
1

Motion and Feature-Based Video Metamorphosis
Robert Szewczyk, Andras Ferencz, Henry Andrews, Brian C. Smith*

Department of Computer Science
Cornell University

Abstract
We present a new technique for morphing two video sequences.
Our approach extends still image metamorphosis techniques to
video by performing motion tracking on the objects. Besides
reducing the amount of user input required to morph two
sequences by an order of magnitude, the additional motion
information helps us to segment the image into foreground and
background parts. By morphing these parts independently and
overlaying the results, output quality is improved. We compare
our approach to conventional motion image morphing techniques
in terms of the quality of the output image and the human input
required.

Keywords: Image metamorphosis, video morphing, dense motion
analysis

1. Introduction

Video morphing, the process of creating a smooth, fluid transition
between two objects in an image sequence, is a useful technique
in cinematography. This technique was used extensively in the
creation of the Michael Jackson video Black or White [6], where
video clips of the faces of 13 people singing were morphed from
one person to the next. While the transitions looked realistic,
several factors made them reasonably easy to create. Animators at
Pacific Data Images used a plain, featureless background that was
consistent among the sequences. Also, great care was taken to
align the features of the faces in the source footage. Even with
such careful camera work and editing, significant human effort
was necessary to achieve smooth transitions. In this paper, we
show how to use techniques from computer vision to reduce this
effort.

1.1. Conventional techniques

Beier and Neely [1] developed the algorithm used in Black or
White. We review their algorithm in section 2. Their approach is
primarily designed for still image morphing and requires the user
to input a number of feature lines that define the correspondence
between source and destination images. In practice, a large
number of feature lines (10-100) are required to achieve a visually
pleasing morph, leading to significant work for the animator. For

example, if 25 feature-line pairs (50 lines, 100 points) must be
specified for each frame of output, 4,800 points must be specified
by the animator to create 2 seconds of morphed video at 24
frames per second.

Beier and Neely recognized this problem, and proposed linearly
interpolating the feature lines between key frames when morphing
video sequences. This technique only works well if the motion of
the feature lines between key frames is linear. In practice, it is
often non-linear, so that key frames must be defined every 2-6
frames (requiring 800 - 2,400 points for the above example).

In addition to specifying the feature set, image segmentation is
often used to create visually pleasing morphs. That is, the
foreground image is separated from the background image in each
video frame. The parts are morphed independently, and the results
combined using matting techniques [7] to produce the output
image. Beier and Neely used a painting program and segmented
the video by hand [1].

All together, the current process of creating high quality morphed
video is labor intensive. Beier and Neely reported that a typical
morphed sequence at Pacific Data Images requires about 3 weeks
of animator design time, 75% of which is spent creating and
tweaking the feature-line set [1].

1.2. Our approach

Our goal is to reduce the amount of user input required for video
morphing, while improving the quality of the output. In this
paper, we show how to use computer vision techniques to
accomplish both objectives. In particular, we show how to:

• Apply motion estimation techniques to track feature lines,
reducing the number of key frames that the user must specify
by an order of magnitude.

• Automatically segment the image into pieces, each of which
is morphed individually and combined.

Feature-line tracking reduces the number of frames that require
the user to input feature lines. For short (1-2 second) sequences,
the user must typically provide feature lines for only one frame of
each sequence. We also require the user to divide these feature
lines into groups, such that the motion of each group can be
modeled with an affine transformation.

Once the feature lines are specified in a few key frames, our
system computes the position of the feature lines in the
intermediate frames as follows: we compute a dense motion field
for the video sequence. The motion field is used to compute the
best (in the least-squares sense) affine transformation for each
feature-line group. We then apply the transformation to each
group. We describe this algorithm in detail in section 3.

