
Centralized Multicast

S. Keshav
�
and S. Paul

y

�: Department of Computer Science, Cornell University, skeshav@cs.cornell.edu

y: Bell Laboratories, Holmdel, NJ 07733, sanjoy@research.bell-labs.com

Abstract
Most current schemes for multicast routing assume

that multicast routers participate both in forwardingmul-
ticast packets and in control algorithms for routing, re-
source reservation, and group management. By separat-
ing data and control ow, and by centralizing control in
distinct control elements, we have designed a simple and
scalable approach to IP multicast that we call Central-
ized Multicast. We present the details of our approach, a
proof of its correctness, analysis of its performance, and
a discussion of its advantages over current schemes.

1 Introduction
The key concept in IP multicast is that of a multicast

group. Such a group has two de�ning properties. First,
packets sent by any member of a group are received by
all other members. Second, members may join or leave a
group without reference to other members. The multicast
group concept is powerful because it provides a primitive
to arbitrarily group widely dispersed processes. It can
provide an e�cient infrastructure for advanced services
such as group communication, fault-tolerant computing,
information dissemination, and hierarchical web caching.

In the literature, `IP multicast' refers loosely to a
set of four related problems (a)routing: �nding a path
from a sender to the other members in the multicast
group, (b)reservation: reserving resources along such
a path (c) reliability: assuring that all packets from
a sender reach all receivers, despite packet loss and
corruption, and (d) ow control: regulating the rate at
which a sender sends packets so that intermediate links
and receivers are not overloaded. These problems are
more or less orthogonal, in that we can pick and choose
solutions to each problem independently. In this paper,
we focus only on the �rst two problems. Approaches
to the remaining problems can be found in references
[FJM+95][YGS95][HSC95][WMK95][H96][LLG96][PSLB97]
[M97][VR98][BKTN98]. In the rest of the paper, unless
otherwise speci�ed, we use the term `IP multicast' to
refer to the routing problem.

To be of practical use, IP multicast must be e�cient,
scale well, and be incremetally deployable. By e�ciency,
we mean that setting up and maintaining the group
should require only a few control messages. Moreover,
multicast packets should follow an optimal route from a
source to the receivers. By scalability we mean that the

number of control messages and the amount of state in
network elements should grow at most linearly with the
number of receivers in the group and the size of the net-
work. Incremental deployability means that we should be
able to add the multicast algorithm to the Internet with-
out requiring a simultaneous change at all routers and
endpoints.

Current algorithms for IP multicast fail one or more
of these three criteria. For example, the ood and prune
approach in the current MBONE [D88] is ine�cient for
sparse groups because packets are ooded to all routers,
even those that are not interested in the group. We be-
lieve that this lack of e�ciency has resulted in the relative
paucity of multicast applications and multicast-capable
routers in the Internet. Other proposals in the literature,
such as CBT [B93, BFC 93] and PIM [DEF+ 94, DEF+
96] also fail one of the three criteria (we discuss these
failings in more detail in Section 7). In contrast, we pro-
pose a centralized approach to multicast that we show is
e�cient, scalable, and incrementally deployable.

Our approach to multicast routing derives from the
following observation. Traditional multicast routing algo-
rithms require routers to participate in both data move-
ment and control algorithms. For instance, with the
DVMRP approach [D88, D89], every multicast capable
router must agree not only to forward multicast packets
(i.e. those packets with Class D addresses that corre-
spond to previously established multicast groups), but
also participate in the DVMRP protocol. The CBT [B93,
BFC93] and PIM [DEF+94, DEF+96] approaches have
similar requirements. We believe that requiring routers
to participate in both data forwarding and control algo-
rithms results in adding substantial complexity to routers.
Multicast forwarding is a hard enough problem; requiring
routers to additionally support complex routing, ow, and
reservation protocols has made the task all the more di�-
cult. Moreover, decentralized control necessarily leads to
well-known problems with distributed state such as the
lack of global knowledge, the need for synchronization of
state, and, frequently, the need to live with non-optimal
solutions [L96].

Our approach, therefore, (a) decouples data movement
and control and (b) centralizes control in special control
elements. The control elements are arranged in a two-
level hierarchy, corresponding to the control of multicast
routing within and between Autonomous Systems (or do-

1

Gateway Gateway

GatewayGateway

Root Controller.1 Root Controller.2

Domain-1 Domain-4

Domain-3Domain-2

Figure 1: Gateways and root Controllers

mains). We call the control element in each domain a
gateway and the control elements linking gateways root
controllers (see Figure 1). Because of the key role of cen-
tralization of control in our approach, we call it Central-
ized Multicast or CM.

We note here that we are keenly aware of the two
major problems with centralization, namely, overhead
arising from central participation in all decision making,
and the possibility of catastrophic failure from a single
fault. We address these issues by using the standard
techniques of creating a hierarchy (of root controllers and
gateways), replication (of gateways), and loose synchro-
nization (among root controllers), as described in more
detail in Section 3. Section 7 has a discussion of the pros
and cons of centralization in greater depth.

2 Assumptions

We precede a detailed description of CM by laying out
the assumptions implicit in our work. We assume that the
Internet consists of a number of Autonomous Systems or
domains, where each domain is under the administrative
control of a single entity. In practice, the Internet is some-
what more hierarchical, with one or two additional lev-
els in the hierarchy. However, this additional complexity
does not materially a�ect our work, since we can extend
our algorithms to multiple hierarchical levels (though we
do not do so in this paper).

Our second assumption is that each domain runs a link-
state routing protocol, such as OSPF [Mo94a] or IS-IS
[P92]. While this is currently almost universally true,
in Section 5.6 we extend our scheme to deal with the
domains that continue to run distance-vector protocols
such as RIP [P92].

Our third and �nal assumption is that all domains are
willing to trust a set of root controllers to establish and
manage (IP-in-IP) tunnels between them. We choose the
name `root controller' to echo the `root domain' in the
Domain Name System. We hope that domains will be
willing to trust the activities of a handful of multicast
root controllers in the same way that current domains

trust the names resolved by DNS roots.

3 Basic scheme

Gateway

Domain-4

BR.4

Gateway

Gateway

Root Controller.1 Root Controller.2

Domain-1

Domain-3Domain-2

BR.1

Gateway
BR.3

Border RouterBorder Router

Tunnel
Tunnel

Figure 2: Domains, Root Controllers, Gateways, and
Tunnels

In this section, we outline the basic operation of CM,
describing only its role in determining multicast routes.
We present its use in resource reservation in Section 4.
To aid clarity, we will describe the scheme in three stages,
discussing �rst the actions at a host (Section 3.1), then
the actions at a gateway (Section 3.2), and �nally the ac-
tions at a root-controller (Section 3.3). At each stage, we
will progressively esh out the scheme, reserving Section
5 for a detailed and complete explication.

3.1 Host actions

In CM, each domain is associated with a well-
known gateway. Hosts that want to participate
in a multicast group can determine the IP address
of the gateway either through a well-known name
(such as multicast-gateway.my univ.edu or multicast-
gateway.my company.com) or by manually con�guring in-
dividual hosts, as is already done for DNS servers. In ei-
ther case, hosts know where to send a multicast join or
leave request.

The basic action of a host is to join or leave a multicast
group. Hosts may discover the Class D IP address of the
group in a variety of ways. The address may be given to
the host using a session directory (as in sd [J94]), or found
in a centralized server, such as in a web server that lists
currently known multicast groups. In any case, the host
sends a JOIN request to the gateway with this address,
and an additional ag if the host believes that it is the
�rst member of the group (i.e., its creator). The gateway
participates in the intra-domain routing protocol of the
domain and knows about all other join and leave requests
made in the domain (since it is the sole recipient of such
requests). It therefore knows both the topology of the
domain and the set of multicast groups in the domain. It
uses this information to handle the join or leave request,
as described next.

3.2 Gateway actions

3.2.1 Joining a locally known group

Rt

Rt

RtRt

Gateway
S

R1

R2R3H

1

2
3

1

2

(2a)

(2b)(1)

Rt-x

Rt-y

Sender

Receiver

ReceiversNew Member

IGMP

23

2

1

interfaces

1

(2a): Add(G,3)
(2b): Add(G,2)

(1): Join(G,flag)

Figure 3: Joining a local group

The simplest case is when a host wants to join a multicast
group that already has senders or receivers in its local
domain (we call this a local join). In this case, the gateway
�rst determines the router in the multicast tree that is
nearest the host. It grafts the host on to the existing
tree by sending ADD messages to the routers that lie on
a path connecting the host to this router. In practice,
ADD messages are not sent all way to the host, but only
until its nearest IGMP querier. Hosts can then leave the
group either by sending an explicit leave message to the
gateway, or by not responding to an IGMP query.

An instance of this portion of the algorithm is shown
in Figure 3. Here, the new member H informs the IGMP
querier router (Rt-y) that it wants to join group G using
IGMP [D89]. Rt-y sends a Join(G,Flag) message to the
gateway where Flag=1 if the new member thinks it is
the �rst member of the group. Otherwise, Flag=0. In
this example, we assume the existence of group G (shown
by the multicast tree connecting sender S and receivers
R1 through R3). The gateway sends messages (2a) and
(2b) to routers Rt-x and Rt-y respectively so that Rt-y is
grafted onto the existing multicast tree.

