
Sharing Private Information
Across Distributed Databases

Michael Siegenthaler
Dept. of Computer Science

Cornell University
msiegen@cs.cornell.edu

Ken Birman
Dept. of Computer Science

Cornell University
ken@cs.cornell.edu

Abstract—In industries such as healthcare, there is a need
to electronically share privacy-sensitive data across distinct
organizations. We show how this can be done while allowing
organizations to keep their legacy databases and maintain own-
ership of the data that they currently store. Without sending or
mirroring data to any trusted, centralized entity, we demonstrate
how queries can be answered in a distributed manner that
preserves the privacy of the original data. This paper explains our
distributed query execution engine, outlines how to bootstrap the
system when only real world identifiers such as a name and date-
of-birth are initially known, and offers details on the tradeoff
between privacy and performance. We evaluate the scalability of
this approach through simulation.

I. INTRODUCTION

With the ubiquity of computers and the Internet, it has
become commonplace to store data about people in electronic
databases, and also to exchange that data with business part-
ners and service providers electronically. In domains where
much of the data is considered private and confidential, how-
ever, the technology to exchange that data in a secure manner
has lagged far behind the ability to store such data locally.
Different hospitals, for example, may each use a separate
proprietary database that their own staff and certain closely
affiliated external specialists may use, but any communication
with an organization not in the system must be performed
manually via paper printouts, faxes, and phone calls. We
present a system that can support the exchange of such data
while revealing only the minimum amount of information that
is necessary to accomplish a particular task. Our technology
is not domain specific, though it is perhaps most compelling
for the healthcare industry because in that area there is both a
desire to openly share information with anyone who needs it
and a high expectation that data will not be exposed to public
view or otherwise fall into the wrong hands.

We envision a system where data remains stored with the
organization that generated it, rather than being handed over
to some trusted centralized entity. Participating organizations
may run SQL-like queries against the distributed data, subject
to some policy which grants or denies access on a fine-grained
level. In this paper we show how to discover the existence of
remote data and how to run queries against it. We provide the
following privacy features:

This work was supported, in part, by the Institute for Information Infras-
tructure Protection (I3P) and the National Science Foundation.

(a) Data privacy: The query asker learns only the answer to
the query, and not any of the data used to compute it.

(b) Query privacy: The data owner does not learn the query,
only that a query was performed against a particular
user’s information.

(c) Anonymous communication: Query askers and data own-
ers do not know who the opposite party is.

It is possible, in our current system, to pose queries which
directly or indirectly violate one or several of the above
properties. We focus on legitimate queries in this paper; details
on access control are in our prior publication [1].

Data privacy is the motivation for our work, since it permits
data to be shared on a minimally revealing, need-to-know
basis. Anonymous communication is also important because
either the query asker or the data owner might be a specialist,
for example an AIDS clinic, where merely revealing that the
patient is in some way associated with an organization of that
nature would constitute a privacy violation. Similarly, a query
might contain information about a specific condition of the
patient that some of the data owners do not already know
about.

It must be noted that our model of data privacy is one of
soft constraints. It would be unthinkable to impose restrictions
so strict that an emergency room doctor does not have access
to vital information for a patient who has been injured dur-
ing distant travel from his home hospital and primary care
provider. At the same time, there are less critical situations
in which only limited information should be revealed because
the data user, while authorized, may not be trusted to guard
the information as stringently as the provider of that data
does [2]. Our contribution is a technology that enables such
heterogeneous use-scenarios by soft enforcement of privacy
policy.

II. RELATED WORK

Traditional database security techniques can be grouped
largely into discretionary and mandatory access control. [3]
Discretionary access control permits access controls to be
specified over columns or entire tables either on a per-user
or role-based [4] basis. Mandatory access control defines
permissions in terms of an ordered set of classes such as “top
secret” or “confidential”. Each data object and each principal
is labeled with a class, and reads and writes are restricted such



that information can never flow from a higher security class
to a lower one.