* Dept. of Computer Science, Cornell University, Ithaca, NY 14850
{szewczyk, aferencz, handrews, bsmith}@cs.cornell.edu
 http://www2.cs.cornell.edu/zeno/Projects/VMorph

2

In addition to automatically interpolating the position of the
feature lines, we also automatically segment the video into
foreground and background parts. While image segmentation is
difficult (if not impossible) to perform on static images,
segmenting an image sequence is possible [8, 9]. Our motion
segmentation algorithm, given an image segmentation for frame It,
automatically segments the next frame (It+1) by tracking the
motion of the segments in It. The segmentation for one of the
frames has to be provided by the user. The segmentation
information is used to divide the image into component parts,
each of which is morphed independently. We then composite the
results to produce the output image. We sketch the major features
of our segmentation algorithm in section 3. A full description of
the segmentation algorithm is available elsewhere [2].

2. The Beier and Neely algorithm

The Beier and Neely morphing algorithm [1] is primarily
concerned with morphing still images. Still image morphing
requires user input to position line segments over corresponding
features in the source and destination images. It outputs a
sequence of frames depicting a smooth transition from the source
into the destination image. Their algorithm works as follows (see
figure 1):

1. The user specifies pairs of lines on the source image S and
the destination image D. These lines typically correspond to
features (e.g., the eyebrows, mouth, and facial outline) on S
and D, and are called feature lines.

2. The position of each feature-line is interpolated from its
position in the source image S toward its position in the
destination image D.

3. Each feature-line carries a field of influence around it. The
strength of the field is proportional to the length of the line,
and decreases with distance. The algorithm warps S into S’
and D into D’ , moving each pixel in S and D according to the
influence fields.

4. The images S’ and D’ are cross-dissolved to produce the
output frame.

To morph video sequences, Beier and Neely propose a simple
extension to their algorithm. The user is required to enter the
feature lines only in key frames. The feature lines for the

intermediate frames are computed by linearly interpolating their
position from the surrounding key frames. Thus, the motion of the
objects in the intermediate frames must conform to a rather strict
assumption: it cannot deviate from linear. In practice, this
restriction translates into requiring key frames every 2-6 frames
for most video sequences.

Thus, the animator must draw feature lines in a high number of
key frames to produce a smooth video morph, a tedious and time-
consuming task. In order to reduce human input, we use
techniques from computer vision to more accurately estimate the
position of the feature lines in intermediate frames, reducing the
number of key frames that must be entered by an order of
magnitude. Using our system we were able to produce 1- to 2-
second-long sequences of video morphing using feature lines
from a single key frame.

Since the original feature-based morphing algorithm, some
research has addressed the problem of reducing amount of user
input in morphing. Lee et al. [5] describe a technique for
automating precise feature line placement by using energy
minimizing contours (snakes). They assume that the feature lines
are placed near image features (intensity edges). The animator is
required to place only approximate feature lines. Those lines are
then interpreted as the initial position of a snake. As the snake
minimizes its energy, it gets closer to the intended feature line.
Although the work does not explicitly state it, this approach could
be used in video morphing, provided that the difference between
consecutive frames is very small, so that the snake from one frame
could be used as an input snake in the next frame.

3. Feature line tracking

Briefly, our algorithm for interpolating feature lines works as
follows:

1. The user creates corresponding feature lines in both videos
using one or more key frames, and divides the lines into
groups. The criterion for selecting key frames and forming
groups is described in section 3.1 below

2. The algorithm computes a dense motion field (i.e., a motion
vector for each pixel) on both image sequences.

3. This field is then used to calculate the best affine transform
for each group of feature lines.

1. Warp 2. Warp3 Cross-fade

S DResult: 50-50% Morph

Feature-lines Feature-lines

Figure 1: Beier and Neely morpher

3

4. The algorithm interpolates the position of each group of
feature lines using the affine transform calculated in step 3.

We describe these steps in the following sub-sections.

