Xunet 2: Lessonsfrom an Early Wide-Area ATM Testbed

C. R Kalmanek !
S Keshav 2
W. T. Marshall 3
S P. Morgan *
R. C. Restrick 3

Abstract — This paper is a retrospective on the design of
Xunet 2, one of the earliest functional wide-area ATM net-
works. Work on Xunet 2 began in 1989 and the network,
consisting of experimental ATM switches, IP routers, and 45
Mbps transmission lines, has been operational since October
1991. The network serves as a ‘‘laboratory without walls'”’
for eight research groups across the United States. While
Xunet 2 has only a small number of nodes, it was designed as
a prototype of a nationwide ATM network. This paper
reviews some of the design decisions and lessons learned in
the project and points out the research directions motivated by
this work, focusing on the areas of traffic management, ATM
switch design, network control, and the implementation of an
IP router.

1. Introduction

The Experimental University Network (Xunet) program
began in 1986 when AT&T Bell Laboratories formed a
research collaboration with the University of California at
Berkeley, the University of Illinois at Urbana-Champaign,
and the University of Wisconsin at Madison. The collabora
tion emphasized student research and the sites were linked by
a network of Datakitd Virtual Circuit Switches [FRASS3]
joined by 1.544 Mbps transmission lines. This network has
since become known as Xunet 1. The focus of the Xunet pro-
gram was broadened in 1989 when AT&T started to plan a
high-speed ATM network: Xunet 2. Our research group at
AT&T planned to use the new network as a model for a
multi-service ATM backbone. In addition, Xunet 2 would be
managed as a wide-area systems research laboratory where
student researchers could sign up for time to run network
experiments. Xunet 2 has been operational since October
1991. Over time, the Xunet program has grown. The

1 Currently with AT&T Labs - Research. Address correspondence to:
crk@research.att.com

2 Currently with Cornell University Department of Computer Science.
3 Currently with AT& T Labs - Research.

4 Currently with Bell Labs/Lucent Technologies.

network was extended to include Sandia National Laborato-
ries and Lawrence Livermore National Laboratories in Jan-
uary 1993 and Rutgers University in April 1993. The Univer-
sity of Pennsylvania and Columbia University joined the col-
|aboration, although we were never able to fund their connec-
tion to the network. In addition, AT& T upgraded some seg-
ments of the network to 622 Mbps to support the BLANCA
project, one of five ‘‘Gigabit Testbeds’ in the National
Research and Education Network (NREN) initiative
[CNRI95].

Xunet 2 consists of ten experimental ATM switches (two
in Murray Hill) interconnected with 45 Mbps transmission
lines (Figure 1). There is an ATM switch at each user site
and switches at three AT& T centra office locations. Oakland
CA, Chicago IL and Newark NJ. A high performance work-
station at each user site acts as an |P router between a local
FDDI ring and the ATM network. The routers provide a
LAN interconnection service, carrying encapsulated |P pack-
etsover ATM virtual circuits. In addition, a native ATM pro-
tocol stack on each of the workstations supports end-to-end
communication over switched virtual circuits.

Figure 1. Network topology.

Xunet 2 was designed as a small-scale prototype of a
nationwide ATM network. Thus, we made decisions that
were both pragmatic and scalable to larger networks. Our
research focused on three main areas. LAN interconnection
over awide-area ATM backbone, performance issues in sup-
porting multiple types of traffic, and the issues of controlling
and managing large-scale ATM networks.

The paper presents our work in four sections: perfor-
mance and traffic management (Section 2), the design of our
experimental switch (Section 3), network control and man-
agement (Section 4), and the design of our IP router (Section
5). In each section we present our goals, the architecture that
resulted, and the lessons we learned trying to turn vision into
reality. We aso present the research directions motivated by
our experience.

2. Performance and Traffic Management

2.1. Goals

An important goal in Xunet was understanding how to
support multiple traffic types on a shared public ATM net-
work. This section describes the evolution in our thinking
about ATM traffic management, and summarizes the studies
that reinforce our conclusions. |mplementation issues are dis-
cussed in later sections.

We wanted to support three service classes, now called
available hit rate (ABR), constant bit rate (CBR), and variable
bit rate (VBR). ABR service was intended for interconnec-
tion of conventional IP-based local area networks, which we
foresaw as the initial application of ATM. CBR service
would be used for constant bit rate traffic such as voice and
circuit emulation, while VBR was studied as a means of car-
rying variable-bit-rate video traffic.

Our traffic management architecture was guided by three
principles. First, the network exists to serve the needs of its
users. A network designer’srole isto provide the mechanisms
and policies that satisfy the quality of service desired by
users. Second, network users expect to receive a predictable
quality of service even though facilities are shared. Thus,
safeguards are needed to protect against users who misbe-
have, either malicioudy or inadvertently. This suggests that
while users may agree to use end-to-end mechanisms which
are cooperative, the network cannot assume the correct opera-
tion of end-to-end mechanisms. some form of policing is
required. Third, the network must use resources efficiently, so
that high-speed communication is affordable. This precludes,
for example, using CBR connections to interconnect local
area networks, since this would not provide the tremendous
cost saving arising from statistical multiplexing.

2.2. Traffic Management Architectureand ABR Service

Our traffic management architecture has a number of
familiar elements. Users request a particular class of service
during virtual circuit setup. Once a connection is established,
users regulate their traffic within a certain ‘‘user behavior
envelope'’ to avoid loss. Schedulers in switches distinguish
between virtual circuits of different service classesin order to
meet their quality-of-service requirements. Policing insures
that users who violate their behavior envelope do not affect
the performance seen by other users.

We spent considerable effort understanding ABR service
and believe that we have gained some valuable insights.®> We
first focus on three aspects of ABR service: scheduling,
buffer management, and flow control, before returning to
other service classes.

5 The term "ABR" has come to refer to the rate-based flow control
framework defined by the ATM Forum [BONO95, FEND96]. We use
the term more generically to refer to the service model that we describe
in this section, unless the work of the ATM Forum is specificaly re-
ferredto.

We believe that ABR service will be used to support
computer traffic with widely divergent characteristics and
requirements. Some applications will send short messages
and want low delay, while others will want to maximize
throughput. Since the scheduler at a switch is responsible for
dlocating bandwidth, and thus controlling delay, it plays a
crucia role in providing this service. Fundamentally, in order
to avoid congestion, it is necessary to control the offered |oad.
Over the years we have explored a number of mechanisms for
doing this. Since these mechanisms operate on individual vir-
tual circuits, we rely on end-to-end flow control to avoid
complexity in the center of the network, which operates at
high speed and where a large number of virtual circuits are
present. In addition, the network protects itself through the
use of per-virtual-circuit queueing, round robin scheduling,
and intelligent buffer management, all of which act to sepa-
rate virtual circuits and put limits on or "police" user behav-
ior.

2.2.1. Scheduling

The importance of per-virtual-circuit queueing and round
robin scheduling in data networks has been addressed else-
where [NAGL86, KATA88, DEME89, HAHN91, MORG91],
but we briefly summarize the argument. A round robin
scheduler is onein which each virtual circuit hasits own, log-
icaly distinct, data queue and the scheduler serves non-empty
data queuesin turn. When alink islightly loaded, thereis lit-
tle difference between round robin and first-come-first-served
scheduling. However, when a link is congested, round robin
scheduling allocates bandwidth equally among the virtual cir-
cuits. Short messages typically see low delay. Provided that
sources control their offered load appropriately, no queue will
grow very large but if a source consistently sends too much,
its queue will overflow and its data will be dropped. More-
over, round robin scheduling provides a more consistent ser-
vice rate than FCFS. In an FCFS scheduler, the service rate
of avirtual circuit is linked to the detailed arrival pattern of
every other virtual circuit sharing the link. Even short mes-
sages can be subjected to long delays, and a user who sends at
a sustained high rate can effectively consume an arbitrary
fraction of the network bandwidth. These problems are
avoided by using round robin service. Our architecture thus
callsfor the use of around robin scheduler for ABR traffic.

2.2.2. Congestion Avoidance

While round robin scheduling shares bandwidth appro-
priately, it is up to end systems to control the offered load.
We have explored several approaches to controlling load:
end-to-end window flow control with both static and dynami-
cally adapted windows, as well as adaptive rate control.

The intuition behind the window schemes is that a
source never needs a window size larger than its bandwidth-
delay product since that is the largest amount of unacknowl-
edged data that must be in transit to achieve the maximum
throughput. The research version of the Datakit switch
[FRAS83] provided static buffer allocation of afull round trip

-3-

window at the output queue of every switch for each virtual
circuit. Thus the total buffer allocation B at an output queue
would be

B = NW, , D)

where N is the total number of virtua circuits that can simul-
taneoudly share the queue. In this equation we assume that all
virtual circuits have the same round trip delay and are bottle-
necked at the same output queue. Thus, W, is the end-to-end
round-trip window, that is, the bandwidth-delay product, of
each virtua circuit.

Static buffer allocation implicitly polices user behavior,
since a user sends more than the buffer allocation of data into
the network at its own risk. Furthermore, allocation of a full
round-trip window to a virtual circuit guarantees that the
source will not lose data even if there is momentary conges-
tion while it is transmitting at full speed, since there is always
a large enough buffer to accommodate the data in the pipe.
However, intuition suggests that static buffer allocation
according to (1) uses much more memory than necessary.
When the network is congested, the bandwidth available to an
individual virtual circuit is reduced, and so is the round trip
window needed for it.

In dynamic window flow control, virtua circuits start
with a small default buffer alocation and set their window
size to the same value. A virtua circuit can request a larger
buffer alocation from the network. When the network is
uncongested, the virtual circuit can potentially send at the full
rate of its access line, so the network grants a buffer aloca
tion corresponding to the round trip window at that rate. As
the network becomes congested, however, the buffer alloca
tion that is granted is reduced. When virtual circuits become
idle, the buffer allocation returns to the default. In the
dynamic buffer allocation scheme described by [HAHN93],
the total buffer requirement per output port is approximately

B=W,logN+C, 2

where C is proportional to the renegotiation interval after
which an idle circuit’s alocation is returned to the default.
For realistic parameter values, Eq. (2) represents an order of
magnitude less memory than Eq. (1), but B can still amount to
several tens of round-trip windows for each output port.

