
Process Algebra and Non-interference

P Y A Ryan
Defence Evaluation and Research Agency

St Andrews Road, Malvern, UK

S A Schneider
Royal Holloway, University of London

Egham, Surrey, UK, TW20 0EX

Abstract

The information security community has long debated
the exact definition of the term ‘security’. Even if we fo-
cus on the more modest notion of confidentiality the precise
definition remains controversial. In their seminal paper [4],
Goguen and Meseguer took an important step towards a
formalisation of the notion of absence of information flow
with the concept of non- interference. This too was found to
have problems and limitations, particularly when applied
to systems displaying non-determinism which led to a pro-
liferation of refinements of this notion and there is still no
consensus as to which of these is ‘correct’.

We show that this central concept in information secu-
rity is closely related to a central concept of computer sci-
ence: that of the equivalence of systems. The notion of non-
interference depends ultimately on our notion of process
equivalence. However what constitutes the equivalence of
two processes is itself a deep and controversial question
in computer science with a number of distinct definitions
proposed in the literature. We illustrate how several of the
leading candidates for a definition of non-interference mir-
ror notions of system equivalence. Casting these security
concepts in a process algebraic framework clarifies the re-
lationship between them and allows many results to be car-
ried over regarding, for example, composition and unwind-
ing.

We also outline some generalisations of non-interference
to handle partial and conditional information flows.

1. Introduction

It is a source of mild embarrassment that the information
security community has not yet reached a consensus as to
the precise meaning on the term ‘security’ or even to the
simpler question of what is meant by confidentiality. It is
clear that confidentiality boils down to the absence of cer-
tain undesirable information flows, but this begs the ques-
tion of what constitutes an information flow or its absence.

c
�

IEEE. Appeared in Proceedings of CSFW 12.

The thesis of this paper is that the characterisation of the
absence of information flow reduces to characterising the
equivalence of systems. The latter is of course a central con-
cept in computer science and here too we find that there is
no single agreed definition of what constitutes equivalence.
Instead we again find a proliferation of definitions and it
seems that which is appropriate depends on the particular
application. Indeed, as we will show in detail in the later
sections of this paper, there is a close correspondence be-
tween formulations of non-interference and formulations of
process equivalence. It appears that by and large the propo-
nents of the various forms of non-interference were unaware
of the analogies with notions in the process algebra commu-
nity and were independently reinventing these concepts in
the security context.

A number of attempts to unify the various formulations
of non-interference have been published recently, notably
McLean [8] and Foccardi and Gorrierri [2]. These are very
elegant and illuminating. We believe that identifying the
analogies between the concepts in the security and the pro-
cess algebra communities sheds further light on the notion
of confidentiality and in particular helps explain the prolif-
eration of definitions of confidentiality. Indeed the security
community can perhaps derive some solace from the ob-
servation that the problem of defining non-interference is
equivalent in difficulty to one of the central problems of
computer science and so it should not be a source of sur-
prise that consensus has eluded us.

Process algebras, in particular CSP, provide a general
framework for describing interacting systems. Many of the
formulations of confidentiality that one finds in the litera-
ture are presented in rather specialised and often specially
tailored models of computation, so recasting them in a pro-
cess algebra allows them to be generalised and compared.
Another advantage of using a process algebraic framework
is that it allows us to apply a number of established results,
such as the completeness of unwinding rules, and composi-
tionality.

We start with a brief overview of those aspects of CSP
that we use in this paper. We then present a number of
formulations of non-interference in a CSP style. In Sec-

1

tion 4 we discuss some generalisations of non-interference
designed to encompass a richer class of security policies.

2. Process algebra

Process algebras provide a particular approach to the
study of concurrency and interaction. This paper bases its
discussion within the framework of the process algebra CSP
(Communicating Sequential Processes). A full account of
this process algebra can be found in [11, 15]. It provides a
language for describing interacting systems, together with a
semantic theory for understanding them. This section pro-
vides a brief reminder of those aspects most relevant to this
paper.

The language of CSP is constructed around events: in-
stantaneous synchronisations which provide the communi-
cation primitive. Events may have some structure, the most
common communication being a channel communication of
the form c � v, where c is the channel name, and v is the value
communicated. For the purposes of this paper we will di-
vide

�
, the set of all events, into two classes: H (high) and

L (low). The set H will be further divided into high inputs
HI and high outputs HO.

Processes are used to describe possible patterns of in-
teraction. In CSP, a process has an alphabet, or interface:
the set of events it is able to synchronise on. The process
c � v � P describes a process which is prepared to output
v on channel c, and behave subsequently as P. The input
c � x � P � x � may take in some value v along channel c and
behave subsequently as P � v � . The choice P � Q may be-
have non-deterministically either as P or as Q. Processes
may be put in parallel: P � Q behaves as P running concur-
rently with Q, synchronising on events in their common al-
phabets, and performing other events independently. An in-
terleaving of two processes, P 	
	�	 Q, simply executes P and
Q concurrently without any communication occurring be-
tween them. Values are passed between parallel processes
by means of synchronisations on the channels, linking an
output channel of one to an input channel of another. The
abstraction mechanism P � A describes the process P with
all occurrences of A occurring internally in the resulting
process. The process STOPA has alphabet A and can per-
form no events at all. Thus P � STOPA behaves as the pro-
cess P with all occurrences of A blocked. This is different
from P � A in which all occurrences of events in A are made
internal.

The process RUNA also has alphabet A, and it is always
ready to perform any event from the set A. The process
CHAOSA also has alphabet A, and can perform or refuse to
perform any such event at any stage during an execution—it
is the most nondeterministic (divergence-free) process with
alphabet A. Processes may also be recursively defined, by
giving equations which contain the name of the process be-

ing defined as a subterm of the process expression. For ex-
ample, the process

COPY in � x � out � x � COPY

defines a buffer process COPY as one which repeatedly al-
ternates input and output. Indexed processes may also be
recursively defined using families of equations.

The semantics of processes are given in terms of obser-
vations. A process is identified with the set of behaviours
that may possibly be observed of it, where the kind of be-
haviour considered determines the nature of the model.

The Traces Model is concerned with the traces of a pro-
cess: the (finite) sequences of events that it can perform
during some execution. For example,

traces � COPY �����������
� ���

in � v � 	 v � V
�

� ���
in � v � out � v � 	 v � V

�
� ���

in � v � out � v � in � w � 	 v � V
�
w � V

�
...

where V is the type of the channels in, out.
If tr is a possible trace of a process P, then P � tr (pro-

nounced ‘P after tr) denotes the process that P becomes af-
ter executing the trace tr. For example, COPY � � in �
� �
out � � � COPY.

The traces model is sufficient for many applications but
it is not able to fully distinguish different non-deterministic
behaviours. To deal with non-determinism we must turn to
the failures model of CSP: a failure of a process is a trace
together with a refusal set which describes a set of events
that the process might refuse to engage in after performing
the trace. For example, � � in ��� ����� in �
� � in �
 � � is a failure of
COPY. A divergence of a process is a trace after which it
may perform an infinite sequence of internal actions. In this
paper, we are assuming that the systems modelled do not
diverge.