3.1. Forming feature line groups and selecting
key frames

Grouping feature lines captures the idea that related lines move in
a related manner. Modeling this motion with affine
transformations allows us to describe any combination of
translation, rotation, scale, and shear to a group of lines. The
equations of affine transformations are:

xxx cybxax +⋅+⋅=’
yyy cybxay +⋅+⋅=’

We argue that this model allows us to describe arbitrary motion.
When non-rigid objects are present and more complicated
transformations are needed, we can form smaller groups which
move independently. For example, consider a person standing still
and waving an arm. While the motion of the entire person cannot
be described with an affine transform, we can break up the motion
into affine components, like the motion of the body, head, upper
arm, and forearm. Each of those parts can be assigned a group of
feature lines. In the limit, there will be only one line per group,
and clearly an affine transformation can specify all the possible
transformations of a line (two endpoints of the line will produce a
system of 4 equations with 6 unknowns). But there is a price to
pay for this freedom: nothing guarantees that lines in different
groups will maintain any relation to each other. In our previous
example, there is nothing to prevent the upper arm feature lines
from drifting away from the forearm feature lines (resulting in a
very long elbow in the output).

As objects move and rotate, parts of an object may appear or
disappear during the sequence. When a region disappears, the
feature lines associated with that region also shrink and disappear.
When new areas appear, however, no feature lines are assigned to
them. It is often possible to choose a frame in the sequence where
most of the features of all the objects are visible. Therefore, it is
often useful to allow the user to pick the frame to which features-
lines are added (the key frame). For some sequences, such as one
with a rotating object, however, the user may need to supply
additional feature lines in other frames of the sequence, whenever
new features appear.

Once the user has selected the key-frame(s) and added the feature
lines, the tracking process will compute the location of these lines
throughout the sequence. The tracking algorithm can be broken
down into two parts: computing a dense motion field and using
that motion field to fit a transform.

3.2. Dense motion field computation

In order to estimate the affine transform for each group of feature
lines, we need to compute the motion of the individual points in
the image. This computation can be performed on every point or
just on the points of interest (e.g., the endpoints of the feature
lines). We decided to compute the motion field for the entire
image (a dense motion field) to make the computation
independent of the feature lines. This allows us to compute the
motion once per sequence, and to use those results for many

different morphs. By computing a dense motion field, morphing
the sequence with a different group of feature lines will not
require us to repeat the expensive motion computation, making
experimentation with different placement of features relatively
cheap.

To compute the motion vector for each pixel, we use a census
transform [12]. The n-bit census transform C(P) maps the pixel P
into a set of n bits based on the intensity of nearby pixels. If the
intensity of a nearby pixel is less than P, the bit is set to 1;
otherwise it is set to 0. For example, for the image shown in figure
2, an 8-bit census transform would map pixel P to the bit string
01001001.1

Let It be the tth image in the sequence I. We first compute a 32-bit
census transform for each image in I. We then assign a motion
vector to each pixel in image It. This motion vector is chosen by
finding the closest 9x9 block of pixels in It+1 that minimizes the
Hamming distance2 to the 9x9 block of pixels centered at P. To
increase the efficiency of this process, we only search within a
small window of pixels in It+1. We generally used a 20 by 20
search window (where each point in It can move up to 10 pixels in
each direction in It+1) for most sequences. However, in sequences
with rapid motion from frame to frame, we found that a larger
window (32x32) is necessary.

3.3. Affine transform fitting

The motion field computed above gives us a motion vector for
each pixel in the image. This vector gives an estimate of how the
point moves from frame to frame. Due to image noise and the
inherent limitations of motion estimation, this data is not very
reliable. In order to obtain a more reliable transform estimation,
we find a transform which best describes (in the least-squares
sense) the motions of related reference points.