Dynamic buffer allocation guarantees that a user will
never lose cells due to buffer overflow if the user adheres to
the current window size granted by the network. On the other
hand, dynamic buffer alocation requires a fairly elaborate
signaling mechanism between end systems and the network,
as well as a scheme for monitoring buffer fill in the switch.
Moreover, it requires that the queue handler discard data from
avirtual circuit queue when it exceeds the current allocation,
which changes dynamically. Thus, it requires a mechanism to
coordinate between the state machines which manage the
buffers, which necessarily reside in high-speed logic, and a
processor which runs the buffer allocation algorithm. The
Xunet queue handler supports these mechanisms, but their
widespread adoption is unlikely. We prefer to minimize the

mechanisms needed in a switch.

Substantially smaller buffers and simpler switch mecha
nisms are possible if one gives up the requirement that cells
are never lost due to buffer overflow within the network.
ABR traffic can tolerate occasional cell losses. This observa
tion has led us, as it has led others, to prefer rate control
rather than window flow control for avoiding congestion of
ABR traffic on high-speed wide-area networks.

We described above how a round robin scheduler allo-
cates bandwidth to each virtual circuit sharing a link. The
service rate will vary over time as virtual circuits become
active and inactive, but suppose a source could determine the
service rate of the bottleneck link as a function of time and
adapt its sending rate to match this rate. This would avoid
congestion and is one of the key ideas behind the Packet-Pair
flow control scheme [KESH91, KESH95].

With Packet-Pair, a source probes the network by send-
ing packets in back-to-back pairs and measures the spacing of
the acknowledgments to estimate the service rate and amount
of data buffered at the bottleneck link. The source uses these
estimates to adapt its sending rate to keep the bottleneck
buffer content close to a desired setpoint. The choice of set-
point permits a tradeoff between queueing delay and link uti-
lization.

Although round robin service allocates bandwidth fairly
and separates data from different virtual circuits into different
queues, a buffer management policy is needed to prevent an
aggressive user from consuming more of the buffer than its
fair share. A number of policies are possible, for example,
each user could be alocated a static buffer. We have found
that a simple and effective policy is to alocate a certain frac-
tion of the total buffer in a queue handler to the ABR service
and, when that buffer becomes full, to discard al of the data
on the longest virtual circuit data queue. Simulations show
that with this policy users who attempt to get more bandwidth
at the bottleneck by "cheating" always end up hurting them-
selves, while users who correctly adapt their sending rate get
good service [KESH97]. An exampleis shown in Figure 2.

Figure 2. Packet-Pair behavior under overload.

In Figure 2, ten statistically identical sources share a
trunk whose speed determines the maximum speed of each
virtual circuit. All of the sources share the same round-trip
delay. Nine sources adapt their sending rate with the Packet-
Pair rate control algorithm and one does not. The nominal
offered load, which isthe sum of the offered loads due to each
source individually, varies from 0.5 to 5.0 times the capacity
of the bottleneck link. The total buffer space B, measured in
terms of round-trip windows, varies from 0.25 to 1.00. When
an arriving cell would overflow the buffer, the entire longest
queue is discarded. The plots® represent the average goodput
achieved by Packet-Pair and non-Packet-Pair sources. Perfect

6 The vertical bars represent approximate 95% confidence intervals of
the simulations.

-4-

fairness under overload would correspond to a goodput of
0.10 times the capacity of the bottleneck link for each source,
in the absence of losses. Figure 2 and other simulations show
that Packet-Pair reveals no sign of congestion instability, at
least for offered loads up to 5.0, that total goodputs in the
0.8-0.9 range can be achieved with buffering equal to a frac-
tion of a round-trip window per output port, and that non-
Packet-Pair sources damage only themselves in the presence
of overload.

2.3. Other Traffic Classes

In addition to ABR traffic, it is generally expected that
ATM networks will carry continuous-media traffic such as
constant bit rate traffic and real-time audio and video. The
different types of traffic interact at the scheduler in a switch
and through the network’s admission control policy. We
focus on these topicsin this section.

2.3.1. Constant Bit Rate

Constant bit rate traffic consists of cells that are approxi-
mately equispaced on entry to the network. As the cells of a
given connection pass through the network, they are subject
to queueing delay so that the exiting cell stream is no longer
equispaced. An elasticity buffer at the destination is used to
absorb the delay jitter introduced by the network so that cells
can be read out at equispaced intervals. Since the size of the
elagticity buffer often needs to be known in advance, the net-
work seeks to control the delay jitter. Both the size of the
elagticity buffer and of the switch buffers are of interest.

One approach to controlling delay jitter involves retim-
ing or reshaping of traffic within the network, as in Stop-
and-Go Queueing [GOLE91] or Hierarchical Round Robin
Scheduling (HRR) [KALM90, SARA94B]. These disciplines
allow the network to control the burstiness of the traffic
streams exiting a server, which affects the amount of delay
jitter that can be introduced by the downstream switch. How-
ever, our anaytic and simulation studies indicate that it is suf-
ficient for most applications to give CBR traffic priority over
other types of traffic, rather than doing reshaping. This sim-
plifies the design of the scheduler, but requires policing at the
edge of the network to insure that users don’t send faster than
their negotiated rate.

Thus, in our traffic management architecture, CBR traf-
fic is given highest priority at a priority scheduler. There is
no need to do anything more than FCFS scheduling among
CBR connections, although round robin scheduling also
works. Peak rate policing is implemented using a leaky
bucket, with burst tolerance equal to one cell, at the edge of
the network.

Admission control insures that sufficient capacity is
available for CBR traffic. However, cell level queueing will
occur as a result of the detailed arrival patterns of the input
streams. Cell level queueing resulting from the superposition
of deterministic streams having the same or different spacings
has been extensively studied [ROBE92]. The simplest case
occurs when N streams with the same spacing but different

phases are multiplexed onto a single link. In an idea model,
the merged arrival process will be periodic, as will the output
of the link. In the worst case, the phase relationships of the
different streams might cause cells from all N streams to
arrive simultaneously, which would result in N—1 cells of
queueing delay (or cell loss if insufficient buffers are avail-
able). However, only a small fraction of the possible phase
relationships among the input streams lead to substantial
queueing, and ensemble averaging is conventionally used to
estimate the probability of queueing delay.

Figure 3: Cell-level delay distributions for CBR traffic.

The ensemble average queue length for a large number
of deterministic streams arriving at the output queue of a
switch can be approximated by the queue length distribution
for an M/D/1 queue with the same utilization [ROBE92].
Figure 3 gives an approximation to the delay distribution for
an M/D/1 queue at 90% utilization, as well as the cumulative
delay distribution for a series of 10 independent but statisti-
cally identical M/D/1 queues, each at 90% utilization. In the
figure, Q(x) isthe probability that the queue length exceeds x
cells. We note that the transmission time for one ATM cell
on a45 Mbps link is about 10 microseconds. Figure 3 shows
that the probability that the delay through 10 switches
exceeds 2 msis 7.4x107 1%, Buffersroughly 2 msin length at
the output ports of each switch should therefore provide ade-
quately for cell loss rates of 107°. An dasticity buffer
roughly 2 ms in length is also needed at the destination to
absorb the delay jitter introduced by the network. For appli-
cations for which these buffer sizes and delays are acceptable,
there is no need to do more than FCFS scheduling for CBR
traffic at aswitch. The queueing delay decreases sharply with
decreasing utilization.

2.3.2. Variable Bit Rate Video

Current designs for ATM networks include a variable bit
rate (VBR) service. It is expected that a user will negotiate a
traffic descriptor, typically a leaky bucket, with the network,
and the network will agree to meet certain quality-of-service
parameters for users whom it admits into the network. The
VBR service is intended to be used for traffic that has awell-
known long-term average rate, but that periodically generates
bursts, hence a leaky bucket involves three parameters. the
average or sustainable rate, the peak rate, and the burst toler-
ance. Since users will presumably not burst simultaneously,
the network can statistically multiplex a number of VBR
users. However, the choice of the leaky bucket parameters
determines the amount of statistical multiplexing that can be
achieved for agiven cell loss rate, delay variation, and switch
buffer pool.

VBR service has been extensively discussed as a vehicle
for carrying variable hit rate video traffic. However, mea-
surements [VERB89, RATH93] of both teleconferencing and
entertainment video traffic suggest a number of problems
with aVBR video service based on leaky buckets.

-5-

One problemisthat it may be difficult to pick reasonable
leaky bucket parameters a priori for any particular video ser-
vice. We found in in-house measurements that two videocon-
ferencing streams produced by the same H.261 codec differed
in average rate by a factor of two, depending on whether the
speaker was sedate or agitated. In [SARA94B], we supposed
that VBR video traffic would be carried through an HRR
server, but again we had no way a priori of determining the
HRR rate. Of course, one might imagine the user picking
from a menu of "default" leaky bucket parameters provided
by the encoder, since codecs can be designed [REIB92b] to
comply with any given leaky-bucket parameters (CBR output
is a specia case). However, default choices may lead to a
video quality that is no better than would be obtained by a
CBR service with the same average rate.

Leaky-bucket descriptors of unconstrained video
encoder output require a large burst tolerance [REIB92a],
unless the average rate is nearly equal to the peak rate, which
would not allow for much statistical multiplexing gain. The
reason is that encoder output, especialy for entertainment
video, can have peak-rate bursts lasting for several seconds.
VBR video service needs to be able to accommodate such
sustained peaks.