Privacy protection additionally requires row-level access
control, for which prior work exists in both the discretionary
[5] and mandatory [6] security models. We believe that the
discretionary access control offers more flexibility in a world
of read-only data sharing among a diverse set of organizations,
and will assume that such a model is in place. The specific
policies may be described in a privacy policy specification
language such as P3P [7] or EPAL [8].

Highly relevant is the prior work in the area of Hippocratic
databases [9]. These databases are designed such that data
collection and disclosure are only performed with the consent
of the user who’s data is in question. Limited disclosure has
been previously explored for centralized databases [10]. Our
work differs in that we focus not on policy enforcement itself,
but on a distributed execution model that limits disclosure
when multiple parties collaborate to answer a query.

In the area of distributed databases, the TIHI (Trusted
Interoperation of Healthcare Information) project [11] uses
a trusted mediator to determine which queries should or
should not be allowed. More recently, several commercial
systems have been developed that are actually centralized
databases which information is pushed into from distributed
sources. The most well known of these are Google Health
[12] and Microsoft HealthVault [13]. These are consumer-
facing services which allow the patient to enter and manage
their own information, as well as create sub accounts to allow
healthcare providers direct access. Each company provides an
API to allow healthcare providers to push/pull information
to/from the centralized record. All of the commercial systems
are characterized by data storage at a centralized, trusted entity.
While the convenience of a single comprehensive personal
health record may outweigh the privacy risks for many people,
these systems do not eliminate the need for providers to keep
electronic medical records for their own internal use. We
believe there will always exist a need for these providers to
selectively share data from their internal records with affiliated
organizations, as permitted by law and required by business
processes, without requiring the patient’s involvement.

The trusted third-party can be eliminated by cryptographic
techniques, as investigated by Agrawal et al [14]. Their work is
more theoretical and focuses specifically on the join technique;
they show that it is possible to perform a join without involving
a third party comparer as we do. Their technique relies on
commutative encryption and shipping entire database tables
across the network; one of the hosts can then compare the
encrypted values and decide whether the plaintext matches,
without seeing the plain text except for items that are al-
ready in that host’s local database. Although we present an
alternative join technique, the cryptographic methods could
certainly be integrated into our system as well, and would
be particularly useful if a need arises to perform joins on
personally identifying data such as names.

Canetti et al. [15] showed how to solve a similar problem as
ours where an aggregate value is computed such that the asker

does not learn the source data and the data owners do not learn
the query. Their work, however, concentrates on scenarios
where the query and the data, but not the answer, is sensitive,
and where the data owner does not find out which records
were queried. For our application, an answer may sometimes
be more than just a boolean or numerical value, and should
be treated as potentially sensitive, while the knowledge that a
particular user’s record was queried does not reveal anything
useful as long as our other privacy properties are met.

A large body of work exists on information leakage from
supposedly anonymized databases [16], along with solutions
including k-anonymity and l-diversity. [17] Although our work
does not involve data publishing per say, some of the same
attacks could conceivably be carried out by a party that has the
opportunity to pose multiple queries in sequence. We do not
address such data mining attacks in this paper, instead taking
the view that once a user has authorized an organization to
pose queries, minimum disclosure principles should be applied
on a best-effort basis and not so strictly that the user might be
denied proper medical care because a legitimate query could
indirectly lead to a privacy violation.

Also relevant is the Security Assertion Markup Language
(SAML) [18], the eXtensible Access Control Markup Lan-
guage (XACML) [19], and related standards. These XML-
based standards support exchanging authentication and autho-
rization data, and declaring access control policies, respec-
tively. We see SAML-based systems as providing a policy
(possibly in XACML) for which types of queries are allowed
and which are not, and our system then executing the query
in accordance with the policy.