A process is deterministic whenever, given an arbitrary
trace tr ! �

a
�
, it could not have refused the last event instead

of performing it: � tr �"� a
� � should not be a failure. Thus

given any trace, there is only one possible response for each
potential next event. In the failures model a process Q is a
refinement of another process P when the set of Q’s failures
are a subset of P’s failures. This means that Q is more de-
terministic. Thus CHAOSA is refined by any process with
alphabet A, and deterministic processes cannot be further
refined: no process is a strict refinement of a deterministic
process.

Processes are considered equivalent in a semantic model
if they have the same set of behaviours in that model. Thus

if P and Q have the same traces, then they are equivalent
in the traces model, written P traces Q. This means that if
only their traces are examined, then they cannot be distin-
guished. Similarly, if P and Q have the same failures, then
this is written P failures Q. The subscript to the equality
symbol can be dropped if it is clear from the context.

Process semantics may also be described in terms of
operational semantics, which describe transitions between

states (process descriptions). Thus P
�� � P

�
describes the

performance by P of a single � event, reaching the state
P
�
. If s is a sequence of events, then P

s�� P
���

describes a
sequence of steps between successive processes, each step
labelled by the corresponding event in the sequence s. Op-
erational semantics allows alternative approaches to com-
paring processes.

One approach to comparing processes is in terms of test-
ing. A test T is a particular kind of process, with some
SUCCESS states. We consider the execution of T in con-
junction with a process P and if P � T can reach a success
state then ‘P may T’. If P may T whenever Q may T and
vice versa for all possible tests T, then P and Q are equiv-
alent under may testing. For further information on testing
see [5].

Strong bisimulation [9] identifies processes if the states
in their execution graphs match. This will be the case if
there is a symmetric bisimulation relation R such that if

PRQ and P
�� � P

�
then � Q

� � � P � RQ
�	�

Q
�� � Q

� � , where
� is any transition label. This is the strongest useful equiv-
alence between processes, and implies equivalence in any
of the CSP semantic models. As well as requiring traces
to match, bisimulation also requires the points at which
choices are made within processes to match.

This can be relaxed by not requiring the two processes to
match hidden (
) events. Here we allow a visible event a in
P to be matched by a sequence �a, for some �a ��
� �����
� , the
set of all sequences of
 actions interleaved with a single a.
This is known as weak-bisimulation.

P and Q are weakly bisimilar with respect to the sym-
metric relation � if and only if whenever P � Q then

P
a� � P

� ��� Q
� � Q �

a�� Q
���

P
� � Q

�
.

In [3] Gardiner proposes a further weakening introduces
an equivalence relation on the power set of states, known
as power-bisimulation. This allows sets of states of P to be
related to sets of states of Q. This has the effect of abstract-
ing out the effect of the point at which non-deterministic
choices are made. This allows the construction of a form of
bisimulation that is precisely equivalent to failures equiva-
lence and will be discussed more fully in section 3.3.

3. Non-interference

3.1. Goguen/Meseguer

Confidentiality policies are concerned with restricting
classes of information flows. In the early days of the subject
such policies were typically constructed by analogy with
the paper world and so involved assertions such as: infor-
mation should not flow from an object of higher classifica-
tion to one of lower classification. Thus information flows
are treated in a binary fashion: it is either allowed to flow
or not, and the objects of the policy were typically fairly
gross: data bases, files, agents etc. Such analogies now look
rather dated in the light of the capabilities provided by cur-
rent information processing systems and we will address the
question of constructing more elaborate policies, with finer
granularity of objects and more subtle controls of informa-
tion flows, in Section 4. For the moment we will stick to this
traditional viewpoint as, even in this comparatively simple
context, there are a number of subtleties to be considered.

A central problem is to characterise the absence of infor-
mation flow between objects, which in effect means across
interfaces or along channels. The Bell and La Padula model
takes the notions of read and write as primitives and so
makes no attempt to formalise them. A number of critiques
of Bell and La Padula are based on this observation. An
early attempt to formalise the absence of information flow
was the concept of non-interference proposed in the seminal
paper by Goguen and Meseguer, [4].

Intuitively the idea is as follows: to establish that in-
formation does not flow from object A to object B it is
sufficient to establish that A’s behaviour has no effect on
what B can observe. Put differently: B’s view of the sys-
tem is independent of A’s behaviour. This latter suggests an
appropriate way of capturing this mathematically: for any
pair of behaviours of the system that differ only in A’s be-
haviour, B’s observations of the system cannot distinguish
these two systems. This makes it clear that the notion of in-
distinguishability of behaviours is central. For systems that
are deterministic it is fairly straightforward to make such
equivalence precise and indeed it is deterministic systems
that Goguen and Meseguer originally considered.

Casting the Goguen/Meseguer formulation into a more
CSP like notation for ease of comparison with later formu-
lations:

Assume that High interacts with the system S via the in-
terface H and Low via the interface L and further that these
two interfaces partition the full interface of S. Then High is
said to be non-interfering with Low via S if:

�
tr � I � c � I �

OutputLS � tr � c � OutputLS � tr � L
�
c � (1)

where I is the set of inputs to S, and I the set of sequences

of I’s. OutputLS � tr � c � denotes the output to Low from the
system when it is in the state resulting from the sequence of
inputs tr and when it receives a further input c. Finally, the
projection to L tr � L is the trace tr with all occurrences of
H events removed (given that H and L partition the alphabet
of S).

In other words, whatever inputs High has performed the
output that Low sees is the same as he would see if High had
done nothing. Note that for a system in which the Low out-
put is uniquely determined this equality is straightforward
to define.

Even in this seemingly straightforward definition a num-
ber of subtleties lurk, for example: it depends on drawing a
distinction between ‘inputs’ and ‘outputs’ without making
the semantics of this distinction clear. This is a bit like the
failure of the Bell La Padula model to give a precise seman-
tics to the terms ‘read’ and ‘write’.

More significant is the point that for systems displaying
non-determinism characterising the equality of Equation 1
turns out to be rather delicate. Thus the seemingly inno-
cent phrase ‘...B’s observations of the system cannot distin-
guish...’ actually conceals some subtle problems. The ques-
tion of deciding when two processes should be regarded as
equivalent is a difficult one and one to which a number of
answers have been proposed. It is far from clear which of
these is to be regarded as ‘correct’. Indeed it seems rea-
sonable to suppose that there is in fact no ‘correct’ notion;
which is appropriate depends on the context and application
in question.

The diversity of notions of system equivalence shows up
most clearly in the process algebra community where we
find, for example, traces or failures equivalence, various
flavours of bi-simulation as well as various forms of test-
ing equivalence.

3.2. CSP Formulations

In an attempt to resolve the problems associated with
drawing input/output distinctions as well as address the is-
sue of non-deterministic systems, one of the authors pro-
posed a recasting of the Goguen/Meseguer formulation into
CSP [14]. Again the notation is tweaked slightly from the
original 1990 presentation to make it more compatible with
the rest of this paper.