There are in principle two approaches to handling large
burst tolerances. In the first approach, mean cell loss ratios
are kept low by keeping the probability low that enough
sources are in burst mode simultaneously to overload the link
[WEIN78]. Since few sources are admitted into the network,
this approach results in poor statistical multiplexing gain. A
different approach increases the number of sources that could
be accommodated at a given cell loss ratio. The drawback is
that switch buffers of a size comparable with the large burst
tolerances of unsmoothed video traffic (potentially tens of
megabytes per source for entertainment quality video) would
introduce unacceptable delays, at least for real-time video.
Moreover, large switch buffers cost.

A final issue is that the amount of statistical multiplex-
ing gain that can be achieved with video sources may be
rather small. The video community now appears to expect
potential gains in the range from 1.5:1 to 2:1 [REIB92a], but
it is hard to estimate this number because there are so many
alternative video system configurations, and because there is
no easy way to relate subjective judgments of video quality to
guantities that can be computed in a network performance
analysis.

Our present view is that the need for VBR video service
over ATM networks using the "conventional” model, which
involves leaky bucket traffic descriptors, is questionable. We
will mention briefly some alternatives for video transport in
Section 2.4.

2.4. Lessons

We conclude that ATM networks should support CBR
and ABR service, and we propose an architecture for doing
s0. Our naotion of an ABR service is similar in spirit to the
ATM Forum UBR (Unspecified Bit Rate) service. For this

service we are convinced of the importance of per-virtual-
circuit queueing and round robin scheduling. The simple
buffer management policy of dealing with overflow by dis-
carding all of the data from the longest queue provides protec-
tion against misbehaving users. The amount of buffer
required at an output queue in a switch depends on the
approach to congestion control. It islikely that we can get by
with about a round trip window of memory shared among the
virtual circuits, while achieving quite low packet loss rates, so
long as a well designed congestion control scheme is used.
As we shall discuss in the next section, this amount of mem-
ory isboth practical and affordable, even for 155 Mbps access
lines.

CBR service can use either priority FCFS or priority
round robin scheduling, with policing at the network’s edge.
Of course, CBR traffic can also be policed by reshaping traf-
fic a the scheduler in a switch. The decision between these
two approaches is one of cost and complexity of implementa-
tion. Our view is that the simpler switch scheduler is suffi-
cient.

Congestion avoidance requires end systems to participate
in controlling the offered load. We believe that some form of
end system rate adaption is most appropriate in wide-area net-
works since it does not impose onerous requirements for
buffering or complexity on switches. In our view, host com-
puters that attach directly to ATM networks should run
Packet-Pair or some equivalent rate adaption algorithm. If the
network provides explicit rate feedback through the use of
Resource Management cells, as specified in the ATM Forum
ABR service [BONO95, FEND96], a host would simply use
this rate instead of making its own rate estimates. When
ATM networks are used to interconnect conventional local
area networks, hosts will be running conventional TCP/IP. |f
routers run a congestion control protocol such as Packet-Pair
over a wide area network, our experience suggests that the
TCP hosts will see good performance and the network will be
used efficiently.

It is not clear to us that a leaky-bucket-controlled VBR
service is of much use for traffic that is as bursty as variable
bit rate video. Two recent approaches to carrying VBR video
are attractive. First, [KANA93, LAKS97] demonstrate that it
is possible to achieve good video quality by adapting the
sending rate of a video coder in response to network conges-
tion. Our simulations show that video carried using the ABR
service, with the coder's sending rate controlled using
Packet-Pair, gives a perceptualy high quality even in the
presence of congestion. [SAFR95] shows how to adapt the
sending rate for stored video. Second, [GROS95] describes a
scheme based on ‘‘fast’’ renegotiation of a CBR rate. Rene-
gotiation allows the network to extract statistical multiplexing
gain on atime scale that is sow compared to the feedback-
based rate adaption schemes such as Packet-Pair. Since
coded video exhibits sustained periods where the output
frame sizes are roughly constant, renegotiation may be well
suited to the traffic requirements. By matching network
mechanisms to the traffic dynamics, we should be able to get

-6-

good performance at alow cost.
3. Xunet Switch

3.1. Goals

The design of an ATM switch for Xunet began in 1989
with the goal of creating a flexible platform for experimenta-
tion in network performance and control. The switch was
designed for a wide area backbone network with 45 Mbps
inter-switch trunks and access lines at 1.5 Mbps and 45 Mbps.
Though we expected computer traffic to predominate on this
network, we wanted the switch to support multiple traffic
types effectively. Thus, a major focus of our effort in the
design of the switch was on the architecture of the queue han-
dler responsible for cell scheduling and buffer management.
This section describes some of the implementation issues.

A second set of goals related to switch administration
and maintenance. We planned to run call processing, admin-
istration and maintenance software on an external worksta-
tion, and wanted a control interface to the switch which was
independent of the fabric in order to promote modular design
and to allow the switch hardware and the control software to
evolve independently. Our previous experience with call pro-
cessing led us to incorporate consistency checking in the
switch software to deal with various error cases. Finadly,
given the difficulty of maintaining and operating a cross-
country network, we thought carefully about how to build
switches that could be maintained.

3.2. Switch Architecture

The Xunet switch was designed as a bus-based output
gueued switch with support for per-virtual-circuit queueing at
the output ports, similar to the Datakit switch [FRAS83]. The
switch architecture is shown in Figure 4. In the figure, each
port controller consists of two cards: a queue handler and a
lineinterface card. The queue handlers communicate with the
header translation card via a switch fabric consisting of a set
of time-slotted busses on a printed-circuit backplane. When a
cell arrives from a transmission line, the line interface card
terminates the physical and link layers and transfers the cell to
its queue handler. The queue handler buffersthe cell and sub-
sequently schedules it to be sent to the header trandation
card. The queue handler arbitrates with other queue handlers
for permission to send the cell on the contention bus. When
its arbitration succeeds, the queue handler transmits the cell
on the contention bus to the header trandation card. The
header translation card updates the cell header and sends the
cell on the broadcast bus to the output queue handler(s). The
destination output queue handler buffers the cell and sched-
ulesit for transmission via the output line interface card.

Figure 4. Switch architecture.

The maintenance bus is based on the Signetics | 2C bus
and is used for transferring commands and status reports
between the various circuit cards in an equipment shelf.

Figure 4 also shows that the switch is controlled by an exter-
nal switch controller. The controller can connect to the
switch through a line card, or via an Ethernet connection to
the header translation card as shown in the figure.

The queue handlers arbitrate for access to the contention
bus using a distributed group arbitration protocol [VERNSS].
Arbitration is pipelined, so that queue handlers arbitrate dur-
ing one time slot for permission to send a cell during the next
time dot. During each arbitration cycle, a queue handler that
wishes to transmit asserts its ot address on the arbitration
bus. The protocol insures that al but one competing card
withdraws from the competition and the address of the win-
ning card remains on the bus. A traffic priority bit gives CBR
traffic priority over other traffic types, and a‘‘group priority’’
bit insures that within each traffic class the queue handlers
share the bus bandwidth fairly.

The contention and broadcast busses are 32 bits wide
(plus 4 parity bits) and are clocked at 18.5 MHz. Since acell
transfer takes 14 clock cycles, this gives a payload rate of
over 500 Mbps. Our prototype switch has eight ports. Thus,
with 45 Mbps access lines, the 500 Mbps bus bandwidth
exceeds the aggregate bandwidth of the trunks and queues
will only build up on the outputs. Since we operate these
busses an order of magnitude faster than the access lines,
input queues should occur infrequently even in a switch with
alarger number of ports[OIE89].

3.2.1. Header Trandation Card

The header trandation card serves multiple functions.
First, the card does the VCI trand ation needed for cell switch-
ing. In support of this function, a processor on the card audits
the trandation memory for consistency. Second, the card
interfaces the switch controller to the switch, which avoids
dedicating a port on the switch for this purpose. Finaly, it
supports a fabric-independent protocol used by the switch
controller to control, administer and maintain the switch. We
first focus on header trandation.

The header trandation card supports virtua circuit
switching with a1 M entry translation memory supporting 64
K virtual circuits for each of 16 ports. The translation mem-
ory is indexed by the source port address and source virtua
circuit identifier. Each entry contains a destination port, a
destination virtual circuit identifier, a cell count (for billing),
and some control bits which allow the consistency of the
memory to be audited. A processor, called the monitor
(MON), can read and write the trandation memory. The
MON also runs an auditing task in the background that we
will discuss below.

The header trandlation card interfaces to the switch con-
troller via a point-to-point Ethernet segment. The switch con-
troller communicates with the host interface processor (HIP)
over the Ethernet. The HIP does segmentation and reassem-
bly and routes control packets between the Ethernet, ATM
fabric, MON, and a maintenance processor on the header
trandlation card.

-7-

Figure 5 gives a high-level diagram of the data paths in
the header trandation card. A cell arriving on the contention
bus is shifted into a shift register while a trandlation memory
access is initiated. After a one cell delay, the cell with its
modified header is shifted out, in most cases onto the broad-
cast bus. Cells that are destined for an endpoint on the card
are shifted into the input FIFO, which interfaces to the HIP.
A second FIFO, the spy FIFO, is used for troubleshooting net-
work problems: it receives cells for connections that have
been marked with a specia bit in the trandation memory.
The HIP sends cells to the fabric by writing to the output
FIFO. After the HIP writes a complete cell to the output
FIFO, the card arbitrates with other cards in the switch for
access to the contention bus and then sends the cell. The HIP
interface to the Ethernet and maintenance processor are also
shown.

Figure 5. Header translation card data paths.

Software in the HIP and MON processors implements an
abstract model of the switch which hides the details of the
header trandation card design. The interface is designed to
allow switch hardware and control software to evolve inde-
pendently. The commands fall into two categories. com-
mands to manipulate the translation memory are sent to the
MON and commands that provide switch maintenance and
administration are sent to the maintenance processor.