III. DATA AND QUERY MODEL

A. Provider Characteristics

Let us suppose that personal information is stored at organi-
zations known as data providers. A data provider typically is
an existing brick-and-mortar business which maintains infor-
mation about its customers in some internal database with a
proprietary schema. We are not concerned about this schema;
it is sufficient for the organization to provide some read-only
views into this data conforming to standardized schemas. Each
view consists of tuples of the form (id, attr1, attr2, . . .) where
id is a locally unique identifier for each person.

B. Network Model

Data providers are in a network with universal connectivity
and asynchronous messaging. In this paper we use the Internet
with a web services layer built on HTTP+SSL. Providers
are themselves responsible for ensuring the availability and
persistence of any data that they control. A provider may
in general consist of a collection of nodes; individual nodes
perform actions on behalf of the provider and the addition or
removal of a particular node should not be visible outside of
that provider.



C. Security Model

Standard cryptographic capabilities are assumed. Providers
have public keys K and private keys k. A provider A com-
municating with B is able to sign messages it sends using a
function S(kA, msg) and verify the signature on messages that
it receives using V (KB , msg). It may also encrypt and decrypt
messages using functions E(KB , msg) and D(kA, msg). Ad-
ditionally, providers must be able to verify that any other
providers with which they communicate are authorized to
participate in the system. This is accomplished by having the
public keys signed by a trusted accreditation agency.

D. Query Requirements

Participants in the system wish to run queries against data
that is distributed throughout the system. Known identifying
information, such as a social security number or a combination
of name and date-of-birth is used to indicate whose data the
asker is interested in; we do not consider the use of such
information to be a privacy threat in this context because
it is typically already known by the types of organizations
targeted by our work. We do not consider erroneous identifiers
or persons with multiple aliases in this paper.

Queries are written in a relational algebraic language similar
to SQL. Standard select, project, and join operations are
performed against tables that are fragmented across various
providers, and the results may range from yes/no answers
computed over the data to actual values of data found in the
tables. Results must not contain any information that the asker
is not authorized to discover. In this paper we focus on the
query execution, leaving the decision of determining which
queries should be permitted for future work.

All aggregation of information across table fragments at
different organizations is performed at query time. Records
are kept separate in the underlying databases and only the
links between them are stored; this ensures that any erroneous
linkages may be undone without leaving the original data in
a polluted state.

E. Example Query

It is helpful to consider some specific examples of the
types of queries our system supports before looking at the
architecture in detail.

Example 1: A pharmacist needs to check if a patient might
be vulnerable to a drug interaction. This involves creating a
list of drugs that might conflict with the prescription currently
being filled, and querying the system to see if any of those
drugs have been taken by the patient in the past. A yes/no
answer should be returned, but the pharmacist should not
learn anything more about the patient’s medical history. Any
data providers who help answer the query (hospitals, other
pharmacies) should be assured that the patient has authorized
a query, but they should not learn what is being queried for,
or from which pharmacy the query originates.

Example 2: Two companies have agreed to a joint-venture
and wish to find out who their mutual customers are. Both
companies should learn the intersection of their customer

databases, but should not learn anything about customers of the
other company who are not in the intersection. Third-parties
cannot be trusted and thus should not learn anything that might
be useful to them.

IV. ARCHITECTURAL MODEL

A. Requirements

The goal of the architecture is to support queries that reveal
enough information so that organizations can go about their
business, and no more. For the sake of clarity and to permit
better optimization later, we split querying into two phases.
Phase 1 performs a global search for records pertaining to the
person in question and returns a set of data handles, each of
which indicates the presence of a record somewhere in the
system but does not reveal where that record resides. Phase 2
uses the data handles to execute a relational algebraic query,
while keeping the original data hidden from the asker and
keeping the query hidden from the data owners.

