1. Let \(d \) be any positive integer not equal to 2, 5 or 13. Show that one can find distinct \(a, b \) in the set \(\{2, 5, 13, d\} \) such that \(ab - 1 \) is not a perfect square.

2. Given a point \(P_0 \) in the plane of the triangle \(A_1A_2A_3 \). Define \(A_s = A_{s-3} \) for all \(s \geq 4 \). Construct a set of points \(P_1, P_2, P_3, \ldots \) such that \(P_{k+1} \) is the image of \(P_k \) under a rotation center \(A_{k+1} \) through an angle 120 clockwise for \(k = 0, 1, 2, \ldots \). Prove that if \(P_{1986} = P_0 \), then the triangle \(A_1A_2A_3 \) is equilateral.

3. To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers \(x, y, z \) respectively, and \(y < 0 \), then the following operation is allowed: \(x, y, z \) are replaced by \(x + y, -y, z + y \) respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.

4. Let \(A, B \) be adjacent vertices of a regular \(n \)-gon \((n \geq 5) \) with center \(O \). A triangle \(XYZ \), which is congruent to and initially coincides with \(OAB \), moves in the plane in such a way that \(Y \) and \(Z \) each trace out the whole boundary of the polygon, with \(X \) remaining inside the polygon. Find the locus of \(X \).

5. Find all functions \(f \) defined on the non-negative reals and taking non-negative real values such that: \(f(2) = 0, f(x) \neq 0 \) for \(0 \leq x < 2 \), and \(f(xf(y)) f(y) = f(x + y) \) for all \(x, y \).

6. Given a finite set of points in the plane, each with integer coordinates, is it always possible to color the points red or white so that for any straight line \(L \) parallel to one of the coordinate axes the difference (in absolute value) between the numbers of white and red points on \(L \) is not greater than 1?