We first discuss the header trandation commands.
These commands allow the switch controller to set the desired
state of a connection endpoint, e.g. the endpoint is idle, dial-
ing (connected to the controller), or active (connected to adis-
tant endpoint). The switching path is only set up by the MON
when the controller has set both endpoints of the connection
to active state. Since switch control software is often written
with separate modules for the incoming and outgoing ‘‘ends’”’
of the connection, this model allows each module to continue
independently: the MON sets up the connection when the
two ends ‘ ‘rendezvous.’’

In our experience, a switching fabric and its embedded
fabric control software can be designed to be more reliable
than either the commercial computer equipment that we are
using for the switch controller or the software that performs
call processing. This has a number of implications for build-
ing switching systems with high availability. First, the con-
trol interface to the MON alows the switch controller to
quickly recover connection state information stored in the
trandlation memory. If the switch controller crashes, connec-
tions that were in a transient state may be lost, but connec-
tions that were in a stable state are still set up through the
switch and can be recovered by the controller by sending a
war mboot command to the header trandation card. The
MON responds with the switch state information. Second,
the MON audits commands that it receives from the controller
and audits the translation memory itself for consistency. The
MON rejects invalid commands and returns an error indica
tion. In addition, since the trandation memory is audited, the
switch state can be cleaned up even if the switch controller or

one of its software components fails and the switch memory
is left in an inconsistent state. The controller can poll the
MON for a list of trandation memory inconsistencies by
sending an audi t command. The card might respond, say,
with a message indicating that an active endpoint is mapped
to an idle endpoint, which should be atransient condition.

3.2.2. Maintenance and Administration

The switch and switch control software include a subsys-
tem that detects and isolates faults in switch components, and
that supports switch administration. Commands from the
switch controller to the header trandation card control and
collect status from the switch. Our approach to status moni-
toring is based on three key ideas. Status is continuously
monitored and filtered by an embedded maintenance proces-
sor on each switch element. Status is collected periodically
by the switch controller, rather than having failures trigger
messages. This avoids the possibility of congesting the main-
tenance subsystem at a time when its proper operation is cru-
cial. Finally, the switch contains a separate maintenance net-
work, connected to each of of the maintenance processors, for
monitoring and control. This network allows switch elements
to be controlled even if their interface to the cell data paths
has failed.

On line interfaces, status such as line errors, loss of sig-
nal, loss of clock, coding violations and transmission errors
are monitored. Data paths within the switch are monitored by
including a parity bit with each byte of cell data. When acell
arrives from a transmission line, the line interface card veri-
fies the header error check (and discards it) and generates the
parity bit. The cell and parity information flow through the
gueue handler to the header trandation card, where the parity
is checked. If a parity error is detected, the cell is dropped
and an error is registered. The parity is used to monitor the
integrity of the path through the line card, queue handler,
backplane and part of the header trandation card. By corre-
lating errors with the queue handler that generated them, fault
isolation is possible. The data path from the header tranda
tion card through the queue handler to the line card is simi-
larly checked. In our experience, parity provides a good indi-
cation of the integrity of board level electronics and a reason-
ably good check on memories.

Each maintenance processor supports configuration
commands which remove the card from service or restore the
card to service. The switch controller polls the status of every
card in the switch periodically by issuing a poll command.
Each card responds with a status message that includes error
status, hardware type and version information, a serial num-
ber and card-specific data. This information can be used to
support automatic configuration. Card-specific commands
are used for controlling loopbacks, bit-error-rate testing, etc.

-8-

3.3. QueueHandler Architecture

A key goa of the queue handler design was to demon-
strate per-virtual-circuit queueing at high speeds. We also
tried to provide flexibility since we hoped to experiment with
different congestion control schemes. Each virtual circuit has
a service class associated with it that determines its treatment
by the scheduler. In addition to ordinary round robin, the
scheduler supports severa levels of priority, so that virtual
circuits in one service class can be given higher priority than
those in another service class. The queue handler also sup-
ports two variations of round robin scheduling, weighted
round robin (WRR) and framed round robin (FRR), which we
describe below.

The queue handler implements a buffer management
policy which allows the switch controller to limit the length
of each per-virtual-circuit queue. Cell arrivals which would
exceed this length limit are discarded. This buffer manage-
ment policy supports the dynamic window flow control
scheme described in Section 2. The queue handler also
includes specialized hardware for manipulating an eight-bit
congestion field that we reserved in our ATM cell header.
This feature was motivated by the DEChit scheme
[RAMAZSS], in which routers set a congestion bit to indicate
congestion to sources.

A schematic of the queue handler is shown in Figure 6.
The card contains a large DRAM array which supports 64 K
virtual queues implemented by a high-speed queue control
state machine. Each virtual circuit has a receive queue for
cells that have arrived from a line card and a transmit queue
for cells that are to be sent to aline card. The virtual queues
are implemented using linked lists of cells. The queue control
logic allocates buffer space dynamicaly when a cell arrives
and frees the buffer space when a cell is transmitted. The
"discard longest queue” buffer management policy of Section
2 can be implemented by updating a pointer to the current
longest queue during every cell arrival and departure. The
operation of the queue control logic is affected by the queue
control table. The contents of this table can be changed by an
onboard processor, known as the resource manager, which
communicates with the switch controller as described in Sec-
tion 4.

The DRAM array is multiported, with input and output
ports for the line interface card, broadcast and contention
busses, and resource manager. Data flows to and from the
ports through nine bit-sliced chips that implement a pipeline
buffer, shown in the figure. The buffer provides a pair of
asynchronous shift registers for each port; each shift register
holds one ATM cell. The pair of shift registers allows read
and write operations on the DRAM array to be pipelined with
cell transfers from the associated port. For example, a cell
arriving on the contention bus is shifted into a shift register
and arequest is posted to the queue control logic for the cell
to be written into the DRAM array. The write operation can
take place while a second cell is shifted in from the con-
tention bus. In order to support sufficient memory band-
width, the DRAM array is 252 bits wide and is organized

with two half-cells in adjacent locations. An operation to
read or write a complete cell is done as two page-mode writes
of the DRAM. This takes 280 nanoseconds, which gives an
aggregate queue memory bandwidth for 384 bit ATM cell
payloads of 1.3 Ghps.

The queue control table has an entry for each virtual
queue. Each entry contains pointers to the head and tail of
each virtual queue and a 4 bit service class. The table also
contains a cell count and a count of the number of AALS
frames for each virtua queue. The queue control machine
contains logic to modify the congestion field in the cell
header. Thislogic overwritesthe congestion field in cells that
are read out of the queue with a value that is an function of
the received congestion field in the cell and a table entry
which can be individually set for each virtual circuit by the
resource manager.

Figure 6. Queue handler architecture.

The queue handler supports round robin scheduling at
multiple priorities in order to support multiple ATM service
classes, as shown in Figure 7. In the traffic management
architecture in Section 2, CBR traffic is carried at a higher
priority than ABR traffic. For each VC at the highest priority
with data waiting to be transmitted, the scheduler serves one
cell and moves on to the next VC. If no VC at the highest
priority has data to send, the scheduler serves VCs at the sec-
ond highest priority, returning at the end of each cell service
time to the highest priority VCs if necessary, and so on. The
scheduler supports 16 priorities. The scheduler is imple-
mented using a control queue for each level of priority. A
control queue contains a list of VCls with data waiting to be
transmitted. The scheduler removes a VCI from the head of
the control queue when it is served and returns it to the end of
the queue if there is still data waiting to be transmitted.

The scheduler also supports Weighted Round Robin
(WRR) and Framed Round Robin (FRR) scheduling. In
WRR, each VC conceptually has aweight or service quantum
associated with it.” WRR allows different virtual circuits to
receive different proportions of the available bandwidth.
When a VCI is removed from the control queue to be served,
the VC is eligible to be served for a number of cells equal to
the service quantum, although it may be served fewer times if
fewer cells are waiting. WRR is equivaent to a scheduling
discipline known as Rate-Proportional Processor Scheduling
[PARE94] in which the weight given to a VC is proportional
to the fraction of link capacity to which it is entitled. FRR is
a simplified version of HRR scheduling which, like HRR,
insures that no more than a given number of cells are trans-
mitted during an interval known as the frame time.

The scheduler provides optional support for the

7 In the implementation, a weight is associated with each service class
rather than each VC, which limits the number of weights that can be
used simultaneously.

-9-

Figure 7. Priority round robin scheduler.

reassembly of AALS framesin order to simplify the design of
host adaptors. The queue control machine increments a
counter on the arrival of a cell header with a payload type
indicating that it is an end of frame. Similarly, it decrements
the counter on the cell departure. When frame reassembly is
enabled, a queue is only eligible for service when the counter
is nonzero.

3.4. Lessons

The Xunet switch has been in service since 1991. By
and large, it has met its original goals of providing a flexible,
reliable environment for experiments. At the time the switch
design began, the ATM standards activity in ITU was only
beginning and our architecture required design decisions that
would only later be addressed by standards. While details of
ATM have changed, it is rewarding that many of the issues
we faced and the design decisions we made remain relevant.

We chose to control the switch with an external switch
controller rather than integrating the controller into the
switching fabric in order to upgrade the controller more eas-
ily. However, using an Ethernet for the control port limited
the call setup rate that we could accommodate. More typi-
caly, the switch controller would use a port on the switch for
signaling virtual circuits.

The use of an abstract interface for switch fabric control
promotes modular software design. Moreover, our design is
intended to support both high reliability and high availability
through the built-in auditing mechanisms and the ability for
call processing software to recover state from the switch.
Switch maintenance is based on continuous status monitoring,
periodic status collection, and the use of a separate mainte-
nance network within the switch. This approach to mainte-
nance has allowed us to detect most network problems at their
onset, before they affect service.