Although we could use a variety of mechanisms to send
an ADD message from a gateway to a router, there are
three reasons why using SNMP to update the routing ta-
ble in the router's MIB is by far the best choice. First,
SNMP is nearly universally deployed. Therefore, a gate-
way can execute an ADD without requiring changes to
routers already deployed in the �eld. This is critically
important for widespread adoption of the scheme. Sec-
ond, the SNMP router MIB allows a gateway to access
a router's routing table with minimal processing at the
router. This reduces the control overhead at the router.
Finally, SNMP is a lightweight protocol that incurs lit-
tle overhead both in terms of round trip times and in

the number of packets. Consequently, the use of SNMP
leverages its simplicity and universal deployment to re-
lieve routers of the burden of participating in control al-
gorithms for multicast routing. Thus, we believe that it
is a crucial ingredient in making CM e�cient, and, more
important, incrementally deployable in the Internet.

Rt

RtRt

RtRt

R1

R2R3

Rt-x

Rt-y

Receiver

Receivers

SenderS1

R4

SenderS2
NEW

Receiver
NEW

Rt

RtRt

RtRt

Part (a)

Part (b)

R1

R2R3

Rt-x

Rt-y

Receiver

Receivers

SenderS1

R4

SenderS2
NEW

Receiver
NEW

Figure 4: Shared tree vs. Shortest Path Tree

Note that the ADD message can add one of two pos-
sible entries to that router's forwarding table. First, the
router may add an entry of the form fS,G, incoming in-

terface, outgoing interface listg which tells the router that
a packet from a particular source (S) belonging to a par-
ticular group (G) that arrives at the incoming interface

must be forwarded to the outgoing interface list indicated
in the entry. Clearly, the number of forwarding entries at
each router increases linearly both with the number of

multicast groups and the number of potential senders in
each group. This limits the scalability of the multicast
protocol. An alternative approach, discussed in [AP96],
uses the notion of an io-set. An io-set entry is of the
form fG, interface listg, where the interface list consists
of the interfaces that take part in multicast forwarding
for group G. A packet with a group address G arriving on
any interface x, such that x belongs to the interface list, is
forwarded on all the other interfaces in the interface list.
This construct saves space in the routing tables, at the
expense of forcing all packets in the multicast group to
traverse a shared multicast tree (as in the CBT approach
[BFC93]). Thus, scalability is gained at the expense of
a decrease in optimality (see Part (a) of Figure 4 for an
example where the io-set approach forces the formation of
a shared tree which saves forwarding table space, but cre-
ates a non-optimal multicast tree). Part (b) of Figure 4
shows the shortest path trees rooted at senders S1 and S2
for optimal performance. We reiterate the the CM scheme
allows network operators to explicitly make the tradeo�
between path optimality and size of the forwarding state.

A second optimization of the basic scheme is to make
the forwarding state soft-state; in other words a router
discards forwarding state after a certain time, unless this
state is refreshed. Soft-state trades message overhead for
robustness. Since we explicitly create state in the net-
work, we advocate the use of soft state to allow the sys-
tem to automatically recover from failures of routers and
hosts. Achieving soft state requires decisions about which
entity is responsible for deleting state and which entity is
responsible for refreshing it. In general, the creator of
state ought to refresh it, and the holder of state ought
to destroy it. In our case this would mean that routers
should periodically time out their multicast forwarding
entries, and hosts should periodically refresh their join
requests. We make a couple of slight modi�cations to
this approach as discussed next. First, instead of requir-
ing routers to time out state, we move this burden to the
gateways. This is in keeping with out goal of requiring
routers to do the least possible work, making them \big
and dumb". Of course, this means that gateways must
be extra-reliable, since a crash in a gateway will leave
state permanently in routers. Because we have only one
gateway in each domain, we require them to be fail-proof
anyway. So, we do not think of this as an additional bur-
den (we discuss techniques for making gateways fail-proof
in Section 5.1). Second, we do not necessarily require a
host to refresh gateway state. The IGMP protocol pe-
riodically probes hosts, and so we can defer the refresh
operation to the IGMP-enabled router, which, on receiv-
ing an IGMP reply, forwards this reply to the gateway.
These two modi�cations allow us to provide soft state
with little additional burden to hosts and routers.

3.2.2 Creating a new group

We now describe the case where a host sends a join re-
quest to a group, along with an indication that it is the
�rst member of the group. In the trivial case, the host
also indicates that all members of the group are expected
to be local, i.e., in the same domain. In this case, the gate-
way simply saves this information, waiting for additional
join requests. A more complex situation arises when the
host speci�es the set of hosts that are allowed to join the
group (so that the membership of the group is restricted).
If so, the gateway performs admission control on behalf of
the host. On receiving a join request, the ID of the joiner
is compared with the list of allowed participants. If the
joiner is not a member of the access-control list, the join
request is denied. This is similar to the notion of \closed
groups" in [AP96].

If the creator of a group speci�es that the group may
have non-local members, the gateway sends a message to
the root controller with its ID, its domain ID, the Class D
address of the multicast group, and an indication whether
admission to the group is restricted. The root controller
replies with either an acknowledgment, or an indication
that the Class D address is already in use1. If the group
is successfully created, then knowledge of this group is
globally distributed, as described in Section 3.3.1.

We note that a useful option in this step is for a host
to request creation of a group with an unspeci�ed Class
D address. This allows the gateway and the root con-
trollers to return it a Class D address not already in use,
which may be aggregatable in the backbone. With this
exibility, multicast addresses in the backbone can be ag-
gregated hierarchically in the same way as unicast CIDR
addresses. An example will clarify.

Example 1:

Suppose domain D already participates in multicast
groups 225.1.3.2 and 225.1.3.6. By allocating a new group
present in this domain a multicast address in the range
225.1.3.*, routing tables in the backbone need a single for-
warding entry for the aggregated address. This is similar
in concept to the MASC proposal [EHT97].

In this step, a gateway normally contacts the closest
root-controller and waits inde�nitely for an acknowledge-
ment. We now introduce two optimizations to improve
performance and robustness. First, a gateway is allowed
to contact any root-controller with a join request. So,
gateways that originate a burst of join requests can bal-
ance their load among a set of root-controllers. This
improves overall performance. Second, when a gateway
sends a root-controller a join message, it sets a timer,
with a timeout value chosen from past measurements of
acknowledgment times. If no reply is received before a

1This may happen if the multicast address allocation across all

domains is not fully co-ordinated. However, if address allocation

for all domains is done in a controlled manner, this situation will

not arise.

timeout, the gateway automatically redirects its join re-
quest to one of the other root-controllers. In this way,
gateways can transparently recover from the failure of a
root-controller.

3.2.3 Joining a group not locally known

New Member
wishing to
Join group G

Gateway

Gateway

Root Controller.1 Root Controller.2

Domain-3Domain-2

BR.1

BR.3

R2
R3

R1
S

H
(1)

(2) (3)(4)(5c)(5a)

(1): Join(G,H), (2): Join(G,H),(3): Join(G,H),(4):Join(G,H,okay),(5a,5b,5c): TUNNEL_CREATE

Gateway

BR.4

Domain-4Domain-1

Existing Members
of group G

New Tunnel

New Tunnel

Gateway

(5b)

Existing
Tunnel

Figure 5: Non-local Join

We will use Figure 5 to illustrate the steps. Suppose a
gateway receives a join request for a group that it is not
already aware of (step (1) in the �gure). By analogy
with DNS, the gateway forwards this request to one of
the root controllers, as discussed in more detail in Sec-
tion 3.2.1 (step (2)). The selected root controller deter-
mines whether there are any admission restrictions for
the group2. If so, the request is forwarded to the do-
main of the creator of the group (step (3)), where the
gateway performs admission control. If the group is un-
restricted, or if the admission request succeeds (step (4)),
then the root controller sets up tunnels between all exist-
ing domains and the new domain (steps 5a through 5c).
This is done by sending TUNNEL CREATE requests to
the appropriate gateways. The gateways create virtual
interfaces and tunnels from their domain entry and exit
points (see Figure 5) This does the job, but obviously is
non-optimal. We discuss details of tunnel creation and
optimal trees for of non-local groups in Section 3.3.2.

3.3 Root controller actions
By analogy with DNS, CM requires the operation of

a small number (say, ten to twenty) of root controllers.
The root controllers stay in loose synchronization by peri-
odic exchange of state messages. The multiplicity of root
controllers o�ers three bene�ts. First, it allows fault toler-
ance, so that if one root controller is down, another takes
it place. Second, it distributes load, so that the overall
stream of join requests is processed in parallel. Finally, it
promotes e�ciency, because, in the common case, a gate-
way needs to contact only the nearest root controller. The

2All root-controller are made aware of all non-local groups using

the algorithm described in Section 3.3.3.

price to pay for these bene�ts is the overhead in synchro-
nization and the complexity of fault recovery mechanisms.
We describe in Section 3.3.3 and 5.7 how these overheads
can be reduced. We now discuss the actions of the root
controllers in response to actions of the gateways.

3.3.1 Group creation

When a gateway creates a new non-local group, it sends
a message to the nearest root controller. (If this root con-
troller is down, the gateway tries one of the alternates, as
described earlier). The creation message includes the IP
address of the gateway, the ID of the domain, the class
D address of the multicast group, an indication whether
access to the group is restricted, and an indication if the
group creation is urgent3. The root controller stores this
information in its local state. If the group is marked \ur-
gent", then state information for the group is immedi-
ately disseminated to all other group controllers. As with
router state, we expect root controller state to be soft
state, to be refreshed periodically by the gateways. This
allows robust recovery from root controller crashes at the
expense of messaging overhead. Root controllers periodi-
cally exchange state with each other on a pre-established
multicast group (similar to ALL-PIM-ROUTERS group
in PIM [EFH+97] for example), thus allowing them to
stay in loose synchrony. This state exchange is described
in more detail in Section 3.3.3.