An anonymous communication primitive is required both
in global search and query execution. For this, we rely on the
well known technique of onion skin routing [20]. A message
m from provider A to provider B will be encrypted first
with the pubic key of B, KB . The tuple (B,E(KB ,m)) will
then be encrypted with KC and the result combined into a
tuple with the address of C, and so on, recursively. At some
point, A sends the encrypted message to the provider D whose
public key was used for the outermost layer of encryption. D
decrypts the message and sees a tuple (C, binary blob), and
sends it to C, who does the same and sends the result to B,
who finally uses its private key kB to recover the original
message m. A response may be sent by having each provider
keep a log of forwarded messages and where each came from
for a short interval, and routing responses along the path
in reverse. The plaintext of the response may be encrypted
with a symmetric key that was chosen by provider A and
included with the original message m. This is done so that
only provider A, and not those along the reverse path, can read
the response. In addition to using routing that is reminiscent
of the peeling of an onion, a robust anonymous messaging
system divides communication into rounds with fixed message
sizes and requires all nodes to send a message in each round,
even when idle. This prevents a traffic analysis attack from
uncovering who speaks with whom, and is only required if an
adversary is assumed to have the capability of monitoring link
traffic in multiple locations within the network.

B. Search Mechanism

Global search is a mechanism for discovering the existence
of records pertaining to a particular person, without learning
where those records are actually stored. A global search
operation takes a commonly used, unique identifier such as
SSN or name/DOB combo as input and returns a set of abstract
data handles that may be used to route messages anonymously
to the data owners.

Abstractly, global search may be thought of as a mechanism
to broadcast an identifier to all organizations in the system



Fig. 1. Providers organize into a hierarchy of groups

and collect responses from those organizations at which there
is a match. In practice, a global broadcast would not scale
well, so we need to impose some intelligent limits on which
organizations a search touches.

To achieve scalability, our system organizes into a hierarchy
of groups, with the lowest grouping level having a handful of
providers per group and the highest level containing every
provider in the system. Figure 1 illustrates the resulting struc-
ture of groups and subgroups. Each group has an associated
Bloom filter [21]. A provider inserts its customer list into the
Bloom filter for every group that the provider belongs to.

A search is performed by sending a request to a designated
provider who maintains a local copy of the root level Bloom
filter. In general there are multiple such providers, to balance
the load. This provider checks the Bloom filter for a match,
and finding one, recursively sends the request to the designated
providers for the subgroups composing the next lower level.
Alternately, if no match is found, the request is silently
discarded. The same process takes place at any non-root
groups that a search request percolates down to. Eventually the
non-discarded copies of the request arrive at the lowest level
of the group hierarchy, where the base case of the recursion
checks the request against the actual local database instead of
another Bloom filter. Here again, the request may be discarded
(due to a false positive in the Bloom filter), or if a match
exists, a data handle is returned to the provider that initiated
the search.

The data handle is an onion skin route, with a nonce to
identify the matching record at its core. This permits the
provider who initiated the search to communicate with the
data owner in the future, without either of them knowing the
identity of the other. For brevity of notation, we will use an �
to represent a data handle when the details of the onion skin
route are not important. For example, a data handle pointing
to nonce 34 at provider 2, and routed through provider 1 is
simply: (

P1, E
(
KP1 ,

(
P2, E(KP2 , 34)

)))
= �(34)

In order for data handles to be returned to an anonymous
search originator, each search request includes an onion skin
route. Wherever a match occurs, this route can be utilized to
reply to the search originator. This raises a few issues:
(a) The plaintext of the search response (data handle) must

be encrypted with the public keys of all the providers on
along the route, so that the encryption may be stripped off

in layers and the plaintext recovered at the destination.
Knowing these public keys, however, would defeat the
anonymity of the route.

(b) The search originator, who created the route, may have
chosen the outermost encryption layer (first hop) to be a
colluding host who will reveal the identity of any data
owner who sends a message via the route.