To compute the transformation for the group of feature lines, we
need to specify which motion vectors will be considered in the
fitting. One extreme is to use just the vectors corresponding to the
end-points of the feature lines. The other extreme is to base our
estimates on the vectors from the area enclosed by the group of
lines. The first approach will provide too few data points. The
second approach is problematic, since a group of lines does not
necessarily correspond to any a priori definable area (e.g., if a
group consisted of two perpendicular lines, what area would they
define?). Thus, we settled on an intermediate approach: we base

1
 In this example, the order of comparison is left to right, top to bottom.

The order is arbitrary, but a consistent order must be used.
2
 The Hamming distance is the number of bits that differ in two bit

sequences.

P

Figure 2: 9 pixels from an image and results of
comparison against P

0 1 0

0 X 1

0 0 1

4

our estimates on the motion of the pixels that fall on line segments
in a given group.

Let I be a sequence of images and It be the tth image in that
sequence. We represent each line segment as the set of points P
falling on that segment. Given the backward motion field

)(
1

QN
tt II →+

, where Q is a point, we find a set of mappings Z for

the points in P:

 s} = (d)N + d P, s :d) {(s,Z
1 tt+ II →∈= [Eq. 1]

The set Z tells us, for all the points in P, the corresponding points
in It+1. In other words, it gives us the motion of the feature-line
from It to It+1. If the set Z is smaller than THRESH points, we
say that the feature-line disappeared. In that case, we remove that
feature-line from the group. Otherwise, the line exists.

Set Z might still be rather small (because of errors in motion
estimation, round-off errors, or an actual shortening of the line),
making it unsuitable for least-squares fitting. To enlarge the
sample, we compute the forward motion field)(

1
QN

tt II +→ and

augment Z with a set Z’:

 (s)}N + s=d P, s :d) (s, {’
1tI +→∈=

tIZ [Eq. 2]

Mappings from Z determine the existence of the line, while
mappings from Z’ generate more data for the line estimation. We
repeat that process for all the lines in a group, and take the union
all of the resulting sets Z and Z’ to produce set U:

’ZZU ∪= [Eq. 3]

The set U contains the mapping from points in the feature lines in
the image It to the points (presumably) in the feature lines in the
image It+1. Since we assumed that points in It+1 can be computed
from the points in I t by application of some affine transform, for
every mapping

 Uds ∈),(, we create an equation d=sA, where A

is the affine transformation matrix. Those equations must be
satisfied simultaneously. Expanding matrices, we get

() ()

=

y

y

y

x

x

x

yxyx

c

b

a

c

b

a

ssdd 1

We solve this system using the normal equations of the least-
squares problem. The solution becomes

a

b

c

a

b

c

s s s s s

s s s s s

s s n

s d

s d

d

s d

s d

d

x

x

x

y

y

y

x x x y x

x y y y y

x y

x x

y x

x

x y

y y

y

=

−

∑ ∑ ∑
∑ ∑ ∑
∑ ∑

∑
∑
∑

∑
∑
∑

1

Since our motion field contains unreliable data, which can fool
the least-squares fit, we compute the trimmed least squares. We
compute the LS fit once to get an estimate of the transform, and
again after the largest (worst 20%) of the outliers are eliminated.
We transform the feature lines using the second fit.

After completing this processing for both the source and
destination image sequences, we have computed feature lines for
each frame in both sequences. We can use these feature lines to
morph one sequence into the other frame by frame. However, we
can make the output more visually pleasing if we segment the

frames into foreground and background image, morph those
images independently, and overlay the results. We describe our
method for image segmentation in the next section.

4. Image segmentation

In morphing, the animator wants to draw attention to the
metamorphosis of one or more foreground object. If the
background changes are too prominent, the visual impact of the
morph is diluted. The same dilution occurs if there are too many
foreground objects. Thus, image sequences that lend themselves
to morphing usually feature a few dominant foreground objects
and relatively similar backgrounds.

This consideration affects the distribution of the feature lines:
their placement is concentrated on the foreground object.
Although the influence of the feature lines drops off with
distance, the foreground lines have a significant effect on the
background, causing distortions in the otherwise static
background. One way to compensate for this effect is to draw a
number of “stabilizing” lines in the background. This, however,
does not have the full desired effect because it simply introduces
competing influence fields, rather than limiting the range of the
foreground feature lines to the foreground object.