�
tr
�
tr
� � traces � S � � � tr � tr

� �
refusals � S � tr � � L refusals � S � � tr � � � � L � (2)

where tr � tr
���

tr � L tr
� � L. refusals � S � tr � denotes

the sets of events the process S can refuse after the trace
tr. A refusal is a set of events that the process may choose
to refuse if the environment offers one of them. Different
refusals sets can result after a given trace corresponding to
different non-deterministic choices, hence the set of sets.

It thus encodes the non-determinism of a system. tr � L
denotes the restriction of the trace tr to the set L. We take
the distributed intersection of the refusal sets with L to get
the Low level view.

CSP does not draw a distinction between inputs and out-
puts, both are regarded simply as ‘events’. There is a danger
in wrongly categorising events as input or output which is
avoided, though arguably at the cost of a characterisation of
confidentiality that errs towards being too strong. A simple
example, due to Millen, serves to illustrate this.

Consider a system with high and low inputs but only high
outputs. Naively we would regard such a system as secure
and yet it could fail the CSP characterisation. Whether or
not this system really is secure depends critically on the se-
mantics of the term ‘input’. If ‘input’ is taken to mean an
event wholly under the control of the environment that can-
not be refused or delayed by the system then we probably
would accept this system as being secure. However if there
is any possibility of the system influencing the occurrence
(even if not the value) of the ‘input’ event in any way we
immediately have a channel from high to low. Any event
that is wrongly characterised as an input in this sense could
slip through and lead to a system incorrectly being deemed
secure.

The CSP approach is thus a much safer criterion but
could lead to some secure systems being rejected. If you are
to draw such input/output distinctions and use them in the
definition of security then they must be precisely defined.

In fact it turns out that, although CSP doesn’t draw such
distinctions, we can nonetheless use the framework, given
in equation 2, to distinguish at least the High (abstracted)
input/output events.

This ability to distingiush inputs/outputs in CSP arises
from our use of the more symmetric formulation of [14]
instead of the more traditional form in which an arbitrary
trace is compared to its purge. A consequence of this is that
in this formulation it is not guaranteed that the purge of an
arbitrary trace is itself a valid trace of the system. At first
glance this appears to be a flaw as it seems to allow Low
to deduce in some cases the occurrence of certain events
at the high level. It actually turns out to be an advantage:
the failure of the purge of a trace to be a trace is due to the
occurrence of high signal events, i.e. events that cannot be
refused or delayed by High. An example of such an event
might be an alarm signal to alert High of some low-level
activity. This clearly does not constitute a flow from High
to Low and yet Low can deduce that such an alarm event
has occurred.

For example, the process

S l � h � l � � STOP

has traces
����� �"�

l
� �"�

l
�
h
� �"�

l
�
h
�
l �
� �

. The purgeH of
�
l
�
h
�
l �
�

is
�
l
�
l �
�

which is not a trace of S. Thus when Low sees l �

he knows h has occurred, but if High has no control over
the occurrence of h it does not provide a means for High to
signal to Low.

If we do not want h to be modelled as a signal event we
should use the process

S l � h � l � � STOP
�

l � l � � STOP

which allows High to refuse h without deadlocking the sys-
tem. Now when Low sees l � he cannot tell if h has occurred.

Using the purge formulation would be equivalent to as-
suming that all events are refusable.

The issue of ‘input totality’ that was a concern for many
of the early formulations is another manifestation of this
difficulty, i.e. the problem of what happens if an invalid
input sequence is presented to the system. This is dealt with
automatically in a CSP approach: invalid inputs are simply
refused by the system.

The approach of [14] deliberately tried to stay as close as
possible to the spirit of the original Goguen/Meseguer for-
mulation. In particular it sticks to quantifying over traces
and comparison of the next events. It is interesting to con-
sider how one might alter it to cast it in a more conventional
CSP style. Firstly rather than just comparing next events we
can compare the subsequent behaviours, i.e. assert equiv-
alence as processes and use the conventional CSP hiding
operator rather than having to use (distributed) set intersec-
tion:

�
tr
�
tr
� � traces � S � � tr � tr

� �
� � S � tr � � L failures � S � tr

� � � L � (3)

where S � L is the projection of the set of failures of S to the
set L: each failure � tr � A � is projected to � tr � L

�
A
�

L � .
In fact we can think of the earlier formulation as a kind

of partial unwinding of this. Thus we can perform an in-
ductive proof that Equation 2 implies Equation 3. It is also
immediate that Equation 3 implies Equation 2, and hence
that the two equations give the same characterisation.

In order to avoid the need to explicitly quantify over
traces we might try expressing a characterisation directly
as a CSP equivalence:

S � H failures � S � STOPH � � H (4)

At first glance one might think that this is equivalent to
Equation 3. Putting STOP in parallel with S over the alpha-
bet H has the effect of preventing all traces with H events.
We thus appear to be asserting that the process with all the H
events enabled is equivalent to that with H events prevented.
In fact it differs in some subtle but significant senses. Firstly
this is really the purge formulation and so, in particular, it

implies that the purge of any trace is itself a trace. Fur-
thermore, the standard CSP semantics of such an equation
asserts equality over stable states, that is states that cannot
perform any internal (i.e. high level) events. For any state
in which internal events can occur the refusal set might al-
ter as the result the occurrence of such these transitions. It
is therefore rather hard to make sense of the equality of re-
fusal sets over unstable states, hence the decision to deal just
with stable states in the standard CSP semantics. The quan-
tification of Equation 3 however does force equality for all
traces, not just traces leading to stable states (i.e. traces that
can not be immediately extended by tau events). Equation 3
is therefore strictly stronger that Equation 4.

For example, the process

S h � STOP
� � l � STOP � STOP �

meets Equation 4. On the other hand it fails Equation 3,
since its failures after

���
are not the same as its failures after�

h
�
, despite the low level views of both these traces being

the same.
It turns out that we can cast Equation 3 in a form resem-

bling Equation 4 and equivalent to it by using a different
approach to concealing the High events. In Equation 3 we
have concealed them by the rather obvious device of sim-
ply hiding them. An alternative is not to hide them but to
camouflage them:

S 	�	
	 RUNH failures � S � STOPH � 	
	�	 RUNH (5)

Here we interleave the two systems with RUNH on the high
level events. Now whenever Low sees an H event he cannot
tell if it was performed by S or by RUNH . By avoiding the
use of hiding we have side-stepped the restriction to stable
states. This form of abstraction was introduced by Roscoe
et al [12], in which Equation 5 is shown to be equivalent to
Equation 3.

The use of hiding to abstract certain events in this way
provides us with another way of modelling signal events.
Roscoe et al refers to this form of abstraction as ‘eager’ to
reflect the idea that events abstracted in this way are thought
of as occurring at the earliest opportunity. Correspondingly
the interleaving abstraction is referred to as ‘lazy’. These
forms of abstraction have also been characterised in a test-
ing framework [16] which has the added advantage of al-
lowing input/output distinctions to be drawn over the low-
level events as well as the high-level.

