L^k|E,C) \)
 - Estimate \(C \) for pairwise locations, \(p(l^k_i,l^k_j|c_{ij}) \)
 - E.g., for translation compute mean offset between parts and variation in offset
 - Best tree using minimum spanning tree (MST) algorithm
 - Pairs with smallest relative spatial variation

Example: Generic Face Model

- Each part a local image patch
 - Represented as response to oriented filters
 - Vector \(a_i \) corresponding to each part
- Pairs of parts constrained in terms of their relative \((x,y)\) position in the image
- Consider two models: 5 parts and 9 parts
 - 5 parts: eyes, tip of nose, corners of mouth
 - 9 parts: eye split into pupil, left side, right side
Learned 9 Part Face Model

- Appearance and structure parameters learned from labeled frontal views
 - Structure captures pairs with most predictable relative location – least uncertainty
 - Gaussian (covariance) model captures direction of spatial variations – differs per part

Example: Generic Person Model

- Each part represented as rectangle
 - Fixed width, varying length
 - Learn average and variation
 - Connections approximate revolute joints
 - Joint location, relative position, orientation, foreshortening
 - Estimate average and variation

- Learned 10 part model
 - All parameters learned
 - Including “joint locations”
 - Shown at ideal configuration
Bayesian Formulation of Recognition

- Given model Θ and image I, seek “good” configuration L
 - Maximum a posteriori (MAP) estimate
 - Best (highest probability) configuration L
 - $L^* = \arg\max_L p(L|I,\Theta)$
 - Sampling from posterior distribution
 - Values of L where $p(L|I,\Theta)$ is high
 - With some other measure for testing hypotheses
- Brute force solutions intractable
 - With n parts and s possible discrete locations per part, $O(s^n)$

Efficiently Recognizing Objects

- MAP estimation algorithm
 - Tree structure allows use of Viterbi style dynamic programming
 - $O(ns^2)$ rather than $O(s^n)$ for s locations, n parts
 - Still slow to be useful in practice (s in millions)
 - New dynamic programming method for finding best pair-wise locations in linear time
 - Resulting $O(ns)$ method
 - Requires a “distance” not arbitrary cost
- Similar techniques allow sampling from posterior distribution in $O(ns)$ time
The Minimization Problem

- Recall that best location is
 \[L^* = \arg\max_L p(L|I, \Theta) = \arg\max_L p(I|L,A)p(L|E,C) \]
- Given the graph structure (MRF) just pairwise dependencies
 \[L^* = \arg\max_L \prod_V p(I|l_i, a_i) \prod_E p(l_i, l_j | c_{ij}) \]
- Standard approach is to take negative log
 \[L^* = \arg\min_L \sum_V m_j(l_j) + \sum_E d_{ij}(l_i, l_j) \]
 - \(m_j(l_j) = -\log p(I|l_j, a_j) \) – how well part \(v_j \) matches image at \(l_j \)
 - \(d_{ij}(l_i, l_j) = -\log p(l_i, l_j | c_{ij}) \) – how well locations \(l_i, l_j \) agree with model

Minimizing Over Tree Structures

- Use dynamic programming to minimize
 \[\Sigma_V m_j(l_j) + \Sigma_E d_{ij}(l_i, l_j) \]
- Can express as function for pairs \(B_j(l_i) \)
 - Cost of best location of \(v_j \) given location \(l_i \) of \(v_i \)
- Recursive formulas in terms of children \(C_j \) of \(v_j \)
 - \(B_j(l_i) = \min_{l_j} (m_j(l_j) + d_{ij}(l_i, l_j) + \Sigma_{C_j} B_{c}(l_j)) \)
 - For leaf node no children, so last term empty
 - For root node no parent, so second term omitted
Running Time

- Compute minimum using these equations
 - Start with leaf nodes, build up sub-trees
- $O(ns^2)$ running time for n parts and s locations of each part
 - Each part pair defining one equation $B_j(l_i)$
 - $O(s^2)$ time per pair, $O(n)$ pairs
- When d_{ij} is distance don’t need to consider location pairs
 - Define $B_j(l_i)$ as a kind of distance transform
 - For each location of v_j minimum location of v_i