A better approach is to segment the image into foreground and
background objects, morph the foreground objects, combine the
backgrounds, and overlay the results. This idea is somewhat
similar to the representing a video sequence with layers presented
in [11]. Segmenting the image can be accomplished manually
(using a painting program) or automatically, using techniques
from computer vision. In this section, we describe our approach
to automatic image segmentation.

4.1. Segmentation algorithm

Although segmenting a static image is difficult, if not impossible,
segmenting an image sequence is tractable because sequences
provide motion information. Previous work has addressed
foreground-background segmentation of image sequences. Smith
[8, 9] provides an overview of current techniques. Available
algorithms have proven effective for relatively simple scenes,
such as those typically used in video morphing.

We make two assumptions about the sequences. First, we assume
that the background is static throughout the sequence. This
restriction can be relaxed by finding the mode of all motion
vectors from one frame to the next, and translating the images to
align them. For more complicated scenes, one could attempt to fit
an affine transformation to the frames in order to align them [9].

Second, we assume that the user has identified the initial
foreground-background segmentation on a key-frame of the
sequence. This is necessary, as some parts of the foreground may
be stationary throughout the sequence.

We use a segmentation algorithm based on RubberSheets [2].
While this method is not robust for complex scenes, it works well
given the assumptions above, and has the advantage of often
tracking the boundaries of the foreground object exactly.

A RubberSheet is a two-dimensional patch that represents the
region of the image occupied by the foreground. The RubberSheet
is moved from frame to frame based on internal and external
energy functions. The internal energy function is a property of the

5

sheet that defines the preferred shape, size, and edge smoothness
of the sheet. For segmenting video sequences, the internal energy
function is chosen to conserve sheet area and edge smoothness.
The external energy function is a property of the image sequence
that provides an energy value for each pixel of an image. Low
values of this function attract the sheet; high values repel it. The
RubberSheet moves to minimize the sum of the internal and the
external energy under the sheet.

The external energy map is a two dimensional array that has the
same dimensions as It. Let P be the set of pixels that are part of
the sheet in frame It-1. We calculate the set U of motion vectors
originating from the pixels in P (i.e., we calculate U using
equation 3). We then calculate each element m in the energy map
as follows:

• We assign an initial value (we used 100) to the energy of m.

• For each motion vector (s,d) in U, if d = m we decrease the
energy of m by a constant (we used 80).

• If the image difference (ABS(It-1 - It) +
ABS(It - It+1)) exceeds a threshold (10) again decrease the
energy of m by a constant (also 80).

The intuition behind this energy function is to assign low values
to the energy function for points where the RubberSheet moves
according to the motion field. We further decrease the energy of
pixels where the image difference exceeds a threshold to further
pull the sheet towards parts of the image that are in motion.

The internal energy of the sheet is calculated using three factors:

• The internal energy function increases when the area of the
sheet in frame It-1 is different than the area in frame It. The
increase is proportional to the square of the difference of the
two areas. The minimum energy is achieved when the two
areas are equal. In general, the function is set so that no more
then a 5 % change in size is likely between one frame and the
next.

• The internal energy function decreases as the ratio of the
internal area to edge length increases. The intuition behind
this constraint is that round, smooth shapes are preferred
over skinny, irregular shapes.

• The internal energy function increases when the curvature of
the edge is high. This constraint optimizes for smooth edges
over sharp corners.

With these constraints, the RubberSheet uses a simulated
annealing algorithm to calculate the position of the sheet in It that
minimizes the total of the internal and external energy functions.
The sheet that results defines the segmentation for frame It+1,
which, in turn, is used as the input for the segmentation of frame
It+2.