These abstractions and variants of them are discussed in
detail in chapter 12 of [11].

3.3. Unwinding

It is usual when presenting a notion of non-interference
to also present a so-called unwinding result. The idea is

to present some constraints on the transitions of the system
that together are equivalent to, or at least imply, the origi-
nal property. Proving that a system obeys such constraints
is more tractable than showing that it satisfies the original
property.

In accordance with this tradition [14] presents such un-
winding rules.

� Rule 1:

�
Yi

�
Yj � States � S � � Yi � Yj

� Refusals � Yi � � H Refusals � Yj � � H

� Rule 2:

�
Yi

�
Yj � States � S � � Yi � Yj� �

e � Initials � Yi � � e � � Initials � Yj � �
e � L e � � L � Yi � � e � � Yj � � e � �

We have introduced an equivalence relation over states
of the system. The first rule asserts that for two equivalent
states Lows view of the possibilities for the next step of the
system is identical.

The second rule has the effect of ensuring that the equiv-
alence is exactly that induced by purging High events. That
is, if we let Yi denote a state reached after trace tri, then rule
2 implies: tri � L trj � L � Yi � Yj.

Proving that these imply the original non-interference is
a fairly straightforward induction style proof. Showing that
these are also necessary is a bit more delicate and this is
proved in a rather cumbersome fashion in an appendix of
[14].

A far more elegant and instructive proof of completeness
can be obtained by noticing that these rules bear a remark-
able resemblance to a statement of bi-simulation equiva-
lence as used in process algebras.

In fact bi-simulation is subtly stronger than failures
equivalence as it insists on the bi-similarity of individual
states and draws distinctions between processes on the ba-
sis of where non-determinism is resolved. A simple exam-
ple (pictured in Figure 1) illustrates this:

P � a � b � STOP � � � a � c � STOP �
Q a � � b � STOP � c � STOP �

The non-deterministic choice is made earlier in P than
in Q and as a result it is easy to show that no bisimulation
relation can be found for them. However an environment
that can only observe the a, b and c events cannot distin-
guish between them. They are failures equivalent and test-
ing equivalent.

Gardiner, [3], introduces the notion of a power bisim-
ulation specifically to address this point and constructs a

τ τ

a

b c

Q’

a a

P’P’

P’’ P’’

b c

P Q

1

1

2

2

Q’’Q’’
1 2

Q’ Q’
1 2

Figure 1. Processes P and Q

bisimulation-like equivalence that is exactly as discriminat-
ing as failures equivalence. [3] gives an extremely elegant
formulation and proof in terms of predicate transformers.

We notice that the unwinding rules already use the no-
tion of an equivalence relation on the power set of states
suggesting that we may be able to find a power bisimula-
tion relation equivalent to them.

We proceed as follows: firstly we introduce what we call
a ‘loose-bisimulation’. This is in fact entirely analogous to
weak-bisimulation except that here we require matching on

 events and treat the High events as abstracted (hidden)
events. Thus we require the two processes to stay in step on
the Low and
 events but allow arbitrary interleaving with
high events.

We define the relation � S on states of S induced by purg-
ing the H events (but leaving L and
 ’s).

� S � � S � tr
�
S � tr

� � 	 tr
�
tr
� � traces � S � �

tr � L � tr
� � L � �

where L � L
� �
 �

Given a state S and an event a define
�
S� a as:

�
S � a �

S
� � States � S � 	 � �a � H � a � H � S �

a�� S
� �

where H � aH is the set of sequences of elements of H in-
terleaved with a.

We now assert that S is loosely-bisimilar with respect to
� S if and only if for all a

S ��� S � � �
S ��� a �

�
S � � a

We now define a power bisimulation relation � S induced
by purging H’s and
 ’s:

� S � � � S
� 	 S

tr�� S
� �����

S
� 	 S

tr 	�� S
� � �

	 tr
�
tr
� � traces � S � �

tr � L tr
� � L

�
and for S and a define

� �
S� � a by:

� �
S � � a �

S
� � States � S � 	 � �

a � H � � a � H � � S �

a�� S
� �

We can then easily prove the following:

Lemma 3.1 If S satisfies the loose-bisimulation then it sat-
isfies a power-bisimulation with respect to � S:

S � � S S � � � �
S � � � a �

� �
S � � � a

�

We can further prove the following:

Lemma 3.2 If S � � S S � then for all s � � S � there exists
s � � S � such that s ��� S s � , and vice versa.

�

Lemma 3.3

s ��� S s � � AcceptSetL � s � � AcceptSetL � s � �
�

These two lemmas prove the following:

Lemma 3.4

S � � S � � AcceptSetL � S � � AcceptSetL � S � �
�

It is worth examining this result more carefully. We see
that there are two sources of potential non-determinism in
Low’s view: High’s activity and the occurrence of
 events.
We are in effect asserting that for a non-interfering system
all of the non-determinism that Low sees is attributable to
the internal
 activity. Furthermore we see that a corol-
lary of the loose-bisimulation property is that High is non-
interfering with the
 ’s, i.e. High cannot influence the oc-
currence of
 events. We will see the significance of this
observation when we discuss the interaction of flavours of
non-determinism in section 3.5.

To return to our simple example, we see that the power-
bisimulation relation:

� �
P
� � �

Q
���

�
P
�
� � P � � � � �

Q
� �

Q
�
� � Q � � ����

P
���
�
�
P
���
�
� � �

Q
���
�
�
Q
���
�
���

establishes the power-bisimilarity of the P and Q above.
[3] shows how to construct a power bi-simulation that is

is equivalent to failures equivalence. It now suffices to show

that the power-bisimulation that we have defined above cor-
responds to that of the Gardiner approach. Proof of this is
beyond the scope of this paper but is presented in a technical
report in preparation. The completeness of the unwinding
rules, i.e. that they are necessary as well as sufficient thus
follows immediately.

The relevance of the notions of bisimulation to defin-
ing confidentiality was proposed by Foccardi and Gorri-
eri in, for example, [2], apparently without reference to
analogies with unwinding. The use of the notion of power-
bisimulation in security is, to our knowledge, new.

3.4. Composability

[14] contains proofs of the composability of this formu-
lation of non-interference with respect to various CSP op-
erators. In fact we see that such composability follows triv-
ially from the composability of failures equivalence (or al-
ternatively from the composability of power bi-simulation)
with respect to the CSP operators.

Note however that composability depends on the prop-
erty and the operators in question. The property of determi-
nacy, for example, defined by Milner in [9] turns out not to
be composable with respect to all the CCS operators, which
prompts him to introduce the closely associated concept of
confluence, which is. Again there appear to be analogies
here with some of the quests for composability in the secu-
rity community and indeed confluence appears to bear some
resemblance to the notion of forward correctability. The de-
tails of the correspondence are complex however and will
not be addressed here.