We solve (a) by having each search request include an ag-
gregate public key, in addition to the onion skin route, which
when applied in an encryption operation has the same effect
as the application of each individual public key in sequence.
Since encryption primitives are based on linear operations,
this is not hard to achieve. The data owner can thus create an
encrypted message such that the encryption may be stripped
off in layers by the application of each private key along the
route, hiding the message from intermediate hosts. The data
owner cannot cannot learn the path because that would require
checking exponentially many combinations of the public keys
in the system to find which combination gives the aggregate
public key. We solve (b) by allowing the data owner to add
several additional layers of encryption to the outside of the
onion skin route, thereby introducing additional hops between
itself and the potentially colluding host in order to hide its
identity.

To ensure privacy, it is important for each group to contain a
diverse set of providers; otherwise information could be leaked
by, for example, observing that there exists a record for SSN
112-55-3434 in a group where every provider in the group
specializes in treating alcoholism. Additionally, false positives
in the Bloom filter help to protect privacy. A false positive
gives the appearance that a particular person has a record
within a group, when in fact no such record exists. When a
search triggers a false positive, it will proceed to search each
subgroup, but will eventually be silently discarded when there
is no match. Thus, an adversary who observes a match in a
particular group cannot be certain whether it is a true match
or a false one.

C. Bloom Filter Configuration

In order to balance the privacy provided by false positives
during the search process against the performance hit of taking
too many false positives, it is necessary to appropriately set
the Bloom filter parameters, k and m. For a filter containing
n records, the proportion of false positives r is given by [22]:

r =
(
1− 1

(
1− 1

m

)kn
)k

Parameter m configures the length of the bit vector repre-
senting the Bloom filter, and k indicates how many unique
hashes of each record are inserted into the filter. The value of
k is typically a small integer (usually less than 10) in order
to prevent the Bloom filter from becoming completely filled
in with 1’s (leading to 100% false positives) too quickly. We
rewrite the above equation to find m for a given r, n, and k.

m =
1

1−
(
1− r

1
k

) 1
kn



Finding the parameters for an efficient (in terms of storage
space) filter is thus reduced to trying each 2 ≤ k ≤ 10 (for
example) and choosing the one that results in the smallest m.
Table I shows the storage space that would be required for a
variety of false positive rates at population sizes that might be
encountered in various levels of the search hierarchy.

TABLE I
STORAGE SPACE REQUIRED FOR EACH BLOOM FILTER BY FALSE POSITIVE

RATE AND POPULATION SIZE

False
Positives Population

1 K 10 K 100 K 1 M 10 M 100 M
5% 780 B 7 KB 78 KB 780 KB 7 MB 78 MB

10 % 601 B 6 KB 60 KB 601 KB 6 MB 60 MB
25 % 360 B 3 KB 36 KB 360 KB 3 MB 36 MB
50 % 203 B 2 KB 20 KB 203 KB 2 MB 20 MB
75 % 124 B 1 KB 12 KB 124 KB 1 MB 12 MB

D. Join Technique

Once the data handles pertaining to the desired query have
been discovered, the actual query must be executed. It is not
safe for the organization that is asking the query to simply
retrieve the records from the remote hosts, since those records
might contain a substantial amount of private information
which is used to compute the answer of the query but which
should not itself be revealed. Nor is it acceptable to send the
query to the data owners and ask them to return the answer;
the query itself might contain information that should be kept
private from the data owners, or the answer may depend on
data from a set of providers.

We assume that select and project operations can always
be performed at the location where the relevant data resides.
Joins, on the other hand, are where the aforementioned prob-
lem arises because the tables being joined cannot necessarily
be shared. Select operations may be rewritten as joins if it is
required to hide the select condition from the data provider at
which the table being selected from resides.

The procedure for performing a query involving a join is
shown in figure 2. First, the query asker uses the data handle
to route a message to the data owner expressing an interest
in performing a join. Each provider selects a random number,
transmits its hash, and upon receiving the other side’s hash
reveals the number it chose. The sum of these numbers is
used as a random seed to choose a blind comparer to perform
the join, and the hashes serve to prevent either provider from
choosing its number such that the comparer will be a colluding
host. Two onion skin routes are also created so that the query
asker and the data owner each have a way to send messages
to the comparer without revealing their own identities.