Perhaps the main contribution of the Xunet switch
design is in the implementation of the queue handler. The
design demonstrates the feasibility of per-virtual-circuit
gueueing and a priority round robin scheduler at 1-4 Gbps
ratesin ATM switches. The use of discrete DRAM chips and
bit-sliced buffer chips on the queue handler was suitable for a
prototype, but clearly too expensive for commercial use. Fur-
ther work in our group has demonstrated that these ideas can
be made cost effective. 1n 1992, Kanakia proposed Y switch,
which integrated a packet buffer, switch control logic, and
multiport serial access memories onto a single VLS chip.
The concept has been developed further in an experimental
chip, the ATM Datapath chip, which integrates a buffer of 8
K cellsand 16 serial access memoriesinto asingle "switch on
achip" controlled by external queue control logic. The ATM
Datapath chip supports awide range of ATM switching appli-
cations, from switch line cards to the construction of multi-
stage switches. Since the chip is based on DRAM, it can ride
the technology curve, and soon a full round trip window of
buffering per port could be provided for roughly the cost of a

16 Mb DRAM chip. We are currently designing a single-chip
gueue controller for the ATM Datapath, building on the ideas
developed in the Xunet queue handler. With the ATM Datap-
ath, this chip will enable very low cost ATM switches to be
built.

4. Network Control and Management

4.1. Goalsand History

The Xunet control software was designed to support con-
nection control and remote switch maintenance and adminis-
tration. We designed a simple signaling protocol to establish,
maintain, and clear ATM connections. Connection control
requires a broad range of associated services, such as name
tranglation, routing, call admission, and resource manage-
ment. Initially, we needed fairly modest functionality in each
of these areas, but we wanted an organization that would
alow the software to evolve. We expected areas such as rout-
ing and resource management to undergo substantial change
over time. In the long term, we hoped to support remote net-
work management from a network management station.
These considerations suggested a modular architecture in
which pieces could evolve independently.

The organization of software for call processing and
switch control has been a focus of our research group for
sometime. TDK [MCMAB81] provided switch control for the
Datakit switch and pioneered the notion of a "process-per-
line" in which a lightweight process is associated with each
half-connection during its transient states. Archos [CAMP92]
explored the use of an object-oriented operating system for
Datakit switch control. Finaly, Milan Jukl in our group
developed an early prototype for the Xunet control software
which aimed for high performance by structuring the call pro-
cessing software in asingle process executing an event-driven
finite state machine. Background and administrative tasks
were handled by other processes. Shared memory was used
for communication between parts of the system.

Both Jukl’s control system and the system we describe
below were designed to run on top of the Silicon Graphics
IRIX operating system. We chose to use a commercial operat-
ing system to facilitate student research. In addition, with a
commercial OS we could use commercial distributed systems
software to explore the client-server approach to network con-
trol suggested by the | SO-ODP (Open Distributed Processing)
community and in the TINA-C standards[TINA95].

Administration and maintenance of an experimenta
wide-area network pose unique challenges, particularly when
hardware and software are still in flux. In addition, a goal of
Xunet was to alow research students to use the network as a
laboratory, perhaps running their own experimental software.
Support for student research required us to develop usage
policies and procedures and added an additional source of
instability to the network. Since most of the Xunet expertise
was in New Jersey, it was important that network administra-
tion could be done remotely and we developed practical pro-
cedures and simple software that we could count on when all

-10-

else failed. In Section 4.3 we describe these pragmatic con-
siderations.

4.2. Network Control Architecture

This section describes the software architecture of the
Xunet switch controller. Most of the software is designed as a
client-server system based on the ANSAware distributed sys-
tems environment [ANSA93]. ANSAware supports RPC and
includes a run-time environment that runs on several commer-
cial operating systems. It also supports location transparency
so that servers can be run on any machine in the distributed
system. Servers register service offers with a trader, and
clients bind a service name to the address of a server by con-
tacting the trader.

Software on the switch controller communicates with the
embedded processors in the switch itself. Thisrelationship is
shown schematically in Figure 8, where the bottom half of the
figure represents the switch hardware while the top half of the
figureillustrates different modules, such as signaling, routing,
etc. that run as separate processes in the switch controller.
Most of theillustrated modules run on a single machinein our
implementation, although location transparency would allow
processes to be remote. For example, if performance require-
ments dictated the use of a separate machine for routing, that
module could be accessed using cross-machine RPC. The
trader, an RPC-based network manager or a virtual console
are other examples of processes that might be remote.

Figure 8. Switch controller architecture.

Two hardware proxies and a fault management module
are tightly coupled to the switch and contain library routines
that support communication with the hardware. The queue
handler proxy communicates with the resource manager on
the queue handler card and presents an RPC interface to other
parts of the control system. This proxy is used during con-
nection establishment to set the service class and buffer size
limit for a virtual circuit. Similarly, a header trandation
proxy supports an interface to the header trandation card.
This interface is invoked by signaling to modify the transla-
tion table during connection establishment and is invoked by
administration software to restore cards to service during
switch initialization. Both of these interfaces could aso be
used by a‘‘virtual console’’ or network management system,
as shown in the figure. The functionality in the proxies can
also be extended, for example, one might wish to provide
record locking to synchronize writes to the same record struc-
ture.

The fault management module polls each of the elements
of switch hardware for status once each second, and does
alarm filtering and logging. Alarm thresholds are typically
based ona‘‘k of n’’ rule: an alarm is set when k of the last n
polls indicates an error condition, and cleared when j of the
last m polls are error free. Determination of the appropriate
threshold settings is often based on trial and error, and an OSI
agent was developed for the switch which allowed the alarm

thresholds to be changed by a remote manager [ANER93].
The fault management software logs status information on
each switch and the log files are uploaded to New Jersey over
the network each night. The status history for the past 15
minutes can be accessed at avirtua console.

The signaling module supports connection control of
simplex virtual circuits. It communicates with a peer module
on an adjacent switch or host over a permanent virtual circuit
that is established during switch initialization. The signaling
module imports services from most of the other modules in
the controller. When it receives a connection setup message,
it invokes an operation of the routing service to trandate the
destination address to an output port. It then consults
resource management to see if the connection resources can
be reserved at that output port, and forwards the connection
setup request to the next hop over the signaling permanent
virtual circuit. If the setup request is successful, the next hop
will eventually allocate the virtual circuit identifier to be used
and return this in a connection accept message. The signaling
module then contacts the header translation proxy to write the
tranglation table entry in the switch hardware and contacts the
gueue module proxy to commit the resources for the new vir-
tual circuit. Finaly, it forwards the positive response
upstream toward the connection originator. Originaly, the
signaling module was only a client: it did not offer any ser-
vices. Later, it was modified to allow an OS| agent to collect
statistics such as connection blocking from the signaling
module [ANER93], and a central network manager used the
blocking statistics to control the capacity of virtual paths so as
to minimize cal blocking and bandwidth requirements
[ANER953].

We designed a simple resource management scheme for
CBR bandwidth reservation and ABR static buffer allocation.
During the hop-by-hop connection setup described above, a
Reser ve operation isinvoked at each switch as a connection
regquest proceeds towards the destination (forward pass). A
switch or the destination can reduce the amount of the reser-
vation. When the response returns (reverse pass), a Conmi t
operation is invoked. Since the resources committed may be
less than those originally reserved, the commit frees the
excess. Finaly, when the connection is cleared, a Free
operation isinvoked.

The basic routing module supports an operation which
takes a destination address and returns the outgoing port num-
ber. Routing in Xunet is based on a static routing table, but
routing was isolated in a separate module so that the module
could evolve to support dynamic routing without any change
to signaing.

A skeletal version of the architecture described above
was developed and was largely functional in summer 1993.
This version had a signaling module, a simple resource man-
agement module supporting virtual circuit allocation, a static
routing module, a queue handler proxy and a queue handler
boot server. The fault management module and virtual con-
sole were developed independently and did not make use of
ANSAware. At this writing, Xunet supports switched virtua

-11 -

circuits for native ATM virtual circuits, while Xunet's IP ser-
vice operates over a permanent virtual circuit mesh.

4.3. Practical Considerations

Operating an experimental network poses many prag-
matic difficulties, initially because the network itself is
changing and later as students begin to use the network.
Hardware installation requires the support of on-site person-
nel, so we funded a system administrator at each site to be "on
cal" for one quarter of their time. However, this did not
eliminate the need for remote maintenance and administra-
tion. With experimental hardware and software, we could not
count on maintaining the network over its own links, so we
connected a statistical multiplexor (stat mux) to adia-up line
at each site as a backup. Using the stat muxes, we can either
connect to the consoles of the router, switch controller or
header trandation card or we can remotely reset them through
a relay connected to their hardware reset button. The stat
muxes provide a highly reliable but inconvenient interface, so
much of the day-to-day administration and maintenance is
done over the network. We started off by setting up a PVC
mesh network that could be accessed through the header
trandation card. A daemon on each switch controller allowed
us to remotely log in, ship files, etc. from any other switch
controller over the PVC mesh. Since the IP service became
operational, it has been used for day-to-day adminstration.

Network research is coordinated by allowing students to
sign up for use of the network via electronic mail. During
their time dot, students can change any of the software that
runs the network. Typically, a student creates a private copy
of the default network control software and modifies some
part of it. To runthe modified software, the student changes a
single symbolic link in the file system on the router or switch
controller and reboots the machine. Students are instructed to
restore the default software to its origina state when they
have finished their experiments. Applications researchers
also sign up for the network to insure that the network is run-
ning default software during their time slot.

4.4, Lessons

There is relatively little published work on software
structure for switch controllers. We make a few observations
based on our experience. Modularity is an aim of any soft-
ware project, and the use of an RPC system for communica-
tion among elements of the network control system aided in
building open, modular software. We believe that the archi-
tecture would have alowed us to evolve the software easily:
to support different switches, to add a new signaling or rout-
ing protocol, to enhance network management capabilities,
etc. This flexibility was demonstrated by the relative ease
with which statistics gathering and virtual path management
were added to the signaling module. Location transparency
also proved to be of surprising utility: debugging a system of
programs operating over multiple machines would have been
intractable if ANSAware had not made it possible to write
location-transparent debugging utilities.

The use of a commercia operating system for the con-
trollers had distinct advantages. Students were able to run
small experiments with a minimum of investment learning the
system. Moreover, in running the network, we made frequent
use of the genera-purpose software available on the con-
trollers. For example, we used remote login programs for
remote debugging, used the file system for release manage-
ment, and used electronic mail as a primitive mechanism for
distributing log files.