3.5. Non-deducibility

Sutherland’s theory of non-deducibility, [18] charac-
terises the lack of information flow in terms of an inability
to deduce anything about high level behaviour from a low
level view. A system M is said to exhibit this property if
every low level view tr of an system execution is compat-
ible with every high level view of inputs tr

�
(in the sense

that there is some execution tr
���

which presents both views).
This captures the idea that no high-level behaviour can be
ruled out by any low-level observation. It is described in
process- algebraic terms as follows:

�
tr � traces � M � L � � tr � � traces � M � HI � �
� tr

��� � traces � M � �
� tr ��� � L tr

�
tr
��� � HI tr

� � (6)

This may also be characterised in a testing framework. A
low level user may be considered as testing the system, at-
tempting to elicit information concerning the high level in-
puts. Thus for non-deducibility to be present, such a low

level user should not be able to rule out any possibility for
tr � HI—the low level behaviour should be compatible with
any high level user inputs.

Suppose that the test T has an alphabet L, and some dis-
tinguished SUCCESS states. A process may pass a test if
there is some execution of the process together with the test
which may reach a success state. A process P with its own
success states may pass a test T through a system M if there
is some execution of P � M � T in which both P and T may
reach a success state.

Then a system M exhibits non-deducibility if no test T
through M may differentiate any two high level users U

�

and U � (drawn from the space of all possible high level
users) which have alphabet HI, whose traces are only those
of M restricted to HI, and which have some success states.

The restriction to alphabet HI corresponds to the require-
ment that any low level information is required to be com-
patible only with any sequence of high level inputs. This
means essentially that no information at the low level is
available about the high level input to the system—it is all
masked by the system S. In other words, for any test T and
any two high level users U

�
and U � , U

� 	 � HI � 	 S may pass
T if and only if U � 	 � H � � 	 S may pass T.

In the state machine formulations of the original defini-
tions, all processes must always be able to accept any input
values and provide outputs. This characterises an important
subclass of CSP processes. If the space of high level users is
restricted to such processes, then the testing formulation is
equivalent to Sutherland’s. However, CSP allows the con-
sideration of more general classes of process if appropriate.

For example, the system

S inh � x � � outl ��� � S � outl � � � S � (7)

apparently passes no information from high to low. How-
ever, the high level process STOP can be distinguished from
inh � � � STOP because a low level test will receive an
output when the second is tested, but not when the first is
tested. It depends whether STOP is considered a valid de-
scription of a high level user or not as to whether S is con-
sidered to permit information flow. The characterisation is
thus dependent on the space of processes over which the
high level users U can range—the kind of activity which
must be indistinguishable.

It is observed in [19] that Sutherland’s definition has
some unwanted consequences. A system meeting this prop-
erty still permits a high level user to communicate infor-
mation to a low level user, essentially because high level
outputs (which are ignored in the definition) may have a
bearing on later high level inputs. It is instructive to re-
cast their example in CSP terms. The system M � k � � k � � is
parametrised by two one-bit keys k � and k � . It takes a high
level input hi, and offers a high level output ho and a low
level output l. On a high level input x of � or

�
, it out-

puts that value xor’ed with the key k � . Both keys are then
randomly reset. On any other high level input (the original
example uses a special value q) the second key k � is output
to the low level and randomly reset, and the first key k � is
output to the high level.

M � k � � k � �
hi � x � if x � �

�
� � �

then ho ��� � l � � x � k � � ��
k ��� k 	�
����� ��� M � k � � k � �

else ho � k � � l � k � � �
k 	
������ ��� M � k � � k � �

It is easily checked that this system allows any high level
inputs with any low level view, and hence M exhibits non-
deducibility.

However, a high level user can use this system to com-
municate to the low level, by employing a particular strat-
egy. If the high level wishes to transmit a particular bit b,
then he first learns the value of k � by inputting q, and then
inputs k ��� b, which will result in the transmission of b to
the low level. Based on this, a transmitter wishing to com-
municate a sequence

�
b
� ! u

�
of bits behaves as follows:

T � � b � ! u
� �

hi � q � ho � k � hi � � k � b � � ho � k
� � T � u � �

The CSP formulation in terms of HI draws attention to
the weak point of Sutherland’s definition. The only high
level activity it is concerned with is high level input. How-
ever, high level users also interact with the system by receiv-
ing output, and in this case the output received can influence
later input. Thus the definition does not capture all the ways
in which the high level user can interact with the system.

The example of [19] can be replaced with a rather more
intuitive and immediate example that we believe shows up
the essence of the problem.

Consider a system in which high level data is encrypted
and the encrypted form transmitted over a low channel.
Thus far we have the classic scenario that arises in many
security architectures and yet has proved so difficult to cap-
ture in a non-interference style framework. Assuming that
the encryption scheme is itself ‘secure’ (in a cryptanalytic
sense) then we would tend to accept that such a system is
secure.

Suppose now that the high user can in fact observe or
predict the key stream before he submits his plain-text for
encryption. We can easily imagine this occurring in a num-
ber of ways and in fact Wittbold et al’s example achieves
essentially this. Then High can modify the plain-text in
such a way as to communicate it to Low, in particular he
can simply xor the predicted bits into the plain-text before

submitting it to the encryption resulting in raw plain-text
being broadcast over the low channel.

This is not too surprising so far but let us examine it
more closely as it is a pointer to the root of the problem.
The example involves two kinds of non-determinism: ex-
ternal (under the control of the users or processes, in par-
ticular High) and probabilistic, arising, in this case, from
the cipher stream. In the above example we have allowed
these to interact: we have allowed High to resolve his non-
determinism basing his decisions on observations of how
the probabilistic non-determinism is being resolved. If we
were to force High to resolve all his non-determinism at the
outset, before any of the cipher stream has been generated,
or in the absence of any knowledge of this source of non-
determinism, then he could not exploit this channel.

We see that this discussion touches on the points made
earlier regarding the loose-bisimulation. The loose- bisim-
ulation property implied that High should not be able to in-
terfere with the
 events. If we can think of the
 events
as representing the non-determinism associated with the ci-
pher stream then we see that this is asserting that High can-
not interfere with the cipher stream. The situation is a little
delicate as the bisimulation does not prevent flow from the

 ’s to High which potentially could allow the scenario de-
scribed above. In fact High xor’ing the cipher stream to
the data stream is tantamount to interfering with the stream
but it is not immediately clear that this has been formally
captured. This will be a topic for further investigation. An
obvious solution is to also require that the tau’s do not in-
terfere with High but this seems a bit heavy handed.

Constructing semantic models for a process algebra to
accurately capture the distinction between the various forms
of non-determinism has proved difficult. A number of prob-
abilistic process algebras have been proposed, for exam-
ple Morgan [7] and Lowe [6]. These assume that non-
determinism is resolved at the outset and so do not allow for
the possibility of delaying choices and making decisions on
the basis of observations of how non-deterministic choices
are resolved ‘at run time’. We thus see why it has proved so
difficult to model this scenario in a non-interference style.