Next, the asker splits the query into two portions. The
first part consists of a simple select statement which accesses
the relevant data; this gets sent anonymously to each data
owner, using the data handles as onion skin routes, along
with instructions that the data owner should send the selected
data to the blind comparer by way of the specified route. The
second part consists of the original query, from the point of
the join onward, and gets sent also to the blind comparer.

Fig. 2. Query execution overview

“Blind” in this sense means that the comparer cannot see
where either the data or the query came from; the comparer
does in fact see both the query and the data in plain text,
which is a requirement for being able to perform the join.
Queries are written such that any personally identifying data
(name, SSN. . . ) is projected away before performing a join;
thus any sensitive facts learned by the blind comparer are
useless because they cannot be traced to a particular person.
Even if the facts themselves are enough to uniquely identify a
particular individual, the host would need to have a substantial
amount of background knowledge in order to make such an
inference, and this is unlikely for a randomly chosen blind
comparer.

Taking a step back, we observe a tradeoff between revealing
the query to the data owner and revealing the data to some
third-party, depending on the selectivity of the query portion
that gets sent to the data owner.

(a) At one extreme, the data owner learns the full query.
(b) At the other extreme, the data owner must ship all of it

out to a random blind comparer (who won’t be able to
do anything with it)

(c) A general question can be posed using method (a) to
filter the data somewhat, and then the specific question
of interest posed using method (b)

The filter function should be as specific as possible, without
revealing too much to the data owner, in order to reduce the
amount of data transferred to the blind comparer. We do not
consider in this paper how to determine the filter function,
but it could be either specified by the query asker or chosen
automatically from a set of application-specific filters that are
defined along with the database schema.

E. Query Execution

The query given earlier in example 1 may be written as:

SELECT EXISTS (
SELECT * FROM conflicts
CROSS JOIN nonces
INNER JOIN remote(drug_history)
ON nonces.nonce = drug_history.nonce
WHERE conflicts.drug = drug_history.drug

);



The conflicts table referred to in the query is a simple list
of the conflicting drugs. The nonces table contains the set of
data handles for the patient, discovered via an earlier global
search operation.

TABLE II
CONFLICTS

drug
A——
B——

TABLE III
NONCES

nonce
�(34)
�(56)

The parse tree, shown in figure 3, may be executed starting
at the leaves for the local tables and proceeding up the tree.

Fig. 3. Original query

When a join depending on remote data is reached, a filter
query is sent anonymously to the data owner for each data
handle, asking it to send the relevant data to a randomly
selected blind comparer.

SEND (
SELECT nonce,drug FROM drug_history
WHERE drug_history.nonce = O(34)

);

The parse tree for this is shown in figure 4.
The intermediate table at the query asker (query table) and

the remaining portion of the query to be executed is sent to
the blind comparer as well.

SELECT EXISTS (
SELECT * FROM query_table
INNER JOIN drug_history

Fig. 4. Filter query, to be executed by the data owner

ON query_table.nonce = drug_history.nonce
WHERE conflicts.drug = drug_history.drug

);

This parse tree is shown in figure 5.

Fig. 5. Remainder of the original query that must be executed at the blind
comparer

TABLE IV
QUERY TABLE

drug nonce
A—— 34
A—— 56
B—— 34
B—— 56

V. SCALABILITY

To evaluate the scalability of our scheme, we performed
some discrete event simulations on a realistic topology of
healthcare providers and patients who have records at multiple
providers. Due to the sensitive nature of real world data, sev-
eral attempts to obtain an actual topology were unsuccessful;
instead we generated our own, consisting of a small town with
35 providers and around 40 000 patients. Published statistics
[23][24] indicate a rough power law distribution in the size of
providers and in the frequency of patient visits, so the topology
took this into account. A few simulations were also performed



0 5 10 15 20 25 30 35
Provider Rank by New Request Rate

4

6

8

10

12

14

16

18

20
n
e
w

_r
e
q
_r

a
te

new_req_rate

Fig. 6. Query generation rate

0 5 10 15 20 25 30 35
Provider Rank by New Request Rate

10

20

30

40

50

60

70

80

90

d
a
ta

_r
e
q
_r

a
te

data_req_rate

Fig. 7. Data request rate

with hundreds of providers and millions of patients; similar
trends were observed as in the small town scenario.