3.3.2 Joining a non-local group

In this subsection, we present more details of the approach
outlined earlier in Section 3.2.3 When a root controller
gets a join message from a gateway on behalf of a host in
that domain, it checks to see if it has information about
that group in its state table. There are three possibili-
ties. First, the group exists and the root controller has
state information for the group. In this case, the con-
troller checks if the group is restricted. If so, the join
request is passed on to the appropriate gateway for ad-
mission control. Second, the group may exist, but this
information may not have been propagated to the root
controller. This happens if the creator did not specify
the group to be an \urgent" group. In this case, the join
request is held until the next state synchronization point,
at which time the join proceeds. Finally, no such group
may exist. The root controller knows this if it receives no
information about the group even after the synchroniza-
tion phase. At this point, it informs the gateway, which
forwards this information to the host. Thus, on receiving
a join request, a root controller either processes the re-
quest immediately (if it has state for the group) or waits
for state synchronization. After synchronization, the join
is either processed or returned in error. Clearly, the delay
in processing a join is being traded o� here for the gain in

3To preserve clarity, we did not mention the 'urgent' ag earlier.

e�ciency by batching state updates. The trade o� point
can be tuned by choosing the state update interval ap-
propriately. Note, however, that the use of the \urgent"
group mechanism allows us to bypass the batching mech-
anism if necessary, at the cost of a loss in e�ciency.

A join is declared successful if the group to be joined
has unrestricted access or if the access control test is suc-
cessful. A root controller that declares a join to be suc-
cessful must add the joined domain to the existing mul-
ticast tree for the group. Before we explain how to carry
this out, we �rst make a small detour to explain how tun-
nels are set up.

A tunnel allows packets leaving a domain to appear in
another domain, uninterpreted by intermediate domains.
Since CM separates data and control, tunnels need not
originate or terminate at gateways. Instead, a gateway
nominates some number of routers in that domain (typi-
cally the border routers) as tunnel entry and exit points
(refer to Figure 5). To establish a cross-domain tunnel,
a root controller sends a TUNNEL CREATE message to
corresponding gateways. This message gives the IDs of
both domains, and the IP address of peer gateways. On
receiving this message the two peer gateways exchange
the IP address of the selected tunnel endpoints. On re-
ceiving this information, each gateway sends an appropri-
ate message to its local tunnel endpoint requesting it to
create a virtual interface for the tunnel, and add a multi-
cast forwarding entry in the routing table for the virtual
interface. In this way, tunnels are established in a hierar-
chical manner, without requiring the intervention of the
root controller, except at a high level.

The tunnel establishment mechanism in hand, we now
turn our attention to optimally joining a domain to an
existing multicast group. We propose two complementary
techniques to do so.

In the �rst solution, the joining domain is joined to
the existing multicast group using TUNNEL CREATE
messages as described above. The key question is to pick
the domains that ought to be linked with tunnels. The
trivial solution is to establish a tunnel from every domain
participating in the group to the joining domain. How-
ever, this solution requires O(N2) tunnels, where N is the
number of domains. A better solution is to use a single
backbone multicast tree, and use a single tunnel to graft
a joining domain to the existing tree. To do so, root con-
trollers periodically exchange the current multicast tree
(at the inter-domain level) for each multicast group (de-
tails of this exchange are presented in Section 3.3.3). On
receiving a join request, a root controller creates a tunnel
from the domain to the nearest point of presence of the
tree. If the tree is speci�ed as a shared tree, the border
routers participating in the backbone tunnel need only
keep io-set state for that group (where the io-set refers
to virtual interfaces instead of real ones). If the tree is
a shortest path tree, then all border routers need to in-
stall additional (S,G) state corresponding to that domain.

For scalability, we strongly advocate all backbone trees be
shared. An example of the creation of the shared multi-
cast backbone tree follows.

New Member
wishing to
Join group G

Gateway

Gateway

BR.1

R1H

Gateway

BR.4

Domain-4Domain-1

Existing Members

Gateway

Domain-3

Gateway
BR.3

R2
R3

R4 R5

BR.5

Domain-2

BR.2

Domain-5

R6

S

New Tunnel
grafted to shared
multicast tree in
the backbone

of group G

Existing Members
of group G

in the Backbone
Shared Multicast Tree

Figure 6: Grafting a new domain to the existing multicast
tree in the backbone

Example 2

This example shows how a new domain can be grafted
to an existing multicast tree in the backbone network.
Refer to Figure 6 in which sender S and receivers R1
through R6 are subscribed to group G. A shared multicast
tree is set up in the backbone network connecting domains
2 through 5. When host H from Domain-1 wants to join
group G, a single tunnel is set up between Domain-1 and
Domain-5 grafting Domain-1 onto the existing multicast
tree. The other alternative would have required setting
up tunnels between Domain-1 and every other domain.

The second technique to graft a domain leverages the
current structure of the Internet (at least in the US),
and the existence of the routing arbiter, an entity that
resolves BGP polices at Network Access Points (NAPs)
[GAV+98]. The arbiter receives BGP updates from all
the ISPs incident at a NAP, and it comes up with a set
of mutually consistent routing decisions, which it returns
to each ISP's router. This allows routing exchanges at
NAPs to proceed e�ciently, while still allowing ISPs to
specify routing policy directives. Given that the arbiter
knows about backbone topology, it is natural extend the
routing arbiter to also act as a root-controller. The root-
controller/routing arbiter, therefore, can process join re-
quests along with BGP updates. In this approach, to
process a successful join, the root controller �rst contacts
the gateway of the joining domain to �nd out which bor-
der router of that domain will be participating in the
group. The root controller, by induction, already knows
the border routers of all other domains. It simply installs
multicast forwarding entries in all the border routers so
that the group is established. Note this approach does

not require any tunnels. Moreover, since the routing ar-
biter knows about the routing policy of each domain, it
could conceivably use this policy information when set-
ting up multicast groups. However, the approach su�ers
from three major drawbacks. First, some domains may
have border routers that are not represented at a NAP.
Second, not all ISPs trust the routing arbiter with their
internal topology, so the arbiter may not have full back-
bone information. Finally, ISPs may not want to have
multicast forwarding entries set in their routers by third
parties. In case any of these situations apply, we will need
to fall back on the �rst solution, that requires the use of
tunnels.

3.3.3 Periodic state exchange

Root controllers need to periodically exchange state to
stay in loose synchrony. The synchronization period
determines the delay in processing a join request: the
more often state is exchanged, the faster the join suc-
ceeds. Thus, administrators can tune this exchange pe-
riod to reect the appropriate cost/bene�t tradeo�. The
state exchange protocol itself uses a hard-coded multicast
group (similar to ALL-PIM-ROUTERS group in PIM)
that links all root controllers. A root controller periodi-
cally multicasts its state on this group. Speci�cally, this
state consists of the current set of tunnels, the current set
of root controllers, and the current set of domains partic-
ipating in each group (their IDs and the IP address of
the corresponding gateways). This state is su�cient for
a root controller to determine the best tunnel to join a
new domain to an existing multicast group. Details of the
state-exchange messages can be found in Section 5.4.

Since we expect this state to change only slowly over
time, we propose that the actual state exchange should be
of deltas in the state, with a periodic dump of the entire
state to allow resynchronization (a full dump could also be
requested by a root controller to force synchronization, for
instance to allow it to recover from a crash). Also recall
that the creation of an urgent multicast group results in
the immediate dissemination of the associated state.

3.3.4 Recon�guration

While each join request may be optimally satis�ed, it is
possible that a series of join requests may result in a non-
optimal tree.

EXAMPLE 3

Refer to Figure 7 to see what might happen if a se-
quence of join requests are processed such that new do-
mains are always grafted to the nearest entry point of the
existing multicast tree. When Domain-6 is grafted to the
existing tree, the maximum inter-domain delay in the tree
increases to �ve units (assuming each hop adds a delay of
one unit). However, a much better tree could have been

Domain-3

Gateway
BR.3

R2
R3

Gateway

Gateway

R4 R5

BR.5

Domain-5

Gateway

Gateway

BR.1

Domain-1

Domain-6

R7

Domain-2

BR.2

R6

BR.6

R1

Gateway

BR.4

Domain-4

S1

S2

SenderSender

Figure 7: Suboptimal tree formation

Domain-3

Gateway
BR.3

R2
R3

Gateway

Gateway

R4 R5

BR.5

Domain-5

Gateway

Gateway

BR.1

Domain-1

Domain-6

R7

Domain-2

BR.2

R6

BR.6

R1

Gateway

BR.4

Domain-4

S1

S2

SenderSender

Figure 8: Optimal tree with the same set of members

computed as shown in Figure 8 in which the maximum
inter-domain delay is two units.

To regain optimality, root controllers could periodi-
cally recon�gure the multicast tree. They can do this
by using a make-then-break approach (similar to the tree
switching algorithm described in [AP96]). That is, the
new tree is created by adding new multicast routing en-
tries (and tunnels) to the tree. Old entries and tunnels are
deleted only after the new tree is fully established. In the
transition period, routing loops may form, and some des-
tinations may receive duplicate packets. Packets caught
in loops will be discarded when their TTL drops to zero,
and duplicates can be detected by upper layer protocols.
Thus, this approach, when judiciously applied, allows the
backbone to be asynchronously recon�gured with little
extra e�ort. Similar bene�ts of periodic recomputation
of the multicast tree are shown in [AP96].