Currently we do not appear to have theories rich enough
to fully capture the distinction between the various flavours
of non-determinism. Indeed it is not clear that it would be
particularly effective to try to develop and apply such ex-
tended theories as the greater complexity would probably
render them unusable. For the crypto example at least it
would seem more effective to use arguments outside the
model to establish that the crypto is wholly independent
of the rest of the system. In fact a well designed crypto
device appropriately incorporated in a secure architecture
will have precisely these characteristics: the cipher stream
will be unobservable and unpredictable by High (or indeed
any other user or process). High may of course be able

to deduce the cipher stream after the event if he can ob-
serve the cipher-text stream but, crucially, this is too late
to exploit. Furthermore an ideal encryption algorithm will
have the property that observing an arbitrary length of the
stream should not enable further bits to be predicted, i.e.
the stream is effectively random. We of course have to take
care that any implementations maintain these assumptions.
Conventional refinement techniques will not preserve the
non-determinism so from a refinement point of view this
non-determinism has to be handled differently.

Such a situation is not entirely satisfactory but appears
quite workable, at least for a large class of systems. Of
course it might be that we encounter systems for which the
flavours of non-determinism cannot be so conveniently iso-
lated. This could probably by regarded as a symptom of a
poorly designed system.

3.6. Non-deducibility on strategies

To avoid the problem with Non-deducibility outlined
in the previous section, the notion of Non-deducibility on
strategies was introduced [19]. In this formulation, any low
view needs to be compatible with any high transmitter strat-
egy, where a strategy describes what a high level user will
input depending on previous inputs and outputs. Any low
level trace view should thus be compatible with any high
level view that is possible for the system.

Non-deducibility on strategies for a system S requires
that � U � S � � H should give the same set of (low level)
traces whatever deterministic high level user U is used.
(Note that the example M � k � � k � � above does not have this
property.)

Non-deducibility on strategies can be cast in test-
ing terms very similar to the characterisation for non-
deducibility above: a system S exhibits non-deducibility on
strategies if no test T through S may distinguish between
any two high level users who have alphabet H. It is essen-
tially a simple variation on Equation 6.

�
tr � traces � M � L � � tr � � traces � M � H � �
� tr

��� � traces � M � �
� tr ��� � L tr

�
tr
��� � H tr

� � (8)

This definition incorporates all possible high level inter-
actions between the system and the high level users, because
they can interact on the entire high level interface H and not
simply on HI as in Equation 6. This means essentially that
no information at the low level is available about any high
level activity of the system at all. In other words, for any
test T and any two high level users U

�
and U � meeting the

same restrictions as previously, U
� 	 � H � 	 S may pass T if

and only if U � 	 � H � 	 S may pass T.

When high level users are restricted to the subclass of
non-deterministic state machines, then this definition coin-
cides with non-deducibility of strategies. In that case, the
system S of equation 7 meets the definition. However, if
U can range over all possible CSP processes, then S does
not meet the definition: a low level user could distinguish
between STOP and inh ��� � STOP.

It is immediate that in the testing formulation Equation 8
implies Equation 6: if a test distinguishes the inputs of two
high level users, then the same test will distinguish their
high level activity.

3.7. A deterministic approach to Non-interference

An alternative definition of non-interference in the pro-
cess algebra context was proposed by Roscoe, Woodcock
and Wulf [12]. In their approach, a system S does not allow
information flow from high to low if the system

AbstractH � CHAOSH � S � (9)

is deterministic. AbstractH denotes an appropriate abstrac-
tion of the H events to obtain a Low view of the system.
Typically it will involve a mix of lazy and eager abstraction
depending on whether the high events are considered de-
layable on not. This system presents events only at the low
level, and its determinism means that there is only one pos-
sibility for each event at any stage (offer, or refusal), how-
ever the non-determinism in the system is resolved. Since
any high level user will be a refinement of CHAOSH , and
since all CSP operators preserve the refinement relation, this
means that any particular high level user UH in parallel with
the system will have to be a refinement of CHAOSH is par-
allel with the system. Since the result (when H is hidden)
is already deterministic, this means that it cannot be fur-
ther refined so it must remain unchanged. This is true for
any high level user UH , so all possible high level users must
give the same result at the low level. Hence, no low level
test can distinguish between them. It follows that this for-
mulation implies non-deducibility on strategies. In a sense,
CHAOSH embodies all possible strategies, and the require-
ment that the resulting system is deterministic states that all
such strategies must always give the same result.

Advantages of this approach are that it side-steps much
of the debate about what is the appropriate notion of pro-
cess equivalence, virtually all the process algebras agree on
what processes are deterministic. It is compositional, it is
preserved by conventional refinement and it is automatically
checkable (using for example using the built in determinism
checking facility of FDR).

It is clear that where is can be applied this is an extremely
effective characterisation of absence of information flow.
The drawback is that there appears to be a large class of
systems for which this property is too strong: for which

some degree of low-level non-determinism is unavoidable.
Perhaps such systems are best handled by isolating such es-
sential non-determinism and showing that the property is
preserved by refinement of the rest of the system.

An example will be instructive:

S inh � x � � � outl � � � S � � � outl � � � S � �
� � outl ��� � S � � � outl � � � S �

As it stands, this system does not allow information to flow
from the high to the low level. This will remain the case if
the non-determinism in the system is essential, and cannot
be removed or subverted in some way, (perhaps by a poor
implementation of random choice). However, different runs
with the same high level user (say inh � � � STOP) can re-
sult in a number of different possible low level behaviours.
Thus S system does not meet definition 9, since it is non-
deterministic at the low level.

However, if the system S can be refined when it is im-
plemented, then it is not clear that the result will retain the
nondeducibility on strategies. In particular, S

� inh � x �
outl � x � S

�
is a refinement of S.

If we are dealing with such a situation, where the non-
determinism in the system is not guaranteed to all be re-
tained, or where there is some doubt over its eventual form
when the system is implemented, then a definition of non-
interference which allows some measure of refinement will
be useful. In this case definition 9 is useful, since it is pre-
served by refinement: any refinement of S will have to result
in a refinement of AbstractH � CHAOSH � S � , which must
therefore be deterministic.

On the other hand, if the random choices in S can
be guaranteed to be retained, we might say that the non-
determinism in the system is essential. In this case refine-
ment of S is not a concern and the CSP formulation of non-
deducibility on strategies is sufficient to establish a lack of
information flow.

It may be that we can establish a link between the deter-
minism approach and the power-bisimulation approach pre-
sented in section 3.3. If we think of all the non-determinism
observed by Low as resulting from different
 activities
then we could assert that to be non-interfering an abstrac-
tion of the system that obscures the High events but retains
the
 ’s should be deterministic. This would have many of
the advantages of the deterministic approach whilst allow-
ing some non-determinism to manifest itself in Low’s view,
allowing for example the encrypted channel examples.

The difficulty is that
 ’s are not really part of the CSP
framework and that further non-determinism could arise
from ambiguous
 transitions: two distinct transitions from
a given state that are both labelled by a
 . Both of these
problems can addressed by not labelling them as
 events
but simply regarding them as another set of events hidden
from Low and disjoint from High.