The product of the segmentation algorithm is a map (a binary
image) for each frame indicating which pixels are in the
foreground and which are in the background. We run this
algorithm on the source and destination image sequences I and J
(T frames each) to produce 2*T maps (IF and JF).

4.2. Use of segmentation

We use the binary maps IF and JF to partition each image in the
image sequences into foreground and background components.
We morph each part using the Beier and Neely algorithm and
overlay the results. With this scheme, step 1 in figure 1 is
expanded into 3 warps and one overlay, as shown in figure 4.

To construct a composite background, we paste together areas of
the images that the segmentation algorithm found to be the
background. While this method tries to find each pixel of the
background in the sequence, it is possible that some regions were
never exposed during the sequence (i.e., the foreground always
covered them). Due to the warping effects of morphing, some
small portions of these hidden areas may become exposed. As we
have no direct information about these regions, we must
extrapolate from the surrounding known areas. An example of
such a reconstructed background is shown in figure 3. From such
backgrounds (one for I and one for J), we generate a still morph
sequence BG of length T that morphs one background into the
other.

To compute the foreground, we use the Beier and Neely algorithm
to morph the original images It and Jt and the binary maps IFt and
JFt using only those lines attached to the foreground. This
computation produces image F from It and Jt and a mask MF from
IFt and JFt. In order to produce the final image, we overlay the
morphed foreground F on top of the morphed background BGt

using the mask MF.

Figure 3: The first frame from the source sequence (Rob) and the reconstructed background

6

5. Summary of the algorithm

To summarize, our algorithm is given as input two sequences I
and J of length T, a group of background feature lines D, and n
groups of foreground feature lines F0…Fn (defined in a key
frame). It outputs a sequence M that is a morphed transition
between the first frame of I and the last frame of J. Our algorithm
proceeds as follows:

1. Compute the forward and backward motion fields
)(

1
QN

tt II +→ and)(
1

QN
tt II →+

 using the census transform

(section 3.2)

2. Use the motion fields to compute foreground-background
segmentation on sequences I and J, resulting in the binary
image maps IF and JF (section 4.1).

3. Use the sequences I, IF, J, JF to create two still
representations of the background IBG and JBG (section 4.2).

4. Create a still image sequence BG that morphs IBG into JBG

using feature lines D.

5. For each frame t=1 to T

5.1. Compute the current position of the feature lines for
each group Fi using a least-squares fit of the dense
motion field (section 3.3)

5.2. Compute the morph of It into Jt using the current
feature lines to obtain the morphed foreground F
(Beier and Neely)

5.3. Compute the morph of IFt into JFt using the current
feature lines to obtain the morphed foreground mask
MF (Beier and Neely)

5.4. Overlay F onto BGt using the mask MF. The result of
this operation produces Mt.

6. Results

We compared the effectiveness of our approach to the Beier and
Neely morpher. Figure 5 shows frames from two 17 frame
sequences with Rob (left column) and Henry (right column).
Feature lines were drawn on the initial image in each sequence,
and the rest of the feature lines shown were generated
automatically by the tracker. Note that feature lines stay attached
to their features for the duration of the sequence.

Figures 6 through 9 show the output of our morpher (figure 7)
and the output of the Beier and Neely morpher (figure 8). The
static morphs were generated by manually drawing the feature
lines for each frame in the sequence. Comparison of the
background of the middle frames of each sequence shows that the
foreground-background segmentation significantly improves the
quality of the resulting morph.

On a Pentium-150 machine with 48 MB of memory, the
computation of the motion field on a 320 by 240 pixel image with
a 20x20 search window requires about 30 seconds per frame, and
the segmentation of the image requires about 10 seconds per
frame. Compared to these costs, the cost of morphing the frames
and computing the optimal affine transforms is minimal. Since
these calculations can be performed in the background while the
user is defining the feature lines and since they only need to be
performed once per sequence, these costs may not seriously affect
the time required to create a smooth morphing sequence.