4 Reservation
Although we view CM as primarily a scheme for mul-

ticast routing, it can be extended to provide per-stream

or per-aggregate quality of service by carrying out reser-
vations and admission control. To do so, we will need the
following assumptions. First, we assume that routers in
the network provide some form of reservation, and con-
sequently, some form of di�erential service (there is little
point of making a reservation if unreserved tra�c, which
will continue to consist the bulk of the tra�c, gets iden-
tical priority, bandwidth, and delay guarantees). Sec-
ond, we assume that reservation state can be remotely
accessed, for instance by means of an SNMP reservation
MIB. Third, we assume that every reservation request,
whether it be for a unicast or a multicast connection, is
sent to a gateway. We will relax the last assumption later
in this discussion.

With these assumptions in hand, let us consider the
case where a host wants to join a local multicast group
that already has made some reservations along the edges
of a multicast tree. (If the existing group is a singleton,
and consequently the tree is null, then this reduces to
setting up a unicast reserved connection.) As with RSVP
[ZDE+93, BZB+97], the creator of the group and each
subsequent sender advertise a tra�c spec for their tra�c.
Unlike RSVP, however, where this advertisement is sent
to a multicast group, in CM, the tra�c spec is sent to the
gateway in the local domain. On receiving a join request,
which may be accompanied by an RSVP-style �lter, the
gateway computes the nearest point of attchment of the
host to the tree, and simultaneously determines the addi-
tional reservations that need to be made along the tree.
This computation is identical in sprit to the distributed
computation carried out in RSVP. If resources are insuf-
�cient, the receiver is noti�ed along with an indication of
the resources actually available, so that it may try again.
If there are su�cient resources, the gateway installs reser-
vation state (including appropriate �lters) in the routers,
for instance using the reservation MIB. When this op-
eration successfully completes, the gateway noti�es the
receiver. If this is the �rst receiver to join, the sender is
also noti�ed, so that data transmission may commence.
Routers periodically destroy state, and this state is re-
freshed by the gateway, as discussed in Section 3.2.1.

It is instructive to compare CM with RSVP. Our
scheme reuses many design elements in RSVP: the tra�c
spec, the reservation spec, the style of �lters, the use of
soft-state, and receiver-initiated join. The major change
is that the reservation and admission control decisions are
centralized, not distributed. This has both pros and cons.
On the con side, the scheme is not as robust as RSVP,
in that if a gateway fails, no reservations can be made.
We believe that it is possible to construct fail-safe gate-
ways, and we discuss this in more detail in Section 5.1.
Note that, just as in RSVP, CM can detect the failure of
a router and reroute calls, because it participates in rout-
ing protocols (we discuss this in more detail in Section
5.7). Also, because both RSVP and CM use soft-state,
they are equally good at recovering from host failures.

It may appear that CM is more expensive than RSVP,
because it exchanges more messages than RSVP to ac-
complish the same reservation. Let us make the reason-
able assumption that the main cost in the control path
is in the number of messages processed. We show next
that the di�erence in the number of messages exchanged
by RSVP and CM is small. Suppose a host joins a tree
along path R1, R2, ..., Rn. With RSVP, this requires
n � 1 messages to be exchanged, one from Ri to Ri+1.
Using CM, the host sends a single message to the gate-
way, which then sendS n messages, one to each router.
Thus, the cost, in terms of number of messages, increases
only by two messages. In terms of delay, the CM ap-
proach may actually be faster, since all the n messages
can be sent in parallel.

The main advantage of CM over RSVP is that it re-
moves the burden of admission control and reservations
from routers. They only need to carry out the reservation
decisions made by the gateway. This makes them simpler.
The second advantage is more subtle. In RSVP, RESV
reservation messages follow the route pre-established by
the sender's PATH messages. Thus, a router must for-
ward PATH messages on links that will allow future reser-
vations to succeed. Unfortunately, a router only has a
local view of the reservations in the network. Thus, it
is likely to make suboptimal forwarding choices. In con-
trast, with CM, because the gateway has a global resource
view, it can make optimal load balancing decisions.

We now relax the third assumption made earlier, that
is, that all resource reservations are made through the
gateway. Suppose that some reservations in the network
are made using a mechanism other than CM (such as
RSVP, for instance). In this case, when a gateway re-
ceives a join request, it cannot immediately process it,
because it does not know the resource availability at the
routers. Therefore, on getting a join request, the gate-
way �rst computes the best possible path that would join
the host to the existing multicast tree. It then sends a
message to each intermediate router on the path, asking
either for the current reservation state, or giving it the
reservation information, and asking it to perform reser-
vation and admission control. With the former, admission
control is done at the gateway, and if the admission tests
are successful, the routers are requested to modify their
reservations. With the latter, admission control decisions
are made at each individual router. The result, however,
is the same. Either all the routers along the path have
su�cient resources and the join succeeds, or one of the
routers has insu�cient resources. In this case, the joiner
is contacted with an indication of the amount of available
resources and invited to try again.

We now discuss the case of a non-local join, that is,
joining a tree that has senders or receivers outside the
local domain. CM handles the case of non-local joins less
well because tunnels do not allow resource reservation.
Since our approach to wide area groups depends primar-

ily on tunnels, it cannot support reservations for groups
that span multiple domains. However, this is true for all
current multicast reservation protocols. Even RSVP does
not guarantee quality of service across tunnels. Since the
current MBONE is mostly composed of tunnels, at least
in the backbone, RSVP is as much a non-solution as CM!
We believe, however, that routing arbiters can be used to
create non-local groups with reservations, but we do not
discuss this further because this is unlikely to be realized
in the near term, if ever, until pricing and di�erential
service issues are sorted out.

5 Some details
In this section, we present some details of our ap-

proach, �lling in the gaps left in Section 3.

5.1 Gateway as a fail-safe process group

Unlike root-controllers, which are replicated and syn-
chronized, each domain has a single gateway. Thus, if a
gateway crashes, though existing multicast groups remain
una�ected, no new join and leave requests can be pro-
cessed. Therefore, CM requires gateways to be fail-proof.
Fortunately, we can use a variety of standard techniques
to prevent the crash of a gateway [BJ87, B93, BR94].
For instance, we can implement the gateway as a reliable
process group. In this approach, gateway functionality is
provided by a set of processes that use a hard-coded mul-
ticast group to keep in tight synchrony. Messages sent to
'the' gateway are automatically replicated and sent to all
members of the group. (This can be done, for example,
by a router on a LAN that translates the IP address of the
group to a multicast Ethernet address in that LAN. Thus,
all messages sent to this IP address are automatically re-
ceived by all hosts on that LAN.) The simplest form of
a process group is a primary-backup mechanism. Here,
a backup gets a copy of each message sent to and from
the primary, and thus has an exact copy of its state. The
backup also monitors the primary to see if it is up. If the
primary dies, the backup takes over as the primary and
establishes another backup. A gateway implemented in
this fashion therefore survives the failure of the primary
(though not the failure of the router). A similar approach
to fault-tolerance has been used in [AP96]. More elabo-
rate techniques for fault-tolerance based on atomic broad-
cast and virtual synchrony can deal both with process
and router failure, and are well-known in the literature
[BR94]. These can be readily adapted to our purpose.

5.2 Messages between a host and a gateway

A host can send one of two messages to a gateway: a
JOIN message and a LEAVE message. The JOIN message
has the following options:

1. Address: this the Class D address of the group the
host wants to join. If the host is also the creator, then
the address can be left unspeci�ed, and the gateway
will reply with an unused Class D message.

2. Creator ag: this is set if the host is the creator of
the group.

3. Urgent ag: this is set if the group should be imme-
diately advertised by the nearest root controller.

4. Local ag: this is set if the group will be visible only
to hosts within the domain.

5. Access control list: this is a list of hosts who are al-
lowed to join the group. Alternatively, it may consist
of a password that must accompany a join request.

6. UID: this is a unique ID associated with a particular
join request and gateway. It allows remote gateways
to deal with duplicates, as described in Section 6.3.

The LEAVE message has only one �eld, the address of
the multicast group.

The gateway replies to a JOIN message with a
JOIN ACK message. This contains two �elds: status and
address.

1. Status: this is either JOIN SUCCESSFUL or
JOIN UNSUCCESSFUL.

2. Address: if the join is successful and the address was
unspeci�ed, this �eld contains the address assigned
to the group.

Join requests are periodically refreshed by IGMP-
capable routers on receiving an IGMP reply from a host.

5.3 Messages between a gateway and a root
controller

The gateway exchanges four messages with the nearest
root controller: JOIN, LEAVE, TUNNEL CREATE and
TUNNEL DELETE. The JOIN message has the following
�elds:

1. Address: this the address of the group the gateway
wants to join. If the domain contains the creator
of the group, then the address can be left unspeci-
�ed, and the root controller will reply with an unused
Class D message.

2. Creator ag: this is set if the domain contains the
creator of the group.

3. Urgent ag: this is set if the group should be imme-
diately advertised by the root controller.

4. Domain ID: this is the ID of the gateway's domain.
We assume that each domain has an ID that is glob-
ally disseminated using DNS.

5. Gateway IP address: this is the gateway's IP address.

The LEAVE message is identical to the LEAVE mes-
sage described above.

The TUNNEL CREATE message asks the gateway to
create a tunnel with a peer domain. It contains two �elds:

1. Gateway address: this is the IP address of the peer
gateway.

2. Peer domain: this is the ID of the peer domain.

The gateway replies to the TUNNEL CREATE mes-
sage by choosing a border router, and informing the peer
gateway of the IP address of the border router. It also
expects to hear a message from the peer with that peer's
border router. This information allows it so create one
end of the tunnel. TUNNEL CREATE messages are pe-
riodically refreshed by the root controller.

The TUNNEL DELETE message is self explanatory,
and contains the IP address of the peer gateway.