4. Generalisations of Non-interference

4.1. Motivation

The idea of non-interference is clearly a central one in
information security. It is however often argued that in prac-
tice it is too strong, that no real policy ever calls for total ab-
sence of information flow over any channel and that in any
case it is not achievable. For example even the so-called
one-way regulators in fact allow for a very low bandwidth
feedback from high to low to regulate the upward flow and
prevent buffer overflows etc.

Even for the comparatively straightforward MLS style
policies simple non-interference runs into problems, for
example the encryption problem discussed earlier and the
need to incorporate downgrades.

As information processing systems steadily grow more
sophisticated and distributed the old paper world analogies
look increasingly dated. The demand for security in the
commercial sector as well as trends in the military sector are
prompting the need for more flexible policies, with a finer
granularity of objects and more subtle controls of flows.
New paradigms like object orientation, hypertext, virtual
machines, mobile code and agents etc allow a far greater
granularity of objects to be considered as the elements of
a security policy. More sophisticated styles of policy often
call for history or location based access decisions and these
again cannot be reduced to predicates on the classification
labels of individual events or interfaces.

All of these suggests the need to investigate ways in
which we might generalise non-interference to allow for
partial, conditional flows etc.

4.2. Formalisation

We use as our starting point the formulation given in Sec-
tion 3. The most liberal generalisation of this appears to be:

�
tr
�
tr
� � traces � S � � tr � tr

� �
AbsH � � S � Constrain � � tr �

� AbsH � � S � Constrain � tr
� � (10)

where AbsH denotes an appropriate form of abstraction to
model the low-level view. We have a number of abstraction
operators available to us, for example the various flavours
of lazy and eager hiding. Another abstraction that has been
used in formalising notions of anonymity but hitherto not
confidentiality is ‘projection’, renaming a set of events to a
single event. We will see later how this operator is useful in
addressing the encryption problem.
� denotes an equivalence relation between behaviours.

Hitherto this has typically been defined in terms of some

kind of purge function on traces but there seems to be no
reason to restrict ourselves to such equivalences.

� denotes an appropriate process equivalence. Which is
appropriate depends on the system and policy in question
but failures or testing equivalence would seem most likely.
In particular using a testing equivalence framework makes
it possible to tailor the class of tests to the system and policy
in question.

‘Constrain’ defines a set of high-level behaviours for
which we wish to restrict the flow of information. The in-
fluence of behaviours of S that fall outside this envelope on
the low-level will be unconstrained by Equation 10. We are
regarding them as innocuous and we do not care how they
interfere with Low. Presumably a policy might be formu-
lated as the complement of this: stating what behaviours
must not interfere, in which case Constrain might not itself
be a process, i.e. might not satisfy the closure axioms for a
process. How useful a degree of freedom this represents is
unclear without trying it out against a sample of policies but
we have included it for completeness.

A policy might be encoded as the conjunction of a set of
equations of the form of Equation 10.

We can see how various forms of partial or constrained
non- interference could be captured in this way. Such a
formulation allows Low to determine High’s behaviour up
to the � equivalence. That is, Low can determine which
equivalence class High’s behaviour belongs to but not where
it lies within that class. We can thus define partial informa-
tion flows and indeed we can arrange to have ‘non-transitive
partial flows’: for which information flows from A to B and
from B to C yet none flows from A to C.

Consider a data space that can be covered by the coordi-
nates � x � y � . Our A � B projection loses the y information
so projects to � x � y � � , for some arbitrary y

�
. The B � C pro-

jection loses the x information so we get � x � y � � � x � � y � .
Putting these two projections together one after the other
then gives a projection A � C � � x � y � � � x � � y � � , i.e. loss
of all information about the original point in the A space.

This example is a bit simplistic as one could easily cap-
ture it in a simple labelling formulation. It does serve to
illustrate the idea and one can easily construct something
more elaborate. A more realistic instance would be a policy
that allows for automatic downgrading of certain statistical
information from a data base.

Another example in which a more general notion of
equivalence seems appropriate is where we consider a high
level process editing a file. In general many edit sequences
could result in the same final text (we are assuming here that
the editor is such that all the details of changes are forgot-
ten and only the final resulting text retained, i.e. there is no
mark-up facility). We thus want to regard all edit sequences
resulting in the same final text as equivalent. Here again the
idea of confluence crops up: that different sequences of ac-

tions give rise to equivalent states, im particular that certain
pairs of actions may be commutative. Thus we might define
an equivalence on traces w.r.t. certain permutation groups
on actions.

Turning now to the problem of modelling high-level data
being encrypted and send out over a low-level channel. Sup-
pose that we take � to be defined by:

tr � tr
� � � � tr � H � � � tr � � H �

and for our abstraction on the encrypted channel we rename
the 0’s and 1’s of the enciphered stream to * say. Then we
see that L can figure out the length but not the content of
the H string. This would appear to accurately model the
encrypted channel scenario. We have of course to carefully
justify the projection on the cipher channel, presumably us-
ing cryptanalytic arguments.

There remains an issue of how to capture the effect of
breaches of the crypto system in such a framework, particu-
larly the retrospective effect (previously concealed informa-
tion is revealed). This remains an open issue, though it does
appear to bear a curious resemblance to the downgrading
problem.

Notice also that the notion of confidentiality introduced
in this example appears to be analogous to some of the no-
tions of anonymity introduced in, for example, [17]. Here
of course we are thinking of anonymity over the message
space rather than an agent space.

4.3. Non-transitive non-interference

Another class of application that is amenable to this ap-
proach is that of so-called non-transitive non- interference
and channel control policies addressed by Rushby in [13] .
A couple of examples are presented for motivation: down-
grading and a crypto device. The essence of the problem
appears to be that though we want to allow flow from H to
L it must be regulated, or at the very least audited, by an
intermediary. Thus if a high-level data item is to be down-
graded and issued to Low this can only happen if accompa-
nied by appropriate actions by a Downgrader process. Sim-
ilarly high-level data should only be passed to a low-level
channel via the crypto device.

Rushby captures this by introducing a more elaborate
purge function that, rather than acting in a purely pointwise
fashion on the traces, takes account of the affect of down-
grade events on the security labels of high events. Clearly
we can capture such a policy in our framework with a suit-
able choice of equivalence, in particular that induced by
Rushby’s ‘ipurge’ will do. However we could envisage cap-
turing different forms of intransitive policies to those con-
sidered by Rushby by exploiting the full generality of the
� .

A later paper by Pinsky [10] presents an algorithm to
construct, where it exists, a minimal equivalence and asso-
ciated unwinding rule for a downgrading policy. The details
are quite complex but it does appear that the algorithm pre-
sented by Pinsky can be thought of as an algorithm to con-
struct the appropriate bisimulation relation. Indeed it seems
probable that many of the unwinding results presented in
the security literature can be interpreted in this way. A num-
ber of algorithms for establishing bisimulation relations be-
tween putatively equivalent processes are known in the pro-
cess algebra community and it is probable that they could
be usefully applied in the security context.