7. Conclusions

We have presented an algorithm for morphing two video
sequences. Our algorithm improves on previous work by using
techniques from computer vision to automate the production of
feature lines and the segmentation of the images. This automation
reduces the amount of human effort required to produce high
quality morphs by an order of magnitude: our tests show that
morphing 2 second sequences is possible with a single key frame,
whereas the method of linear interpolation would use about 8 key
frames.

The assumption that the two sequences are the same length could
be relaxed. In order to make the sequences the same length, we
could either throw out frames from the longer sequence or
generate more frames for the shorter sequence. Morphing adjacent
frames of that sequence together can produce these missing
frames.

This observation also suggests that this technique could be used
for video frame rate conversion, similar to 3:2 pull-down [4] but
without interlacing artifacts.

It should be noted that both the morphing and the segmentation
algorithm could be replaced with other variants. Since our
algorithm depends on the underlying image morpher, almost any
improvements to still morphing techniques will benefit the quality
of the images. Since our algorithm makes very few assumptions
about the underlying morpher, it can be viewed as a framework
that can be used with any still morphing algorithm.

Frame It IFt (F-B Mask) Background for I

Warp

Overlay using mask

Figure 4: Use of mask and segmentation.

7

8. Acknowledgements

Our implementation of the underlying still image morpher is
based on WLAMorph written by Scott Cytacki at Cornell
University, 1995.

9. Bibliography

1. T. Beier, S. Neely. Feature-Based Image Metamorphosis. In
SIGGRAPH 92 Conference Proceedings (1992), ACM Press,
pp. 35-42.

2. A. Ferencz, T. Janosi. “RubberSheets: Energy Minimizing
Patches”, unpublished manuscript3.

3. D. P. Huttenlocher, J. J. Noh, and W. J. Rucklidge. Tracking
non-rigid objects in complex scenes. In Proceedings of 3rd

International Conference on Computer Vision (1993), pp.
93-101.

4. K. Jack. Video Demystified. Hightext Pubs, 1996.

5. S. Lee, K. Chwa, S. Shin, G. Wolberg. Image
Metamorphosis Using Snakes and Free-Form Deformations.
In SIGGRAPH 95 Conference Proceeding (1995), ACM
Press, pp. 439-448.

6. Pacific Data Images. “Pacific Data Images - Black or White”,
May 22, 1997

4
.

7. T. Porter, T. Duff. Compositing Digital Images. Computer
Graphics 18, 3 (1984), pp. 253- 258

8. S.M. Smith. Feature Based Image Sequence Understanding.
Ph.D. thesis, Robotics Research Group, Department of
Engineering Science, Oxford University, 1992.

9. S.M. Smith. ASSET-2: Real-time motion segmentation and
shape tracking. In Proceedings of 5th International
Conference on Computer Vision (1995), pp. 237—244.

10. L. Theodosio, W. Bender. Salient Video Stills: Content and
Context Preserved. In Proceedings of ACM Multimedia
Conference (1993). ACM Press.

11. J. Y. A. Wang, E. Adelson. Representing Moving Images
with Layers. IEEE Transactions on Image Processing
Special Issue: Image Sequence Compression, 3, 5 (1994),
pp. 625-638.

12. J. Woodfill, R. Zabih. Non-parametric local transforms for
computing visual correspondence. In Proceedings of 3rd

European Conference on Computer Vision (1994).

3
http://www.cs.cornell.edu/Info/People/aferencz/RubberSheets/index.html

4
 http://www.pdi.com/PDIPage/screening/special/blackorwhite.html

8

Figure 5: Feature lines tracked by the algorithm. Frames 4, 8, 12 and 16

9

Figure 6: I0: Rob. The initial picture in the sequence

Figure 7: Frames 4, 8, and 12 generated
automatically by our algorithm

Figure 8: Frames 4, 8, and 12 generated
manually by Beier/Neely still morphing

Figure 9: J16: Henry. The final frame of the sequence