5.4 Messages between root controllers

Root controllers periodically multicast their state (ac-
tually, the deltas in their state) to each other. A root
controller may also ask another root controller to dump
its entire state over a unicast path. The multicast infor-
mation has the following �elds:

1. NEW GROUPS: A list of new groups that have been
created since the last update, and the domains asso-
ciated with each group.

2. DESTROYED GROUPS: A list of groups that have
been destroyed since the last update.

3. NEW DOMAINS: A list of existing groups and the
new domains that have joined these groups.

4. NEW TUNNELS: Tunnels that have been created
since the last update.

5. DESTROYED TUNNELS: Tunnels that have been
destroyed since the last update.

A root controller requests a full update by sending a
FULL DUMP message to another root controller. This
contains the requestor's IP address, and the requestee
replies with its entire state. A full update is sent using a
reliable transport protocol such as TCP.

5.5 Switching trees
Recall that root-controllers typically graft a domain

by adding a single tunnel from that domain to a border
router in the existing multicast tree. As discussed earlier,
locally optimal decisions in creating such links can result
in a globally non-optimal solution. Thus, we propose to
periodically rearrange tunnels to regain optimality. The
root-controller that �rst received the message to create
the group is responsible for switching trees. To switch
trees, the root controller sends a TUNNEL CREATE
message to the gateways in the multicast group with the
following information:

1. GROUP: this is the group for which a forwarding
entry needs to be created.

2. DOMAIN LIST: this is the list of domains with
which the gateway needs to establish tunnels.

3. GATEWAY LIST: this is the list of IP addresses of
peer gateways with which the gateway needs to es-
tablish tunnels.

Each gateway contacts the gateways listed in the
GATEWAY LIST to discover the border routers involved
in the tunnels, as described in Section 3.3.4. After
creating tunnel endpoints, each gateway sends a CRE-
ATE DONE message to the root controller. When the
root controller receives CREATE DONE message from
all the gateways, it sends a TUNNEL DELETE mes-
sage to the gateways. This message contains only
the GROUP address whose corresponding tunnel entry
needs to be deleted. The root controller periodically
sends the DELETE ENTRY message until it receives
DELETE DONE messages from all the relevant gate-
ways. For robustness, TUNNEL CREATE messages are
reliably transmitted either by using a reliable transport
protocol, such as TCP, or by the standard techniques of
timeouts and retransmissions implemented over UDP.

5.6 Domains using distance-vector routing
protocols

In a domain that use a distance-vector routing proto-
col, such as RIP, the gateway does not know the network
topology. Therefore, when the gateway receives a join
request, it does not know the set of routers to which it
should send an ADD message. To deal with this problem,
in such domains, members of multicast groups are inter-
connected using tunnels. These tunnels de�ne a virtual

topology that is known to the gateway. When a new mem-
ber wants to join an existing group, the gateway simply
creates a tunnel between the new member and the point
nearest the new member in that group's multicast tree.
This is identical in spirit to the use of tunnels for dealing
with the lack of knowledge of network topology between
domains.

This is certainly not the optimal way to form multicast
trees! RIP domains, however, are typically quite small
and hence sub-optimality will not have any pronounced
a�ect on performance. If performance becomes a problem
for a given multicast group, the gateway can create a more
optimal tree and then initiate a tree switch as described
in the interdomain case (Section 3.34).

5.7 Recovery from failure of tunnel end-
points

Tunnels play a crucial role in interconnecting domains
in CM. Therefore, it is important to keep tunnels \up".
A tunnel fails if one of its end-points fails (recall that the
tunnel end-points are border routers of the domains).

We consider recovery from endpoint failure in two
cases: (1) the domain runs link-state routing protocol,
such as OSPF and (2) the domain runs distance-vector
routing protocol, such as RIP.

Case 1: Here, the gateway participates in the link-
state routing protocol just like any other router in the
domain. When a router fails, the neighboring routers

generate a triggered update which is ooded throughout
the domain. Therefore, the news of a border router failure
rapidly reaches the gateway. The gateway maps from the
border router that failed to the set of tunnels that passed
through that gateway. It selects a new border router as
the tunnel end-point for every failed tunnel. Since the
gateway knows its peer gateway for every failed tunnel,
it can communicate the IP address of the new border
router to its peers. The peers then recon�gure their bor-
der routers, which leads eventually to the resumption of
multicast delivery.

Case 2: In a domain that uses a distance-vector routing
protocol, when a border router fails, the distance vector
to the border router becomes in�nite. The gateway, which
participates in the distance-vector protocol, just like any
other router, therefore detects the failure and starts the
recovery process. Recovery is done by selecting a di�erent
border router and by informing the peer gateway of the
IP address of the new border router, as discussed in Case
1.

6 Evaluation
6.1 Scaling

The limits to scalability of a multicast routing scheme
arise from a super-linear growth either in the state stored
in routers and control elements or in the number of control
messages. In this section, we describe the design features
in our scheme that allow it to scale.

6.1.1 Scaling in state

The CM scheme stores state in gateways, in root con-
trollers, and in routers. Here, we show that each com-
ponent of the system state grows only linearly with the
number of multicast groups, and with the size of a given
multicast group.

A gateway stores the topology of the domain and the
multicast tree corresponding to each multicast group.
The topology of a domain is represented by nodes and
edges. Clearly, per-node topology state increases linearly
with the number of nodes. However, it is possible that
per-edge state grows quadratically with the number of
nodes, since a network with N nodes can have as many as
O(N2) edges. Fortunately, in most real-life networks, the
number of edges is O(N), in which case the topology state
overall grows linearly with N. We now turn our attention
to the storage requirements to represent a multicast tree.
The multicast tree for a group can be either a shared tree,
or a per-source shortest-path tree. Assuming that a do-
main has O(N) edges, a shared tree requires the gateway
to keep track of at most O(N) edges per multicast group.
Thus, keeping the number of multicast groups �xed, the
state grows linearly with N. Similarly, keeping N �xed, the
state grows linearly with the number of multicast groups.
A per-source shortest path tree, however, does not scale
as well. For such a tree, the gateway must keep track of

a shortest-path tree (potentially of size O(N)) for each of
potentially O(N) sources in the tree, leading to a state of
size O(N2) per multicast group. Thus, to allow scaling,
we recommend that all multicast trees be shared trees.
To sum up, assuming that domains have O(N) edges, and
that all trees are shared trees, the state in the gateway
scales linearly with the size of a domain.

CM requires only one gateway per domain. Thus, the
number of gateways grows linearly with the number of
domains. As a domain grows, however, a single gate-
way may prove to be a bottleneck. We therefore envisage
heavily loaded gateways to be implemented in the form
of a computing cluster connected by a fault-tolerant and
load-balancing middleware infrastructure. Such clusters
can be scaled nearly arbitrarily, as is exempli�ed in real-
life by Web server clusters.

The state in a root controller is the current set of mul-
ticast tunnels, and the domains that participate in each
non-local multicast group. This state is isomorphic to
the state in a gateway. Thus, under the same assump-
tions, that is, that the backbone topology has O(N) edges
(where N is the number of domains), and that the multi-
cast trees in the backbone are shared trees, we obtain a
linear scaling in root-controller state.

The state in a router is the forwarding state, which
consists either of an io-set (for a shared tree), or a set of
(S,G) entries (for a shortest-path tree). With a shared
tree, the number of routing entries grows linearly with
the number of multicast groups, and sub-linearly with
the size of a given group. By aggregating multicast ad-
dresses, as described in Section 3.2.2, we can reduce even
this overhead substantially. With a shortest path tree,
this state grows linearly both with the number of multi-
cast group, and with the size of a given group. For good
scaling, again, the use of a shared tree is certainly the
best choice.

6.1.2 Scaling in message overhead

We use three techniques to allow our scheme to scale in
terms of message overhead: hierarchy, batching, and the
use of deltas.

The hierarchical partitioning of control among root
controllers and gateways allows local state to be hidden
from global view. This contributes to scaling in two ways.
First, we expect that a considerable number of multicast
groups will have only local members. With CM, state
regarding these groups is explicitly hidden from global
view (in contrast, with schemes such as DVMRP/ood-
and-prune, the hiding of local groups is implicitly accom-
plished by using the TTL �eld in multicast IP packets).
Second, the hierarchy allows distributed control in estab-
lishing non-local multicast groups. A root controller only
needs to decide which domains must be connected by a
tunnel: the actual selection of border routers is deferred
to the peer gateways. This decentralized decision-making
allows the scheme to make locally optimal choices with-

out having to share domain-speci�c information with root
controllers.

We use batching to minimize communication overheads
in all message exchanges. Gateways are responsible for re-
freshing soft state both at routers and at root controllers.
This exchange is batched, so that a single message can
refresh multiple routing table entries and multiple root-
control state entries. Batching also reduces the number
of messages exchanged between root controllers to syn-
chronize their state.

Finally, we use deltas wherever possible to reduce the
size of a state exchange. For instance, root controllers
usually send only a delta to peer root controllers. Deltas
may lead to drift, however, so we periodically perform a
full update to bound the degree of state drift.

6.2 E�ciency

In this section, we analyze the e�ciency of the CM
scheme and compare it with that of PIM, CBT, and ood-
and-prune (also known as DVMRP). Note that we com-
pare only the e�ciency of control, instead of the e�ciency
of data movement. This is because the CM scheme al-
lows the construction of shortest-path trees, which are
the most e�cient for data forwarding (albeit at the cost of
an increase in the per-router multicast forwarding state).
So, CM can be as e�cient in data-movement as any other
scheme.