There were some problems with the architecture. The
heavy use of RPC requires alarge number of context switches
to establish a virtual circuit — a severe penalty when build-
ing a controller on top of a heavyweight operating system. A
production call processing system requiring high throughput
and low latency would need to be carefully tuned to minimize
system call overhead. Slower time scale functions such as
administration, maintenance, logging and boot service place
different requirements on the operating system than call pro-
cessing does, and an environment that supports both light-
weight and heavyweight processes seems attractive.

While most routine network maintenance and adminis-
tration can be done using the network itself, there will always
be cases where a‘‘back door’’ is needed to recover from fail-
ures. In Xunet, the back door is based on the telephone net-
work and stat muxes. Our policies for managing use of the
network are simple and reasonably effective. Nonetheless,
there are rough edges. There is an inherent conflict between
doing network research and simply using the network. Users
are not accustomed to scheduling their network use and even
friendly userslose interest quickly if the network fails to meet
their expectations. In Xunet, the biggest cause of network
down-time is that a student doing network research has failed
to follow the instructions for restoring the default software to
operation.

5. Xunet Router

5.1. Goals

The initial focus of our endsystem work was support for
IP encapsulation over ATM virtua circuits for a high quality
LAN interconnection service. The performance goal was an
end-to-end throughput from a single router of at least 75% of
aDS3 line in an otherwise unloaded network. We planned to
have routers at the edge of the network participate in conges-
tion control so that the wide-area network would offer a ser-
vice with little or no congestion loss.

A second goal was efficient use of network resources.
Routers would be interconnected using ABR virtua circuits
and would benefit from statistical multiplexing within the net-
work. The desire for efficiency aso led us to develop a
frame-oriented adaption layer similar to AAL5 that used
transmission bandwidth more efficiently than the AAL4 stan-
dard of thetime.

A third goal was flexibility for experimentation. The
implementation uses high-performance Silicon Graphics
Power Series workstations as routers, with a home-brew

-12 -

ATM interface card interfacing to the VME bus. Using a
workstation-based router provided the greatest amount of
flexibility for experimentation and gave us, fortuitously, an
environment in which we had hosts directly attached to an
ATM network. We therefore got early experience with host
computers that use both IP encapsulation and a native ATM
protocol stack.

5.2. |P Service Architecture

Our implementation of an IP service on Xunet is similar
to the Classical Model of IP over ATM [RFC1577]. Hosts or
routers which attach to Xunet are part of alogical IP subnet-
work. When an IP packet arrives from alocal area network,
the router forwards it over an ATM virtua circuit to the
egress router, as illustrated by the dashed linein Figure 9. If
no virtual circuit exists, signaling software sets one up. The
path across the ATM network is considered asingle | P hop.

Figure 9. IP service architecture.

IP packets can be multiplexed over virtua circuits in a
number of different ways, with some differences in end-to-
end performance. For example, al packets from a router to a
given egress router might use the same virtua circuit.
Another possibility is that packets for a given destination host
or source-destination host pair might use the same virtual cir-
cuit. Multiplexing different traffic types and different end-
to-end sessions on a virtual circuit means that a packet that
expects low delay, such as at el net session, may suffer
gueueing delays behind a large block because the round robin
scheduler is not scheduling individual sessions. These issues
were studied in conjunction with Xunet in [CACE92,
SARA94A].

In order to provide a good quality LAN interconnection
service, end systems and/or routers must avoid inducing con-
gestion on the wide area network. Using simulation, we
explored end-to-end performance when TCP's end-to-end
congestion control scheme (TCP-Tahoe) is used in conjunc-
tion with an "edge-to-edge" congestion control scheme
between routers. The router-based flow control approach,
based on the dynamic window flow control scheme of Section
2 [HAHNS93], insures that no packets are lost in the wide-area
network due to congestion. As a result, packet losses only
occur in the router or local area network. Losses can occur at
the input router, but our work showed that the throughput is
high with appropriate choice of parameters. Recent work on
TCP performance in ATM networks has suggested Early
Packet Discard policies [ROMA94, TURN96] which discard
an entire TCP packet if a queue length threshold is exceeded,
indicating congestion. However, this work relies only on
end-to-end flow control and does not explore use of conges-
tion control between routers at the edges of the ATM net-
work.

When we began work on Xunet, AAL4 had been pro-
posed for data service on ATM and we investigated the effi-
ciency of 1P encapsulation using this adaption layer. Caceres

[CACE92] collected packet traces from our Internet gateway
and we used the histogram of packet sizes to estimate effi-
ciency. In some cases, |P encapsulation in AAL4 resulted in
link utilizations as low as 65%. As aresult of this study, we
defined a payload type in the ATM cell header to mark the
end of an IP packet and designed a frame-oriented adaption
layer called AALX [KALM92] that eliminated the per-cell
overhead of AAL4. Eliminating the per-cell overhead
improved the efficiency for the same mix of packets from
65% to 85%, since many small packets would now fit in two
cells rather than three. Both of these ideas have since been
incorporated in standards.

In developing our architecture, we planned to develop a
route server in the backbone to collect routing information
from the routers and to control routing policy by determining
what routing information to distribute. The ATM ARP server
in the classical model would have been implemented by the
route server. However, administrative issues prevented us
from propagating routes among the sites and the routing
tables are administrated statically rather than by a route
server. Each site has an ‘‘experimental’’ FDDI ring that is
attached to the Xunet router at that site. The routers run the
gated routing daemon which is configured to allow
machines on any of the FDDI networks to communicate using
the Xunet IP service.

5.3. ATM Adaptor

The design of an ATM host adaptor involves a set of
tradeoffs that depend on the cost and performance targets,
host architecture, operating system, and workload. ATM
introduces two new problems to adaptor design: reassembly
of small cells into packets on the receive side, and possibly
the need for cell-level transmission scheduling on the transmit
side. Packet reassembly can be done in the switch, in adaptor
memory, or in host memory. Our design is unique in taking
advantage of per-virtual-circuit queueing in the switch to
reassemble packets. Queue handlers that communicate with
routers have the reassembly option enabled as described in
Section 3. The scheduler delays the service of avirtual circuit
queue until a cell with an end-of-frame payload type has
arrived. Once service is started, it serves the virtua circuit
until the end-of-frame cell is reached. The adaptor card
receives a string of cells from the same virtual circuit and
uses AALX or AALS to verify that the packet is correct. This
approach eliminates the need to manage multiple reassembly
buffers on the host adaptor or the need to manage partia state
for the AAL5 CRC computation.

The adaptor design [BERE93] is based on a RISC CPU,
the AT& T Hobhit, acting as an intelligent DMA engine (Fig-
ure 10). Fiber transceivers operating at 200 Mbps interface to
the link encoder/decoders which then feed a 16 KB receive
fifo buffer and a4 KB transmit fifo buffer. The fifos provide
an elagtic store to smooth traffic flow to and from host mem-
ory. The elastic store fifos appear as a memory-mapped reg-
ister in Hobbit address space; transfers to and from host mem-
ory are done by the Hobbit under program control.

-13-

Generation and checking of the AAL5 CRC is performed by a
pair of field programmable gate arrays which snoop on the
Hobbit address and data bus. The Hobbit accesses cell head-
ers and payload using a different address offset so that the
CRC isonly updated during the transfer of payload words. In
the figure, the dashed line illustrates how a transfer to host
memory updates the CRC check logic in passing.

Figure 10. Host adaptor.

Hobbit accesses to host memory operate as follows. The
host initializes a receive and transmit ring buffer in a region
of memory called the communication area. Each ring entry is
a chain of pbufs, which contain a physica and virtual
address pointer to a host nbuf , as well as an ownership field.
The state of the ownership field can only be changed by the
owner. Initialy, all receive ring entries are owned by the
Hobbit and al transmit ring entries are owned by the host.
When data arrives from the network, the Hobbit copies the
payload into host memory. When the packet end is reached,
the Hobbit changes the buffer ownership to host, possibly
posts a receive interrupt to the host, and moves on to the next
entry in the receive ring. The host unlinks the mbuf chain
from the ring, links in a fresh chain of buffers, and gives the
entry back to the Hobbit for a new packet. The transmit side
works similarly.

5.4. Protocol Stack

The protocol stack shown in Figure 11 includes a hard-
ware driver, the or c® driver, to interface to the adaptor. Our
software organization puts performance-critical code in the
kernel, primarily the code that is called during packet han-
dling, while code that is not performance critical is kept in
user space. We partitioned the functionality between user
space and kernel so that we could do experiments that
involved signaling [ANER95a] or multiplexing policy with-
out touching the kernel. The remainder of this section
focuses on the kernel code.

Figure 11. Router kernel implementation.

Consider a packet which arrives on FDDI that is to be
routed over Xunet. The FDDI driver appends the packet to the
IP receive queue and issues a software interrupt to the IP
input handler, which routes the packet and passes a pointer to
the packet into the Xunet interface code i f _xunet. This
routine determines whether the packet should be forwarded
over an existing virtual circit or if avirtual circuit needsto be
established. The kernel maintains a cache mapping IP destina
tion addressesto ATM virtua circuit identifiersin the address
resolution module and if there is a cache hit, the packet is for-
warded over that virtual circuit. If there is a cache miss,
address resolution calls up into a user-level 1P connection
server which contacts user-level signaling software to set up a
virtual circuit to the appropriate destination. Once the circuit

8 Orcs are awarlike peoplein J. R. R. Tolkein's The Hobbit.

is set up, the IP connection server loads the cache with the
mapping from I P packet header information to virtual circuit.
The address resolution module also maintains an activity
timer for each virtua circuit. When a connection has been
inactive for one second, it calls up to the IP connection server.
The IP connection server can choose whether to clear the con-
nection [SARA94A], in keeping with the idea that policy
decisions are kept in user space.