Classical Distance Transforms

- Defined for set of points, P,
 $$\Delta_P(x) = \min_{y \in P} ||x - y||$$
 - For each location x distance to nearest y in P
 - Think of as cones rooted at each point of P
- Commonly computed on a grid Γ using
 $$\Delta_P(x) = \min_{y \in \Gamma} (||x - y|| + 1_B(y))$$
 - Where $1_B(y) = 0$ when $y \in P$, ∞ otherwise
Computing Distance Transforms

- Two pass algorithm for L_1 norm
 - $O(sD)$ time for s locations on a D-dim grid
 - On each pass, min sum of mask and distance array (“in place”)
- Simple method to approximate L_p norms
- More involved exact method for L_2 that also reports which point is closest

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Generalized Distance Transforms

- Replace indicator function with arbitrary f
 - $\Delta_f(x) = \min_{y \in \Gamma} (||x - y|| + f(y))$
- Intuitively, for grid location x, find y where $f(y)$ plus distance to x is “small”
 - A distance plus a cost for each location
- Change in $\Delta_f(x)$ is bounded by change in x
 - Small value of f “dominates” nearby large values
- This generalized distance transform (GDT) computed same way as classic DT
O(ns) Algorithm for MAP Estimate

- Can express $B_j(l_i)$ in recursive minimization formulas as a GDT $\Delta_f(T_{ij}(l_i))$
 - Cost function for GDT
 - $f(y) = m_j(T_{ji-1}(y)) + \sum C_j B_c(T_{ji-1}(y))$
 - T_{ij} maps locations to space where difference between l_i and l_j is a squared distance
 - Distance zero at ideal relative locations
- Have n recursive equations
 - Each can be computed in $O(sD)$ time
 - D is number of dimensions to parameter space but is fixed (in our case D is 2 to 4)

Recognizing Faces

Generic model of frontal view
- Using learned 5- and 9-part models
 - Local oriented filters for parts
 - Relatively small spatial variation in part locations
 - Similar overall size and orientation of face
- MAP estimation to find best match
 - Posterior estimate of configuration L is accurate because parts do not overlap
 - Consider all possible locations in image
 - Runs at several frames per second on a desktop workstation
Example: Recognizing Faces

Frontal view models
- Generic model using binary rectangles for parts
 - Match to “difference image”
- Specific model using color rectangles for parts
 - Match to original image

Sampling posterior to find good matches
- Posterior estimate of L can be high for several configurations due to overlap of parts
- Use best of 200 samples
 - Measured using correlation (Chamfer matching)
- Search over all locations runs in under minute
Sampling the Posterior

- Generate good possible matches as hypotheses
 - Locations where p(L|I,Θ) large
 - Validate or compare using another technique
 - Here use a correlation-like measure (Chamfer)

- Computation similar to MAP estimation
 - Recursive equations, one per part
 - Ability to solve each equation in linear time
 - Via convolution with Gaussian
 - Linear time dynamic programming approximation using box filters (due to Wells)

Example: Recognizing People
Variety of Poses

Variety of Poses
Samples From Posterior

Model of Specific Person
Summary

- Pictorial structures combine local part appearance and global spatial constraints
 - Don’t try to localize parts first – exploit context
 - Suitable for generic models of object classes
- Bayesian framework provides natural learning problem – ML estimation
 - Only requires placing part models in images; structure and parameters are learned
- Practical algorithms for searching over all possible locations in image
 - Best match or good matches (high posterior)

What’s Next

- Allow for occluded parts
 - Make part likelihood $p(I|l, a)$ a robust measure
- Apply to tracking people in video
 - Incorporate location at previous time frame into prior
 - Use for more efficient methods
- Start with generic models and use to learn person specific models
 - Discriminate between people
- Use person and face methods together