In our analysis, we make the following important as-
sumption: the cost of an algorithm is a function of the
number of messages processed, independent of the path
taken by a message and of its size. This assumption fol-
lows from our expectation that the bottleneck resource
in a network is the CPU and interrupt handling cost in
processing a message, rather than the uninterpreted for-
warding of a message (which is typically performed by
'dumb' hardware at little cost). The assumption reects
current architectures such as Cisco's Silicon Switching,
where IP packets with options, which require CPU inter-
vention, take an order of magnitude more time to process
than IP packets without options, and future architectures
such as MPLS, which can switch in hardware, but must
process control messages in software.

We use the following notation. We assume that the
network has M nodes, that a multicast group has on the
order of N nodes (N � M), and that there are G groups
in the network. We also assume that a multicast group
has, on average, S senders (sources).

6.2.1 DVMRP

We �rst analyze the e�ciency of the ood-and-prune
(DVMRP) algorithm. This algorithm has three main
steps in its operation. In the �rst stage, the M routers
in the network participate in a distance-vector routing
algorithm to compute the shortest path interface for an
incoming packet from a given source. This requires O(M)
messages (assuming that the maximum connectivity of a

node is a small integer independent of M) because each of
M routers sends a distance vector to a each of its neigh-
bors. In the second stage, a router attached to a source
oods the entire network with the source's ID. The ood-
ing operation takes O(M) messages, and each source does
a ood, for a total of O(SM) messages. In the third state,
each of the M-N routers not in the group can ask for a
prune (and prunes may cascade, an e�ect we will ignore),
so that we have an additional O(M-N) prune messages.
Thus, the total cost of ood and prune is O(M) + O(SM)
+ O(M-N) = O(SM) per group. The largest term here
is the O(SM) term, since this term grows with the size
of the network, independent of the size of a multicast
group. That is why ood-and-prune is rather ine�cient
for sparse multicast groups, as pointed out in References
[B93, BFC93]. Note that ood-and-prune simultaneously
joins all receivers. Thus, it does not have a per-receiver
join cost, reducing its overall cost when a multicast group
is dense.

6.2.2 CBT

The Core Based Tree approach is more e�cient in its
operation. Here, each member of a multicast group sends
a join message towards a core node. Multicast-capable
routers need to run a multicast routing protocol in order
to determine the next hop towards the core, which may
use a virtual interface. If a router that is a part of the
shared multicast tree sees this message, it adds a path to
this node to the tree, and does not propagate the message
further. Unlike ood-and-prune, there are no additional
costs for ooding and pruning. Thus, CBT has two sets
of costs, one for performing multicast routing, and one
for joining each sender or receiver to the shared tree. The
routing algorithm takes O(M) work, as with ood-and-
prune. The cost of each join message depends on how far
away a joining node is from the tree. The closer it is to a
tree, the cheaper it is to join a tree. Intuitively, therefore,
joins to a sparse tree are more expensive than joins to a
dense tree.

Figure 9: An example of a topology generated by the
Zegura-Calvert algorithm

We now analyze the join cost of CBT in more detail.

This is necessary because it turns out that the cost of CM
is a constant additive factor more than the cost for CBT
(a fact we will prove in Section 6.2.3). Our analysis is
empirical and based on simulation. The goal is to com-
pute the mean cost for a node to join a multicast tree as
a function of the network size and the number of partici-
pants in the tree. The simulation is set up as follows. We
use the Zegura-Calvert algorithm [ZCD 97] to generate
random multilevel hierarchical networks that are similar
in topology to the Internet. An example of a network
generated with this algorithm is shown in Figure 9.

We then choose K nodes at random in the network, and
join them by a shortest-path tree. This gives us (approx-
imately) the multicast tree that would be created had we
used CBT to link these nodes together4. We then com-
pute the mean cost from a node chosen at random in the
network to join this tree. This is simply the minimum
number of hops that separate this node from the closest
node already on the tree. We use a variant of breadth-
�rst-search to speed up this computation. We mark all
nodes on a multicast tree as having weight 0. We then
mark all neighbors of these nodes as having weight 1, tak-
ing care never to overwrite a 0 with a 1. In the next step,
neighbors of nodes with weight 1 are marked with weight
2, again never overwriting a lower weight. In this fash-
ion, we can quickly compute the number of nodes in the
network that have a particular cost to join a particular
tree. The mean cost to join this tree, therefore, is the
weighted average of these numbers. We average this cost
twice more: �rst over randomly selected multicast trees
within the same network, and second over many random
networks. This procedure, described in pseudocode be-
low, thus empirically computes the mean join cost for a
node as a function of the network size and the size of
the multicast tree. The result of our simulations, where
we chose eight random trees for a given a network, three
random networks for each network size, and four network
sizes, is shown in Figure 10. Figure 11 is a close-up of the
knee of the curves.

for M MIN � M � M MAX f

for each randomly generated tree (using the Zegura-
Calvert algorithm) of size M f

for (K=0; i < M; K++) f

select a random subset of K nodes and join
them to form a multicast tree

for each j not in the subset f

compute the cost from j to a node in
the tree using the optimized algorithm
described above

g

4The tree is approximate because a badly placed core router

could give us somewhat skewed trees. We expect that in the normal

case, with a well-chosen core, the shared core-based tree and the

shortest-path tree will approximately coincide

compute average cost to join this tree with
K members

g

compute average cost to join a tree as a func-
tion of K

g

compute average cost to join a tree as a function of
K and M

g

Pseudocode for computing mean cost to join a multicast

tree

0

2

4

6

8

10

20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 d
is

ta
nc

e
to

 a
 m

ul
tic

as
t t

re
e

of nodes in group

328
1092
3864

10040

Figure 10: Mean cost to join a multicast tree varying
network and group size

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 d
is

ta
nc

e
to

 a
 m

ul
tic

as
t t

re
e

of nodes in group

328
1092
3864

10040

Figure 11: Mean cost to join a multicast tree varying
network and group size (close up of knee region).

A glance at Figures 10 and 11 reveals two key features.
First, the cost to join a multicast tree drops rapidly with
the size of the group. With a group size of 3 or more,
the join cost is nearly constant. Second, the join cost

is nearly independent of the size of the network. As we
increase the number of nodes in the network from around
300 to around 10,000, the mean join cost increases only by
about one additional hop. The reason for these features is
that the Zegura-Calvert algorithm generates hierarchical
topologies. Choosing two nodes at random results in a
multicast tree that almost surely touches the backbone.
Thus, the cost to join any other node is just the cost to
reach the backbone, which averages to between three and
four hops. This cost is more or less una�ected by the size
of the network, since the depth of a hierarchical network
grows only logarithmically with the number of nodes in
it. Zegura et al argue that the topologies produced by the
algorithm match the real Internet's characteristics fairly
well. If this is the case, then we can expect to see a nearly
constant join cost when using CBT in the Internet. Thus,
the total cost for CBT is O(M) + a constant cost per join
= O(M) + O(N)

6.2.3 CM

Given the cost of the CBT algorithm, as analyzed above,
we compute the cost of CM as follows. With CBT, con-
sider a join message sent from a router Rx to the core
along path Rx ! R1 ! R2 ! � � � ! Rn where Rn is
either a node on the shared tree or the core itself. This
join requires n messages, since each node along the path
must examine the join message. With the CM scheme,
Rx sends a join message to the gateway, which sends an
add message to R1, R2 etc. Since the gateway sends n
messages to the routers along the path, and this path is
the same as the path taken by a CBT shared tree, with
CM the cost for this join is the cost for CBT+2, where the
'+2' accounts for the two additional messages exchanged
between Rx and the gateway. In other words, CM has
a constant additive factor in cost compared to CBT per
join, nearly independent of the size of the group and the
size of the network. Accounting form O(M) work for the
routing protocol, this leads to a cost of O(M) + O(N)
work for N joins.

6.2.4 PIM

The cost for the PIM algorithm depends on whether it is
dense-mode or sparse mode. With dense-mode PIM, the
cost is the same as ood-and-prune, i.e. O(SM). With
sparse-mode PIM, the cost is the same as of CBT. In this
analysis, we ignore the control cost of changing from a
shared tree to a shortest-path tree, which is nominal.

The table below compares the costs of the various al-
gorithms. It is clear that CM is as e�cient as CBT and
sparse-mode PIM.

DVMRP O(SM)
CBT O(M)+O(N)
CM O(M)+O(N)
PIM-sparse O(M)+O(N)
PIM-dense O(SM)

6.3 Correctness
In this section we outline proofs of correctness for the

algorithms proposed in earlier sections. We make the fol-
lowing assumptions:

1. The period of state exchange between root controllers
is bounded, and a state exchange message is delivered
with non-zero probability.

2. Gateway to root-controller and root-controller to
gateway communications take �nite time.

The second assumption assures us that a gateway can
detect and recover from the failure of a root-controller in
�nite time.

Lemma 1 Data transmitted by a new sender to a multi-

cast group G will reach all members of G within a bounded

time.

Proof: We need to consider two cases: (1) Group G is
local, that is, G does not span multiple domains and (2)
Group G spans multiple domains.

Case 1: A new sender contacts the gateway in its do-
main. The gateway either (a) grafts the sender to an
existing multicast tree, if it exists or (b) creates a new
tree with the sender as the only node. Grafting can be
completed in bounded time because it is a matter of com-
puting the shortest path connecting the sender to the ex-
isting tree, and sending ADD messages to the appropriate
routers. Even if routers selected for grafting fail, their fail-
ure is known to the gateway in bounded time from the do-
main's routing algorithm (as shown in Section 5.7). Thus
the gateway can recover from these failures and complete
the addition in bounded time. Case (b) does not even
involve the computation of shortest path, and is trivially
satis�ed.