Note that for a policy encoded in Equation 10 the equiv-
alence relation used can be used to induce a (power) bisim-
ulation relation so establishing an unwinding result. Simi-
larly the composability of such a property follows directly
from the composibility of the process equivalence.

4.4. Encapsulation

The problem that Rushby addresses in [13] appears to
boil down to one of encapsulation: We need to be sure that
flows can only occur over certain known channels and that
flows that do occur obey certain constraints.

Considering the first aspect: where the process P has no
internal sources of non-determinism we can assert that if
it looks deterministic over some interface I then I consti-
tutes the entire interface. Where there are internal sources
of non-determinism, a process Z say, the problem is more
delicate: we presumably need some way of checking that
all non-determinism observed over I can be ascribed to Z.
Naively one could imagine freezing the non-determinism of
Z, i.e. replacing it by some deterministic implementation.
This is not adequate in general however; if there are other
sources of non-determinism apart from Z them a particular
freezing of Z might eliminate block them whilst other freez-
ings might enable them. This suggests the need to examine
all possible freezings but it is not clear that this would really
be practical apart from in certain special cases, particularly
if we are thinking of applying model-checking techniques.
This is a topic of ongoing research.

The second aspect concerns that control of information
flows over the channels that have been identified and this
appears best done using the framework of equation 10.

5. Conclusions/Discussion

The central thesis of this paper is that the problem of
formalising the notion of confidentiality boils down to that
of formalising the equivalence of processes. The latter is a
central and difficult question at the heart of computer sci-
ence to which there is no unique answer. Which notion of

equivalence is appropriate depends on the context and ap-
plication. Consequently we should not be surprised that the
information security community has failed to come up with
a consensus on which constitutes confidentiality. Indeed, in
this paper we have shown a close correspondence between
various proposals for definitions of confidentiality in the se-
curity literature and forms of process equivalence in the pro-
cess algebra literature. Where the system’s security can be
characterised as the determinism of the low-level view we
are in better shape as the definition of determinism is fairly
uncontroversial. It is not currently clear how large a class
of real systems can be handled in this way.

Viewing security from a process algebraic framework
brings with it a number of ready-made results and insights,
particularly regarding composition and unwinding. It also
helps to pin-point and isolate the source of many of the
problems that have been encountered in the security liter-
ature, for example regarding the encryption problem, the
lack of compositionality of certain formulations etc.

The usefulness of the concept of testing equivalence has
also emerged for this viewpoint. This concept seems to have
been curiously neglected in the context of defining non-
interference though it has recently been used in the analysis
of security protocols, see for example Abadi et al, [1]. The
philosophy is strikingly similar: in [1] tests can be under-
stood as encapsulating all possible attacks, and equivalence
under testing establishes that no such attack can succeed in
distinguishing a real system from an ideal one. In our con-
text, tests might be understood as encapsulating all possible
ways in which information may flow from high to low, ei-
ther as a result of High attempting to communicate informa-
tion, or from the point of view of Low attempting to elicit
it, or indeed involving some collusion. Equivalence under
testing establishes that no such way can succeed.

It seems very natural to think of two systems as being
equivalent if no test can distinguish them. Of course the
problem then becomes one of what class of tests is appro-
priate. In particular the generalised notion of testing intro-
duced in [16] may prove useful in drawing a distinction be-
tween delayable and undelayable events at the low-level.
Furthermore we have shown the significance of the notion
of power-bisimulation. It establishes a correspondence be-
tween the testing, bisimulation and denotational styles of
defining process equivalence.

We have proposed a generalised form of non-
interference and shown that it can encompass a number of
systems and policies of interest: with encrypted channels,
partial and conditional flows, downgraders etc.

We have only addressed the so-called ‘possibilistic’ no-
tions of non-interference, i.e. whether High can influence
the possibility of Low performing certain observations. In
other words we are abstracting away from issues of prob-
ability and time, in particular. Clearly these are important

and need to be addressed. However it is also clear that even
in the comparatively simple context of possibilisitic models
there are many subtleties lurking. We hope that this paper
has served to identify and shed some more light on these
subtleties.

5.1. Acknowledgements

Much of the research reported here was carried out dur-
ing a collaborative visit at Royal Holloway, and the first au-
thor is grateful to the Royal Holloway Department of Com-
puter Science for their hospitality. We would also like to
thank Bill Roscoe, Michael Goldsmith, Sylvan Pinsky, Paul
Gardiner, Martin Abadi and Nick Moffat as well as the re-
viewers for useful discussions and comments.

References

[1] M. Abadi and A. Gordon. A calculus for crypto-
graphic protocols: the spi calculus. Information and
Computation, 1999.

[2] R. Focardi, A. Ghelli, and R. Gorrieri. Using non-
interference for the analysis of security protocols. In
DIMACS workshop on Design and Formal Verification
of Security protocols, 1997.

[3] P H B Gardiner. Power simulation and its relation to
failures refinement. DERA/FSEL technical report, to
appear, 1999.

[4] J. A. Goguen and J. Meseguer. Security policies and
security models. In IEEE Symposium on Security and
Privacy, 1982.

[5] M. Hennessy. Algebraic Theory of Processes. MIT
press, 1988.

[6] G. Lowe. Probabilities and Priorities in Timed CSP.
D. Phil thesis, Oxford University, 1993.

[7] A. McIver, C. Morgan, K. Seidel, and J. Sanders.
Refinement-oriented probability for CSP. Formal As-
pects of Computing 8(9), 1996.

[8] J McLean. A general theory of composition for trace
sets closed under selective interleaving functions. In
IEEE Symposium on Research in Security and Pri-
vacy, 1994.

[9] R. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

[10] S. Pinsky. Absorbing covers and intransitive non-
interference. In IEEE Symposium on Research in Se-
curity and Privacy, 1995.

[11] A. W. Roscoe. The theory and practice of concur-
rency. Prentice-Hall, 1997.

[12] A. W. Roscoe, J. Woodcock, and L. Wulf. Non-
interference through determinism. In ESORICS, 1994.

[13] John Rushby. Noninterference, transitiivity and
channel-control security policies. Technical report,
SRI, 1992.

[14] P. Y. A. Ryan. A CSP formulation of non-interference
and unwinding. Presented at CSFW’90 and published
in Cipher Winter90/91, 1990.

[15] S. A. Schneider. Concurrent and Real time systems:
the CSP approach. John Wiley, 1999. (to appear).

[16] S. A. Schneider. Testing and abstraction. Technical
Report TR-99-02, Royal Holloway, University of Lon-
don, 1999.

[17] S. A. Schneider and A. Sidiropoulos. CSP and
anonymity. In ESORICS, 1996.

[18] D. Sutherland. A model of information. In 9th Na-
tional Computer Security Conference, 1986.

[19] J. T. Wittbold and D. M. Johnson. Information flow
in nondeterministic systems. Proceedings of the 1990
Symposium on Research on Security and Privacy,
1990.