The interface presented by the or ¢ driver to higher lay-
ers of the protocol stack does not depend on IP and Figure 11
shows a native ATM protocol stack. The or ¢ driver does
protocol demultiplexing using the virtual circuit identifier
when receiving from the network. Application programs can
communicate using virtual circuits directly via a slight modi-
fication to the socket library [AHU96].

5.5. Lessons

The Xunet router has been in service since April 1993.
The simple architectural model that we used for IP over ATM
service, in which routers attached to the ATM network are
part of a single logical IP subnet, was independently devel-
oped in the IETF and is now quite widely deployed. As for
our implementation, the Xunet router achieved respectable
performance for the time. User-to-user performance between
apair of FDDI hosts running the ttcp benchmark over Xunet
through the Xunet router was measured at 35 Mbps. More-
over, the router and architecture gave rise to a number of
research projects.

Implementation of packet reassembly in an ATM switch
simplifies the work of an adaptor card, although with VLSI
support for segmentation and reassembly, this may be of
diminishing importance. Another issue is that reassembly
increases the delay variance for CBR streams by reducing the
number of scheduler preemption points. However, reassem-
bly remains relevant to the design of ATM hubs interfacing to
conventional local area networks. In an ATM hub, packet
reassembly is typically implemented on a line card, but reuse
of the switch buffer itself for packet reassembly would pro-
vide an significant cost saving.

With or without switch-based packet reassembly, it is
clear that RISC processors are capable of performing ATM
reassembly at quite respectable speeds. With hardware assist
for the AAL5 CRC, ATM packet reassembly takes less than
100 RISC ingtructions. On a 60 MIPS machine, this is
approximately 1.6 microseconds, whereas a cell is transmitted
every 2.7 microseconds at 155 Mbps. Even if VLS| segmen-
tation and reassembly engines dominate for high-performance
host adaptors, there isarole for a processor-based approach to
segmentation and reassembly at the low end and in embedded
controllers where a single processor can support the network
and application functions. We recently applied our under-
standing to the development of Euphony [ONU96], a MIPS
R3000-based processor with support for ATM and digital sig-
naling processing.

Our work on congestion avoidance explored whether the
performance of TCP could be improved by using flow control

-14-

between routers at the edges of the ATM network. This
model differs from the conventional model of an IP router,
which simply forwards packets. The interaction between
TCP flow control and a separate flow control protocol
between ATM-attached routers, such as the ATM Forum
ABR protocol, remains an interesting research topic sug-
gested by our work.

The impact of the congestion control scheme on host
adaptor design is also important. It is commonly expected
that CBR service will require hosts to implement a fine-
grained cell transmission schedule, and adaptors can inexpen-
sively implement a transmission schedule for this service
using a variation of the HRR scheduler described in
[KALMOO0]. In our view, however, an ABR service should be
designed to allow a range of options on host adaptors. The
simplest and potentially most cost effective approach would
give the host responsibility for transmission scheduling of one
KByte or larger "transmission blocks." While Packet-Pair
flow control allows this, the rate-based proposals [BONO95,
FEND96] in the ATM Forum require a more complex and
more expensive host adaptor with finer-grained scheduling
and algorithms to modify the schedule based on feedback or
an explicit rate alocation.

The software organization on the router seems as valid
today as when it was done. Signaling and policy code should
be in user space. This differs from commercia implementa
tions today, but should be the direction for the future.

6. Conclusions

Since the Xunet program began, interest in ATM has
experienced dramatic growth. In 1991, the ATM Forum was
founded by four companies interested in developing ATM
products for use in the local area. At this writing, the ATM
Forum has more than 700 member companies. There are
solid technical reasons behind this enthusiasm. ATM offersa
common approach to multiplexing and switching that can
operate over a wide performance range. Moreover, ATM has
the potential to offer good performance to a broad class of
applications since switches maintain connection state and can
offer a quality of service appropriate to individual connec-
tions. There is presently commercia interest in using ATM
for both facility switching as well as statistical multiplexing
in the wide area, as a switch-based local area networking
technology, and as a distribution technology for local access.
In addition to these commercia applications, there is fertile
research exploring the use of ATM for wireless communica
tion, in desk area networks and as the basis for networks in
the home. In light of all this activity, it is often hard to keep
sight of fundamental principles. This paper has attempted to
glean some principles from the work we've done over the
years.

In traffic management, there is clearly a need for a CBR
service in ATM to support circuit emulation, voice and video
traffic. The principles here are well established and involve a
user traffic descriptor, call admission, priority at a switch
scheduler, and user policing. Recent efforts in the ATM

Forum to define the ABR and UBR service classes recognize
the desire by computer users to get "as much as possible’
from the network, while also recognizing the need to avoid
congestion. We are concerned that explicit rate allocation
complicates switches and that fine grain transmission
scheduling complicates host adaptors. In our view, round
robin scheduling for ABR traffic achieves a fair sharing of
bandwidth among active users and an appropriate buffer man-
agement policy protects one user from another. Congestion
avoidance is a matter of controlling the offered load using an
end-system rate adaption scheme such as Packet-Pair. How-
ever, even if explicit rate adaption is used, round robin
scheduling will still be important as a means of providing
protection among users.

In the past, per-virtual-circuit queueing and round-trip
sized buffers have been considered to be prohibitively expen-
sive. It now appears that this approach may be commercially
viable, at least for 155 Mbps lines and for switches in the 1-4
Ghbps range, through the use of large scale integrated circuits
incorporating memory and logic. This will go a long way
towards providing agood quality ABR service.

We believe that the simple output-queued architecture of
the Xunet switch remains appropriate to the design of low-
cost ATM multiplexers and switches. Regardless of the
switch architecture, a well-designed maintenance subsystem
can make even inexpensive switches easy to maintain. The
data paths in a switch can be error checked and continuously
monitored, and the maintenance subsystem can support auto-
matic configuration and hardware fault detection. Switches
that are designed to provide high availability can use embed-
ded processors to do audits of internal tables.

The ATM community has only begun to scratch the sur-
face of network control and management. Our work suggests
the possibility of an open, modular call processing architec-
ture. Such an architecture might allow a single software sys-
tem to control different vendors switches and might allow
protocols like signaling and routing to evolve independently.
Whether such an architecture is used or not, it is clear that
building switch controllers with high throughput and reliabil-
ity will require a serious committment to software architec-
ture work. The standards for end-system signaling and inter-
switch routing have evolved to be much more complex than
the simple protocols used in Xunet. It is clear that such com-
plex protocols are not needed everywhere. For example, a
desk area or home network might use a lightweight signaling
protocol, with a concise encoding and good support for the
"common case,”" along the lines of what we did in Xunet.

Although there has been a great deal of work on support
for IP traffic on ATM local area networks, a number of issues
remain. For example, it should be possible for I P routers con-
nected over ATM networks to make use of ABR flow control
to avoid packet losses. This would make IP service over
ATM networks more predictable than in the current Internet.
Currently, hosts with ATM support typically run an IP stack
over ATM. This is necessary when communicating with |P-
only hosts, but the IP layer could be avoided when both hosts

-15-

are attached to ATM. Hosts can easily support a dual stack,
including both IP and a native ATM stack that allows applica-
tions to take advantage of ATM quality-of-service guarantees.
The ATM stack would also improve performance by eliminat-
ing the redundant IP network layer processing. However,
there is significant inertiato overcome in bringing this about.

Much has been written about host adaptor design issues
in the last few years. It is difficult to make generalizations
since the solutions depend strongly on the specific system and
goas. We do expect that embedded processors will be used
for ATM protocol processing in a wide range of applications.
At the low end, embedded processors can handle ATM seg-
mentation and reassembly directly with a small amount of
hardware support for the AAL5 CRC.

Acknowledgments

Xunet would not have been possible without the efforts
of many people. A. G. Fraser and R. L. Snowden deserve the
credit for creating the Xunet program. Fraser played a major
role in setting the technical direction and managing the pro-
ject. A talented group of hardware designers, headed by J. H.
Carran and J A. Grandle a& AT&T's Columbus Works
designed and built the Xunet switches, transforming our
changing requirements into working hardware. P. E. Par-
seghian deployed the network and managed its operations:
without her, it is hard to imagine how Xunet would have
come into being. M. J. Dixon proposed the network control
architecture and wrote much of the code. A. D. Berenbaum
and A. lyengar were responsible for our ATM host adaptor
and device driver. A. E. Kaplan worked on our DS3 and 622
Mbps line cards. J. H. Condon consulted on hardware issues.
R. Sethi, E. K. Grimmelmann and G. S. Subramanian pro-
vided funding and moral support as well as running interfer-
ence for us.

Xunet would also not have been possible without the
active participation of our friends at the universities and
research labs in the Xunet student program. We came
together at the annua Student Meeting: a technical confer-
ence consisting of papers presented by students to their peers.
We are deeply indebted to this large extended community for
many, many fun and productive hours.

Epilogue

The Xunet 2 network was officially decommissioned in
February 1996, after this paper was submitted for review. We
left the paper in the present tense as was appropriate at the
time of writing.

References

[AHU96] R. Ahuja, S. Keshav and H. Saran, "Design,
Implementation, and Performance of a Native-
mode ATM Transport Protocol,” Proc. |EEE

INFOCOM'’ 96, March 1996, pp. 206-214.

N. G. Aneroussis, C. R. Kamanek, V. E. Kdlly,
"Implementing OSI Management Facilities on

[ANER93]

[ANER954]

[ANE95D]

[ANSAQ3]

[BERE93]

[BONO95]

[CACE92]

[CAMP92]

[CNRI95]

[DEMESY]

[FEND96]

[FRASS3]

[GOLE91]

the Xunet ATM Testbed", Proc. 4th IFIP/IEEE
Workshop on Distributed Systems. Operations
and Management, October 1993.

N. G. Aneroussis and A. A. Lazar, "Managing
Virtual Paths on Xunet I11: Architecture, Exper-
imental Platform, and Performance," Proc.
IFIP/IEEE International Symposium on Inte-
grated Network Management, Santa Barbara,
May 1995.