Figure 6 shows queries being generated in the system at
an aggregate rate of 350 queries per second. Some providers
bear a larger portion of this load by virtue of having a higher
number of active patients. Providers are sorted along the
horizontal axis according to their load, and the same ordering
of providers will be used in further graphs.

In figure 7 we observe actual requests for data as they
arrive at the providers where the data is stored. Observe that
the same group of providers who generate a high query load
also bear a larger burden in serving those requests; this is
good because those organizations will have more computing
resources available.

Figure 8 gives a view into the amount of state that must
be kept at each provider to keep track of unanswered queries.
This of course depends directly on the latency in answering

0 5 10 15 20 25 30 35
Provider Rank by New Request Rate

0.5

1.0

1.5

2.0

2.5

3.0

re
q
u
e
st

_w
a
it

s

request_waits

Fig. 8. Number of unanswered queries for which state is being kept

Fig. 9. Bloom filter parameters

queries; the data shown assumes a 10 ms link latency between
any two providers and an onion skin route length of 5 hops.

The Bloom filter used in searching for data records has
adjustable parameters, and it is important to set them correctly
in order to achieve enough false positives to protect privacy,
yet not so many that every search request gets routed to every
provider. In figure 9 we adjusted the the number of hashes,
K, and the length of the filter array, M , while injecting 10
queries per second into the system (the results depend on the
topology of patient to provider mappings, not on the query
rate, hence the choice of a low value). In the red area, searches
are essentially broadcast to every provider; in the dark blue,
the Bloom filter is very selective and prevents false matches.

Within the middle zone of figure 9, false positives occur
at various levels in the search hierarchy. Table V gives an
example where only 2% of the searches actually get routed to
a provider where no match exists, and the rest are eliminated
in the hierarchy above that. Although those providers who are
responsible for routing messages still see the searches at the



TABLE V
HISTOGRAM OF FALSE POSITIVE LOCATIONS FOR M = 65536 AND

K = 6

Cumulative
proportion of

Level false positives
1 2.0%
2 22.6%
3 81.3%
4 99.5%
5 100.0%

higher levels, this task can easily be distributed if the load is
too high at any particular site.

VI. ACCESS CONTROL

Thus far we have presented a general framework for query-
ing, which does not prevent the user from writing queries that
deliberately reveal private data. Data privacy only holds to the
extent that the answer to a query does not reveal the data used
to compute it. Clearly, there must be a mechanism in place
to decide which queries should be allowed based on a user-
specified policy. Our system quantifies the privacy leakage that
would result from a particular query, and uses a currency-like
system to make the query asker pay for the right to know
the answer. A more revealing query has a higher cost. The
cost is not one of real-world money, but of symbolic tokens
which are supplied by the system to organizations that are
authorized to perform queries. Tokens are issued according to
a budget that takes into account each organization’s business
needs and gives it enough to execute the required queries to
fulfill those needs, but does not leave a significant excess to be
used on extraneous queries. The full details of this technique
are published elsewhere [1].

VII. CONCLUSION

We have presented here a system for storing and querying
private data in a distributed manner. Anonymity of com-
munication, data privacy, and query privacy are supported.
The system scales and has parameters to adjust the tradeoff
between better privacy and lower resource usage. More work
is needed on the details, especially on the issue of deciding
which queries are allowable and which are not, but the
basic technology now exists to build an infrastructure that
permits electronic sharing of sensitive data across organization
boundaries.