Case 2: A new sender contacts the gateway in its do-
main and the gateway, in turn, contacts its nearest root
controller. Communications between the gateway and the
root controller are subject to a timeout, as explained in
Section 3.2.2, so the failure of the nearest root controller
can be recovered from in a �nite time. There are now two
possibilities: (a) the root controller knows about group G,
(b) the root controller does not know about the existence
of group G. In case (a), the root controller forwards the
JOIN request to the gateway of the domain that created
group G for admission control. Since the gateways are
modelled as reliable process groups, they are always \up".
Therefore, the gateway will reply to the root controller in
bounded time. Once the root controller receives an \OK"
message from the gateway, it grafts the new sender onto
the existing tree in bounded time, in a manner similar to
that described in Case 1. One subtle possibility is that the
root-controller may fail after contacting a gateway, but
before receiving a reply. In this case, the gateway origi-
nating the join request retries the request with a di�erent

root controller. Thus, each gateway should be prepared
for receiving duplicate requests; idempotency is assured
by associating a join request with a unique serial number,
as described earlier in Section 5.2.

Case (b) is slightlymore involved. If the root controller
does not know about the existence of the group, either the
group does not exist or the group has been formed since
the last time the root controllers synchronized. In either
case, the root controller has to wait at most the period
of state exchange to know about the group. If the group
does not exist, the root controller creates the new group
and forward the information to the other root controllers.
If the group exists, the root controller follows the steps
of case (a) to graft the new sender onto the existing tree.
Since case (a) can be performed in bounded time and the
root controller has to wait at most for the period of state
exchange, case (b) can also be performed in bounded time.

Therefore, the new sender will be part of the multicast
tree in bounded time. This implies that the receivers of
the multicast group will start receiving the data from the
new sender in bounded time.

Lemma 2 Data multicast to a group G will reach a new

receiver of group G within a bounded time.

Proof: The proof is similar to that of Lemma 1.

Lemma 3 A new multicast group G can be created in

bounded time.

Proof: there are two possibilities: (1) Group G is local
and (2) Group G spans several domains.

Case 1: If the new group is local, the gateway need
not forward information about the group to the root con-
troller. Therefore, creation of a new group merely involves
creating an entry in the gateway corresponding to group
G.

Case 2: If the new group is not local, the gateway in-
forms its nearest root controller that a new group needs to
be created. If the \urgent ag" is set, the root controller
informs all the other root controllers immediately. Oth-
erwise, other root controllers are informed after the peri-
odic exchange of state. Since the period of state exchange
is �nite, and state exchange messages are delivered with
non-zero probability (the �rst assumption made earlier),
all root controllers will eventually know about group G
and create a corresponding entry. Even in the worst case,
a root-controller can always request a full dump of a peer
root-controller's state through a reliable TCP channel.

Therefore, a new group will be created in bounded
time.

Theorem 1 CM can construct a correct multicast tree

for a group with dynamically changing membership within

a bounded time.

Proof: Constructing a multicast tree with dynamically
changing membership has three parts:

1. Creation of a new group G

2. Adding a new sender to G

3. Adding a new receiver to G

Lemmas 1 through 3 ensure that each of the above
three steps can be executed in bounded time using CM.
That proves the theorem.

7 Discussion
Centralized multicast (CM) is a technique that sepa-

rates control and data ow for Internet multicast routing.
The control structure consists of root controllers at the
highest level and a gateway per domain at the next level.
Routers are managed by control elements and are simply
used for data forwarding.

The main drawbacks of our scheme are (a) a higher join
latency, (b) overhead for maintaining soft state, (c) need
for fault-tolerant gateways and (d) the lack of reservation
across tunnels. Join latency in CM is slightly higher than
with other schemes because the join is not data driven.
We require explicit signaling between members, gateways
and the root controllers to create a multicast tree, and
to add or delete group members. We believe that this
is not a serious disadvantage. Most multicast groups are
used for a long time after the initial setup. This is par-
ticularly true for groups used for data dissemination, dis-
tance education, videoconferencing etc. Thus, the added
join latency is not likely to be a problem in practice, at
least for a large class of applications. Second, soft state
at the routers and the root controllers is refreshed period-
ically by the gateways. This entails additional signaling
load on the gateways. While we can eliminate soft-state
to gain e�ciency, we believe that the additional work is
more than made up by the gain in overall robustness.
Third, we require gateways to be fail-proof. At �rst sight,
this seems to be an imposing requirement. However, this
is a common one in real life. Most commercial servers,
such as transaction servers and high-pro�le web servers
cannot fail without serious consequences. A variety of
well-known software systems, such as clusters and pro-
cess groups, allow us to easily satisfy this requirement.
Finally, the domains in inter-domain multicast trees are
connected by tunnels and when tunnels are used, no guar-
antees can be made on the quality of service. However,
this is true for all multicast schemes. It is likely that we
will see QoS-enabled wide-area connections only when the
related pricing and di�erential service issues are properly
addressed.

We believe that the advantages of centralized multi-
cast, that we enumerate next, far outweigh its shortcom-
ings. First, centralized multicast provides the exibility

of building either a shared tree or a source-based shortest
path tree on the same framework. Thus, a network oper-
ator can trade optimal data paths for an increase in the
control state. Even with a shared tree, CM allows switch-
ing to a more optimal multicast tree after a sequence of
join and leave operations, thus restoring a shared tree to
optimality. Second, with CM, routers are much simpler
because they do not need to take part in the multicast
routing protocol. Routers are used as forwarding engines
only: the RISC approach in microprocessors has proved
that 'big and dumb' is better! Third, CM simpli�es group
control. Since the gateway controls the join operation, it
can allow or disallow members to join a multicast group
based on an access control list. Fourth, because CM al-
lows the use of tunnels, building inter-domain multicast
trees is simple. Tunnels can also be used in RIP-like do-
mains which use distance vector routing protocols. Fifth,
CM leverages SNMP to alter routing table entries. This
is possible because of the clean separation of control and
data ows. Sixth, CM provides a choice between a trig-
gered join and a lazy join through the use of the urgent
ag during a join operation. Triggered join has the bene�t
of low join latency at the expense of higher signaling load,
while lazy join provides the bene�t of batching updates at
the expense of higher join latency. Finally, gateways, in
conjunction with the root controllers, can perform a host
of useful functions, such as, allocation of multicast ad-
dresses on demand, aggregation of multicast addresses for
scalability, distribution of group keys for secure multicast
sessions and even reservation and allocation of resources.

The fundamental di�erence between CM and other
schemes in the literature is that with CM, routers need
not participate in control protocols in order to set up mul-
ticast forwarding state. In most schemes, forwarding state
is set up either in response to the arrival of join requests
from IGMP-enabled routers, or, as in the case of DVMRP,
the arrival of prune packets from a downstream router.
This has two consequences. First, the construction of
the multicast tree is a distributed process. Second, each
router must participate in the construction of the multi-
cast tree. Both of these raise problems that are cleanly
addressed by CM. Any distributed computation is, by its
very nature, acting on a partial understanding of global
state. Thus, the outcome is usually non-optimal. In con-
trast, within a domain, CM has complete knowledge of
the topology and the members of every group. Thus, it
can create more e�cient multicast trees than with any
distributed approach. CM also frees routers from the
burden of processing multicast join and leave messages.
Current-generation routers are very good at forwarding
uninterpreted data, but process messages less well. Most
current multicast routing schemes require complex pro-
cessing of join and leave requests at routers. In contrast
(and this is the very rationale for CM), our scheme re-
quires routers to only add and delete forwarding entries
from routing tables, which is a much simpler task. Thus,

we believe that CM has signi�cant advantages over most
existing schemes, by design. We now focus our attention
on comparisions with speci�c schemes.

Compared with DVMRP, CM is more e�cient because
it does not have the overhead of periodic ooding and
pruning. We analyzed the e�ciency of DVMRP and CM
in Section 6.2, and this clearly shows the gain in e�-
ciency by using CM. PIM has been proposed as an ef-
�cient solution to multicast routing because it supports
both dense and sparse networks, and can automatically
switch from a shared tree to a shortest-path tree. How-
ever, its main failing is that it assumes that all routers
in the network run PIM (otherwise, the shortest-path in-
terface that is determined from the unicast routing table
does not make sense). Unlike PIM, CM does not require
all routers to run CM protocol. This is possible because
non-CM routers can be connected using tunnels. Thus,
we believe that, unlike PIM, CM satis�es our require-
ment that a multicast routing protocol should be incre-
mentally deployable. Even if PIM were to be enhanced to
give rendezvous points and routers a copy of the domain
topology, it would still lack the global network view that
CM gateways have. Moreover, PIM does not support a
two-part hierarchy, which we believe is critical to allow
scaling. A recent contender for multicast routing, Border
Gateway Multicast Protocol (BGMP) [TEM97], is being
developed in IETF as the inter-domain multicast rout-
ing protocol. BGMP builds a bi-directional shared tree
in the backbone and allows the grafting of shortest-path
branches. However, BGMP still needs help from MASC
[EHT97] for allocation of blocks of multicast addresses
for aggregation and from MBGP [BCKR97] for distribu-
tion of multicast address pre�xes between domains. CM
can achieve the same goals of BGMP, MASC and MBGP
using its gateways and root controllers except that CM
separates control and data while they do not. We believe
that this separation is critical for simplifying routers and
enabling widespread deployment of IP multicast.