N. G. Aneroussis, A. A. Lazar and D. E. Pen-
darakis, "Taming Xunet 1I1," ACM Computer
Communications Review, Vol. 25, No. 3, pp.
44-65, October 1995.

"ANSAware 4.1: Application Programming in
ANSAware," Architecture Projects Manage-
ment Limited, Poseidon House, Castle Park,
CB3 0RD, Cambridge UK, February 1993.

A. Berenbaum, J. Dixon, A. lyengar, and S.
Keshav, "A Fexible ATM Host-Interface for
Xunet 11," IEEE Network, Vol. 7, No. 4, July
1993, pp. 18-23.

F. Bonomi and K. W. Fendick, "The Rate-
Based Flow Control Framework for the Avail-
able Bit Rate ATM Service" |IEEE Network,
Voal. 9, No. 2, March-April 1995, pp. 35-39.

R. Caceres, "Multiplexing Traffic at the
Entrance to Wide-Area Networks," PhD thesis,
U. C. Berkeley, December 1992 (Report No.
UCB/CSD 92/717).

R. H. Campbell et a., "Control Software for
Virtual-Circuit Switches: Call Processing",
Future Tendencies in Computer Science, Con-
trol and Applied Mathematics, Lecture Notes in
Computer Science 653, Springer-Verlag, Berlin
1992, pp. 175-186.

On-line reference to the Gigabit Testbed Initia-
tive at http://www.cnri.reston.va.us/

A. Demers, S. Keshav, and S. Shenker, "Analy-
sis and Simulation of a Fair Queueing Algo-
rithm,” Proc. ACM SIGCOMM, September
1989, pp. 1-12; also Journa of Internetworking
Research and Experience, Vol. 1, No. 1,
September 1990, pp. 3-26.

K. W. Fendick, "Evolution of Controls for the
Available Bit Rate Service," |EEE Communica-
tions, Vol. 34, No. 11, November 1996, pp. 35-
39.

A. G. Fraser, "Towards a Universal Data Trans-
port System”, IEEE Journal on Selected Areas
in Communications, Vol. 1, No. 5, November
1983, pp. 803-816.

S. J. Golestani, "Congestion-Free Communica-
tion in High-Speed Packet Networks," |EEE

[GROS95]

[HAHNO91]

[HAHN93]

[KALMOO]

[KALMOZ]

[KANA93]

[KATASS]

[KESH91]

[KESHO5]

[KESH97]

[LAKS97]

[MCMA81]

[MORGY1]

-16 -

Transactions on Communications, Vol. 39, No.
12, December 1991, pp. 1802-1812.

M. Grossglauser, S. Keshav, and D. Tsg
"RCBR: A Simple and Efficient Service for
Multiple Time-Scale Traffic," Proc. ACM SIG-
COMM 95, Boston, August 1995.

E. L. Hahne, "Round-Robin Scheduling for
Max-Min Fairness in Data Networks', |EEE
Journal on Selected Areas in Communications,
Vol. 9, No. 7, September 1991, pp. 1024-1039.

E. L. Hahne, C. R. Kalmanek, and S. P. Mor-
gan, "Dynamic Window Flow Control on a
High-Speed, Wide-Area Data Network", Com-
puter Networks and ISDN Systems, Vol. 26,
No. 1, September 1993, pp. 29-41.

C. R. Kalmanek, H. Kanakia, and S. Keshav,
"Rate Controlled Servers for Very High-Speed
Networks," GLOBECOM '90, San Diego, Cali-
fornia, December 1990, pp. 12-20.

C. R. Kamanek, B. Lyles, and W. T. Marshall,
"Proposal for a Robust SEAL Protocol,” Contri-
bution to ANSI T1S1.5, Chicago, May 1992.

H. Kanakia, P. P. Mishra, and A. R. Reibman,
"An Adaptive Congestion Control Scheme for
Real-Time Packet Video Transport,” Computer
Communication Review, Vol 23, No. 4, Octo-
ber 1993, pp 20-31.

M. G. H. Katavenis, "Fast Switching and Fair
Control of Congested Flow in Broadband Net-
works," |EEE Journal on Selected Areas in
Communications, Vol. SAC-5, October 1987,
pp. 1315-1326.

S. Keshav, "A Control-Theoretic Approach to
Flow Control," Proc. ACM SIGCOMM ’91,
September 1991, pp. 3-15.

S. Keshav, "Packet-Pair Flow Control", submit-
ted to ACM Transactions on Computer Sys-
tems.

S. Keshav and S. P. Morgan, "SMART Retrans-
mission: Performance with Overload and Ran-
dom Losses," Proc. IEEE INFOCOM'97, April
1997, to appear.

T. V. Lakshman, P. P. Mishra and K. K.
Ramakrishnan, "Transporting Compressed
Video over ATM Networks with Explicit Rate
Feedback Control," Proc. IEEE INFOCOM’ 97,
April 1997, to appear.

L. E. McMahon, "An Experimental Software
Organization for a Laboratory Data Switch,"
Proc. ICC'81, IEEE International Conference
on Communications, Vol. 2, 1981, pp. 25.4.1-
25.4.4.

S. P. Morgan, "Queueing Disciplines and

[NAGLS6]

[OIE89]

[ONU97]

[PARE94]

[RAMASS]

[RATHO3]

[REIB924]

[REIB92D]

[RFC1577]

[ROBE92]

[ROMAY4]

Passive Congestion Control in Byte-Stream
Networks', IEEE Transactions on Communica-
tions, Voal. 39, No. 7, July 1991, pp. 1097-1106.

J. B. Nagle, "On Packet Switches with Infinite
Storage," |EEE Transactions on Communica-
tions, Vol. COM-35, No. 4, April 1987, pp.
435-438.

Y. Oie, M. Murata, K. Kubota and H. Miyahara,
"Effect of Speedup in Nonblocking Packet
Switches," |EEE International Conference on
Communications, June 1989, pp. 410-414.

P. Onufryk, "Euphony: An Embedded RISC
Processor for Low-Cost ATM Networking and
Signal Processing," Proc. Supercon 97 - Digital
Communications Design Conference, Santa
Clara, CA, January 1997. Also see
http://www.research.att.com/~pzo/euphony.html.

A. K. Parekh and R. G. Gallager, "A Genera-
ized Processor Sharing Approach to Flow Con-
trol in Integrated Services Networks: The Multi-
ple Node Case," |IEEE/ACM Transactions on
Networking, Vol. 2, No. 2, April 1994, pp.
137-150.

K. K. Ramakrishnan and R. Jain, ‘A Binary
Feedback Scheme for Congestion Avoidance in
Computer Networks with a Connectionless Net-
work Layer,” Proc. ACM SIGCOMM, August
1988, pp. 303-313.

E. P. Rathgeb, "Policing of Redistic VBR
Video Traffic in an ATM Network," Interna-
tional Journa of Digital and Analog Communi-
cations Systems, Vol. 6, 1993, pp. 213-226.

A. R. Reibbman and A. W. Berger, "Traffic
Descriptors for VBR Video Teleconferencing
over ATM Networks" GLOBECOM '92,
Orlando, Florida, December 1992, pp. 314-319;
also IEEE/ACM Transactions on Networking,
Voal. 3, No. 3, June 1995, pp. 329-339.

A. R. Reibman and B. G. Haskell, "Constraints
on Variable Bit-Rate Video for ATM Net-
works," |[EEE Transactions on Circuits and Sys-
tems for Video Technology, Vol 2, No. 4,
December 1992, pp. 361-372.

M. Laubach, "Classical IP and ARP over
ATM," Internet Network Working Group
Request for Comments #1577, January 1994.

J. W. Roberts, editor, "Performance Evauation
and Design of Multiservice Networks," COST
224 Fina Report, Commission of the European
Communities, Brussels (1992), pp. 111-147.

A. Romanov and S. Floyd, "Dynamics of TCP
Traffic over ATM Networks," Proc. ACM SIG-
COMM '94, London, August 31 - September 2,
1994, pp. 79-88.

-17 -

[SAFR95] R. Safranek, C. Kamanek and R. Garg, "Meth-
ods for Matching Compressed Video to ATM
Networks," Proc. IEEE Workshop on Informa
tion Theory, Multiple Access and Queueing
Theory, St. Louis, MO, April 1995,

[SARA94A] H. Saran and S. Keshav, "An Empirical Evalua
tion of Virtua Circuit Holding Times in IP,"
Proc. IEEE INFOCOM'’ 94, June 1994.

[SARA94B] H. Saran, S. Keshav and C. R. Kalmanek, "A
Scheduling Discipline and Admission Control
Policy for Xunet 2, ACM Multimedia Systems
Journal, Vol. 2, No. 3, September 1994.

[TINA95] M. Chapman and S. Montesi, "Overall Concepts
and Principles of TINA," Document Label
TB_MDC.018_1.0 94, February 1995, avail-
able from http://www.tinac.com/.

[TURN96] J. S. Turner, "Maintaining High Throughput
During Overload in ATM Switches," Proc.
|IEEE INFOCOM' 96, March 1996, pp. 287-295.

[VERB89] W. Verbiest and L. Pinnoo, "A Variable Bit
Rate Video Coder for Asynchronous Transfer
Mode Networks," IEEE Journal on Selected
Areas in Communications, Vol. 7, No. 5, June
1989, pp. 761-770.

[VERN88] M. K. Vernon and U. Manber, "Distributed
Round-Robin and First-Come-First-Serve Pro-
tocols and Their Application to Multiprocessor
Bus Arbitration," 15th |EEE International Sym-
posium on Computer Architecture, May 30 -
June 2, 1988, pp. 269-277.

[WEIN78] C. J. Weinstein, "Fractional Speech Loss and
Talker Activity Model for TASI and for
Packet-Switched Speech,” |EEE Transactions
on Communications, Vol. COM-26, No. 8,
August 1978, pp. 1253-1257.