REFERENCES

[1] M. Siegenthaler and K. Birman, “Privacy enforcement for distributed
healthcare queries,” in Pervasive Health 2009, 2009.

[2] T. C. Rindfleisch, “Privacy, information technology, and health care,”
Commun. ACM, vol. 40, no. 8, pp. 92–100, 1997.

[3] R. Ramakrishnan and J. Gehrke, Database Management Systems.
McGraw-Hill Science/Engineering/Math, 2002.

[4] R. S. S, E. J. C. K, H. L. F. K, and C. E. Y. K, “Role-based access
control models,” 1996.

[5] Oracle Corporation, “The virtual private database in oracle9ir2: An
oracle technical white paper,” 2002.

[6] T. level Vs. Element-level Classification, X. Qian, and T. F. Lunt,
“Database security, vi: Status and prospects, 301–315. 1,” 1992.

[7] L. Cranor, M. Langheinrich, M. Marchiori, and J. Reagle, “The platform
for privacy preferences 1.0 (p3p1.0) specification,” W3C Recommen-
dation, Apr. 2002. [Online]. Available: http://www.w3.org/TR/P3P/

[8] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter, “Enterprise
privacy authorization language (epal 1.2),” IBM, Tech. Rep., 2003.
[Online]. Available: http://www.zurich.ibm.com/security/enterprise-
privacy/epal/Specification/index.html

[9] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic databases,”
2002, pp. 143–154.

[10] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and
D. DeWitt, “Limiting disclosure in hippocratic databases,” in VLDB ’04:
Proceedings of the Thirtieth international conference on Very large data
bases. VLDB Endowment, 2004, pp. 108–119.

[11] G. Wiederhold, M. Bilello, V. Sarathy, and X. Qian, “A security
mediator for health care information,” in Proceedings of the 1996 AMIA
Conference, 1996, pp. 120–124.

[12] Google Health, “http://www.google.com/health.”
[13] Microsoft HealthVault, “http://www.healthvault.com/.”
[14] R. Agrawal, A. Evfimievski, and R. Srikant, “Information sharing

across private databases,” in Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data. ACM Press, 2003,
pp. 86–97.

[15] R. Canetti, Y. Ishai, R. Kumar, M. K. Reiter, R. Rubinfeld, and
R. N. Wright, “Selective private function evaluation with applications
to private statistics,” in PODC ’01: Proceedings of the twentieth annual
ACM symposium on Principles of distributed computing. New York,
NY, USA: ACM, 2001, pp. 293–304.

[16] R. Anderson, “An integrated survey of
medical databases,” 1998. [Online]. Available:
http://www.clcam.ac.uk/simrja14/caldicott/caldicott.html

[17] D. Kifer and J. Gehrke, “l-diversity: Privacy beyond k-anonymity,” in
In ICDE, 2006.

[18] OASIS, “Security assertion markup language (saml)
v2.0 technical overview,” 2008. [Online]. Avail-
able: http://www.oasis-open.org/committees/download.php/27819/sstc-
saml-tech-overview-2.0-cd-02.pdf

[19] ——, “extensible access control markup language (xacml)
version 2.0,” 2005. [Online]. Available: http://docs.oasis-
open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf

[20] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–90, 1981.

[21] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[22] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison,
M. Smid, and Y. Tang, “On the false-positive rate of bloom filters,” Inf.
Process. Lett., vol. 108, no. 4, pp. 210–213, 2008.

[23] U. D. of Health and H. Services, “National ambulatory
medical care survey: 2005 summary,” 2007. [Online]. Available:
http://www.cdc.gov/nchs/data/ad/ad387.pdf

[24] ——, “Summary health statistics for u.s. adults: National
health interview survey, 2006,” 2007. [Online]. Available:
http://www.cdc.gov/nchs/data/series/sr 10/sr10 235.pdf