At this point, we would like to review the design fea-
tures in CM that allow it to satisfy our requirements for
scalability, e�ciency and incremental deployability. CM
is scalable in message overhead because of its use of hier-
archy, batching, and deltas. It is scalable in state because
of its used of shared trees and the careful use of hierar-
chy. CM can create e�cient shortest-path multicast tree
(but at the expense of a decrease in scalability). Thus,
it can be as e�cient as the best-possible multicast rout-
ing protocol. In practice, we believe that the shared tree
approach, in conjunction with periodic tree switching, is
the best solution. Finally, CM is designed to be increman-
tally deployable. It uses SNMP to manage router state,
and does not require routers to implement any additional
protocols. In particular, routers do not need to partici-
pate in control algorithms, making them simpler. Thus,
we believe that CM meets the requirements for practical
adoption that we laid out in the Introduction.

8 Conclusions
Centralized multicast is a new way of looking at mul-

ticast routing in the Internet. Traditionally, routers in
the Internet not only take part in forwarding the data
tra�c, but also in the routing protocol. This has led
to tremendous complexity of the routers, particularly for
multicast and as a result, IP multicast has not become
as mainstream a technology as was expected. As a solu-
tion to the problem, we have proposed centralized multi-
cast which uses a hierarchy of control elements to set up
multicast trees, leverages SNMP to update the routing
table entries and uses the routers simply as forwarding
engines. We have shown through analysis that CM scales
in state and message overhead and is very e�cient. We
also proved that CM can form a correct multicast tree for
a dynamically changing set of members within a bounded
time. As discussed in Section 7, we believe that CM is
suited for widespread adoption in the Internet. An im-
plementation of the scheme is currently in progress, and
will be reported on in future work.

9 Acknowledgements
The idea of centralized multicast arose, in part, in dis-

cussions with Rosen Sharma. The simulations on join
cost were done by Snorri Gylfason. Our sincere thanks to
them both.

References
[AP96] S. Aggarwal and S. Paul, \A Flexible Proto-

col Architecture for Multi-Party Conferencing,"
Proceedings of ICCCN'96, Pages 81-91, October
1996.

[B93] K.P. Birman, \The process group approach to
reliable distributed computing," Communica-
tions of the ACM, Vol.36, No.12, Pages 37-53,
December 1993.

[B97] A. Ballardie, \Core Based Trees (CBT
Version 2) Multicast Routing { Protocol
Speci�cation,"RFC-2189, September 1997.

[BCKR97] T. Bates, R. Chandra, D. Katz and Y. Rekhter,
\Multiprotocol Extensions for BGP-4," In-
ternet Draft, draft-ietf-idr-bgp4-multiprotocol-
01.txt, September 1997.

[BFC93] T. Ballardie, P. Francis and J. Crowcroft,\Core
Based Trees (CBT): An Architecture for Scal-
able Inter-Domain Multicast Routing," Proceed-
ings of ACM SIGCOMM '93, September 1993.

[BJ87] K.P. Birman and T.A. Joseph, \Reliable Com-
munication in the Presence of Failures," ACM
Transactions on Computer Systems, Vol. 5, No.
1, February 1987.

[BKTN98] S. Bhattacharyya, J.F. Kurose, D. Towsley
and R. Nagarajan, \E�cient Rate-Controlled
Bulk-Data Transfer using Multiple Multicast
Groups," To appear in Proceedings of IEEE IN-
FOCOM '98.

[BR94] K.P. Birman and R. van Renesse, \Reliable
Distributed Computing with the ISIS Toolkit,"
IEEE Computer Society Press, Los Alamitos,
California, 1994.

[BZB+97] B. Braden, Ed., L. Zhang, S. Berson, S. Her-
zog and S. Jamin, \Resource ReSerVation Pro-
tocol (RSVP) { Version1 Functional Speci�ca-
tion," RFC-2205, September 1997.

[D88] S.E. Deering, \Multicast Routing in Inter Net-
works and Extended LANs," ACM Computer
Communications Review, Vol. 19, No. 4, 1988,
Pages 55-64.

[D89] S.E. Deering, \RFC-1112: Host Extension for IP
Multicasting," August, 1989.

[DO97] D. DeLucia and K. Obraczka, \Multicast Feed-
back Suppression Using Representatives," Pro-
ceedings of IEEE INFOCOM'97.

[DEF+94] S.E. Deering, D. Estrin, D. Farinacci, V. Jacob-
son, C-G Liu and L. Wei, \An Architecture for
Wide-Area Multicast Routing," Proceedings of
ACM SIGCOMM '94, Pages 126-135, October
1994.

[DEF+96] S.E. Deering, D. Estrin, D. Farinacci, V. Ja-
cobson, C-G Liu and L. Wei, \The PIM Ar-
chitecture for Wide-Area Multicast Routing,"
IEEE/ACM Transactions on Networking, Vol.
4, No. 2, Pages 153-162, April 1996.

[EFH+97] D. Estrin, D. Farinacci, A. Helmy, D. Thaler,
S. Deering, M. Handley, V. Jacobson, C.
Liu, P. Sharma, L. Wei, \Protocol Indepen-
dent Multicast-Sparse Mode (PIM-SM): Proto-
col Speci�cation," RFC-2117, June 1997.

[EHT97] D. Estrin, M. Handley and D. Thaler,
\Multicast-Address-Set advertisement and
Claim mechanism," Work in Progress, June
1997.

[FJM+95] S. Floyd, V. Jacobson, S. McCanne, C-G. Liu
and L. Zhang, \A Reliable Multicast Framework
for Light-weight Sessions and Application Level
Framing," Proceedings of ACM SIGCOMM '95,
Pages 342-356, October 1995.

[GAV+ 98] . Govindan, C. Alaettinoglu, K. Varadhan, D.
Estrin, \Route Servers for Inter-Domain Rout-
ing," to appear in Computer Networks and ISDN
Systems, 1998.

[H96] M. Hofmann, \A Generic Concept for Large-
Scale Multicast," Proceedings of International
Zurich Seminar on Digital Communications
(IZS '96), Zurich, Switzerland, Springer Verlag,
February 1996.

[HSC95] H.W. Holbrook, S.K. Singhal and D.R. Cheri-
ton, \Log-Based Receiver-Reliable Multicast for
Distributed Interactive Simulation," Proceedings

of ACM SIGCOMM '95, Pages 328-341, October
1995.

[J94] V. Jacobson, \Multimedia Conferencing on the
Internet," Tutorial 4, ACM SIGCOMM 94, Au-
gust 1994.

[L96] N. Lynch, \Distributed Algorithms," Morgan
Kaufman'96.

[LLG96] B.N. Levine, D.B. Lavo, and J.J. Garcia-Luna-
Aceves, \The Case for Reliable Concurrent Mul-
ticasting Using Shared ack Trees," Proceedings
of ACM Multimedia '96.

[LPA98] X. Li, S. Paul and M.H. Ammar, \Layered Video
Multicast with Retransmission (LVMR): Evalu-
ation of Hierarchical Rate Control," To appear
in Proceedings of IEEE INFOCOM '98.

[M97] T. Montgomery, \A Loss Tolerant Rate Con-
troller for Reliable Multicast," IRTF Meeting,
Cannes, France, September 1997.

[Mo94] J. Moy. Multicast routing extensions for OSPF,
Comm. of the ACM Vol. 37, No. 8, Pages 61-66,
August 1994.

[Mo94a] J. Moy, \OSPF Version 2," RFC-1583, March
1994.

[Mo94b] J. Moy, \Multicast Extensions to OSPF," RFC-
1584, March 1994.

[MJV96] S. McCanne,V. Jacobson and Martin Vetterli,
\Receiver-Driven Layered Multicast," Proceed-
ings of ACM SIGCOMM '96, October 1996.

[NBT97] J. Nonnenmacher, E. Biersack, and D. Towsley,
\Parity-Based Loss Recovery for Reliable Mul-
ticast Transmission," Proceedings of ACM SIG-
COMM '97, September 1997.

[P92] R. Perlman \Interconnections: Bridges and
Routers," Addison-Wesley Publishing Company,
INC., 1992.

[PSLB97] S. Paul, K.K. Sabnani, J.C. Lin, and S. Bhat-
tacharyya, \Reliable Multicast Transport Proto-
col (RMTP)," IEEE Journal on Selected Areas
in Communications, Vol. 15, No. 3, April 1997,
Pages 407-421.

[TEM97] D. Thaler, D. Estrin and D. Meyer, \Border
Multicast Routing Protocol (BGMP): Protocol
Speci�cation," Internet Draft, draft-ietf-idmr-
gum-01.txt, expires April 1998.

[WMK95] B. Whetten, T. Montgomery, and S. Kaplan,
\A High Performance Totally Ordered Multicast
Protocol," Theory and Practice in Distributed
Systems K.P. Birman, F. Mattern, A. Schiper
(Eds) Springer Verlag LNCS 938.

[VR98] L. Vicisano and L. Rizzo, \TCP-like Congestion
Control for Layered Multicast Data Transfer,"
To appear in Proceedings of IEEE INFOCOM
'98.

[YGS95] R. Yavatkar, J. Gri�oen, and M. Sudan, \A
Reliable Dissemination Protocol for Interac-
tive Collaborative Applications,"Proceedings of
ACM Multimedia '95, Pages 333-344.

[ZCD 97] .W. Zegura, K. Calvert and M.J. Donahoo, \A
Quantitative Comparison of Graph-based Mod-
els for Internet Topology," IEEE/ACM Trans-
actions on Networking , December 1997.

[ZDE+93] L. Zhang, S. Deering, D. Estrin, S. Shenker
and D. Zapppala, \RSVP: A New Resource
ReSerVation Protocol," IEEE Network Maga-
zine, September 1993.

